88教案网

高考物理单元质量评估复习003

一名优秀负责的教师就要对每一位学生尽职尽责,作为教师就要精心准备好合适的教案。教案可以让讲的知识能够轻松被学生吸收,帮助教师掌握上课时的教学节奏。那么如何写好我们的教案呢?小编收集并整理了“高考物理单元质量评估复习003”,欢迎阅读,希望您能阅读并收藏。

单元质量评估(十)
一、选择题(本题包括10小题,每小题给出的四个选项中,有的只有一个选项正确,有的有多个选项正确,全选对的得4分,选对但不全的得2分,有选错的得0分)
1.如图10-1所示的整个装置放在竖直平面内,欲使带负电的油滴P在两平行金属板间静止,导体棒ab将沿导轨运动的情况是()
A、向右匀减速运动B、向右匀加速运动
C、向左匀减速运动D、向左匀加速运动

2.如图10-2所示,有两根和水平方向成角的光滑平行的金属轨道,上端接有可变电阻R,下端足够长,空间有垂直于轨道平面的匀强磁场,磁感强度为B,一根质量为m的金属杆从轨道上由静止滑下。经过足够长的时间后,金属杆的速度会趋近于一个最大速度vm,则:()
A.如果B增大,vm将变大
B.如果变大,vm将变大
C.如果R变大,vm将变大
D.如果m变小,vm将变大

3..如图10-3所示的电路中,三个相同的灯泡a、b、c和电感L1、L2与直流电源连接,电感的电阻忽略不计.电键K从闭合状态突然断开时,下列判断正确的有()
A.a先变亮,然后逐渐变暗
B.b先变亮,然后逐渐变暗
C.c先变亮,然后逐渐变暗
D.b、c都逐渐变暗

4.如图10-4所示,一导线弯成半径为a的半圆形闭合回路。虚线MN右侧有磁感应强度为B的匀强磁场。方向垂直于回路所在的平面。回路以速度v向右匀速进入磁场,直径CD始络与MN垂直。从D点到达边界开始到C点进入磁场为止,下列结论正确的是
A.感应电流方向不变
B.CD段直线始终不受安培力
C.感应电动势最大值E=Bav
D.感应电动势平均值

5、如图10-5中EF、GH为平行的金属导轨,其电阻可不计,R为电阻器,C为电容器,AB为可在EF和GH上滑动的导体横杆,有均匀磁场垂直于导轨平面.若用和分别表示图中该处导线中的电流,则当横杆AB()
A、匀速滑动时,,B、匀速滑动时,
C、加速滑动时,,D、加速滑动时,,

6.一个圆形闭合线圈固定在垂直纸面的匀强磁场中,线圈平面与磁场方向垂直,如图10-6甲所示。设垂直纸面向里的磁感应强度方向为正,垂直纸面向外的磁感应强度方向为负。线圈中顺时针方向的感应电流为正,逆时针方向的感应电流为负。已知圆形线圈中感应电流i随时间变化的图象如图7-5乙所示,则线圈所在处的磁场的磁感应强度随时间变化的图象可能是()

7、如图10-7所示,一有限范围的匀强磁场,宽度为d,将一个边长为L的正方形导线框以速度υ匀速地通过磁场区域,若dL,则在线框中不产生感应电流的时间应等于()
A、d/υ;B、L/υ;C、(d–L)/υ;D、(d–2L)/υ;

8.如图10-8所示,A为水平放置的橡胶圆盘,在其侧面带有负电荷─Q,在A正上方用丝线悬挂一个金属圆环B(丝线未画出),使B的环面在水平面上与圆盘平行,其轴线与橡胶盘A的轴线O1O2重合。现使橡胶盘A由静止开始绕其轴线O1O2按图中箭头方向加速转动,则()
A.金属圆环B有扩大半径的趋势,丝线受到拉力增大
B.金属圆环B有缩小半径的趋势,丝线受到拉力减小
C.金属圆环B有扩大半径的趋势,丝线受到拉力减小
D.金属圆环B有缩小半径的趋势,丝线受到拉力增大

9.(08山东22)两根足够长的光滑导轨竖直放置,间距为L,底端接阻值为R的电阻。将质量为m的金属棒悬挂在一个固定的轻弹簧下端,金属棒和导轨接触良好,导轨所在平面与磁感应强度为B的匀强磁场垂直,如图10-9所示。除电阻R外其余电阻不计。现将金属棒从弹簧原长位置由静止释放.则(AC)
A.释放瞬间金属棒的加速度等于重力加速度g
B.金属棒向下运动时,流过电阻R的电流方向为a→b
C.金属棒的速度为v时.所受的安培力大小为
D.电阻R上产生的总热量等于金属棒重力势能的减少
10.在如图10-10所示的倾角为θ的光滑斜面上,存在着两个磁感应强度大小为B的匀强磁场,区域I的磁场方向垂直斜面向上,区域Ⅱ的磁场方向垂直斜面向下,磁场的宽度均为L,一个质量为m、电阻为R、边长也为L的正方形导线框,由静止开始沿斜面下滑,当ab边刚越过GH进入磁场Ⅰ区时,恰好以速度v1做匀速直线运动;当ab边下滑到JP与MN的中间位置时,线框又恰好以速度v2做匀速直线运动,从ab进入GH到MN与JP的中间位置的过程中,线框的动能变化量为△Ek,重力对线框做功大小为W1,安培力对线框做功大小为W2,下列说法中正确的有()
A.在下滑过程中,由于重力做正功,所以有v2>v1
B.从ab进入GH到MN与JP的中间位置的过程中,机械能守恒
C.从ab进入GH到MN与JP的中间位置的过程,有(W1-△Ek)机械能转化为电能
D.从ab进入GH到MN与JP的中间位置的过程中,线框动能的变化量大小为△Ek=W1-W2

二、填空题(每小题4分,共16分)
11、如图10-11所示,匀强磁场的磁感应强度为0.4T,,,ab长为20cm,当ab以的速度向右匀速运动时,电路中的电流为___________,电容器上板带________电,电荷量为_________C.

12.如图10-12,金属导轨间距为d,一端跨接一个电阻R,匀强磁场的磁感应强度为B,方向垂直于平行金属导轨所在的平面.一根金属棒电阻也为R,与导轨成θ角放置(导轨电阻不计),当金属棒以恒定速度v在金属导轨上滑行时(如图示),通过电阻的电流为___________;电阻R上发热功率为___________;拉力的机械功率为___________.

13.(09海淀区模拟).如图所示,竖直放置的足够长的光滑平行金属导轨,间距为l=0.50m,导轨上端接有电阻R=0.80Ω,导轨电阻忽略不计。空间有一水平方向的有上边界的匀强磁场,磁感应强度大小为B=0.40T,方向垂直于金属导轨平面向外。质量为m=0.02kg、电阻r=0.20Ω的金属杆MN,从静止开始沿着金属导轨下滑,下落一定高度后以v=2.5m/s的速度进入匀强磁场中,在磁场下落过程中金属杆始终与导轨垂直且接触良好。已知重力加速度为g=10m/s2,不计空气阻力,求在磁场中,
(1)金属杆刚进入磁场区域时加速度_______;
(2)若金属杆在磁场区域又下落h开始以v0匀速运动,v0______.

14、如图10-14所示,不计电阻的U形导轨水平放置,导轨宽,左端连接阻值为0.4W的电阻R,在导轨上垂直于导轨放一电阻为0.1W的导体棒MN,并用水平轻绳通过定滑轮吊着质量为m=2.4g的重物,图中,开始重物与水平地面接触并处于静止,整个装置处于竖直向上的匀强磁场中,磁感强度,并且的规律在增大,不计摩擦阻力,求至少经过_________时间才能将重物吊起?()

三、计算题(5小题,共44分)

15、(8分)水平向上足够长的金属导轨平行固定放置,间距为L,一端通过导线与阻值为R的电阻连接;导轨上放一质量为m的金属杆(如图10-15所示),金属杆与导轨的电阻忽略不计;均匀磁场竖直向下.用与导轨平行的恒定拉力F作用在金属杆上,杆最终将做匀速运动.当改变拉力大小时,相对应的匀速运动速度也会变化,和F的关系如图1-15所示.(取重力加速度)
(1)金属杆在匀速运动之前做什么运动?
(2)若,,;磁感应强度B为多大?
(3)由-F图线的截距可求得什么物理量?其值为多少?

16.(8分)(09上海物理24)(14分)如图10-16,光滑的平行金属导轨水平放置,电阻不计,导轨间距为l,左侧接一阻值为R的电阻。区域cdef内存在垂直轨道平面向下的有界匀强磁场,磁场宽度为s。一质量为m,电阻为r的金属棒MN置于导轨上,与导轨垂直且接触良好,受到F=0.5v+0.4(N)(v为金属棒运动速度)的水平力作用,从磁场的左边界由静止开始运动,测得电阻两端电压随时间均匀增大。(已知l=1m,m=1kg,R=0.3,r=0.2,s=1m)
(1)分析并说明该金属棒在磁场中做何种运动;
(2)求磁感应强度B的大小;
(3)若撤去外力后棒的速度v随位移x的变化规律满足v=v0-B2l2m(R+r)x,且棒在运动到ef处时恰好静止,则外力F作用的时间为多少?
(4)若在棒未出磁场区域时撤去外力,画出棒在整个运动过程中速度随位移的变化所对应的各种可能的图线。

17.(8分)(2009年北京丰台区高三期末)如图所示,宽度为L=0.20m的足够长的平行光滑金属导轨固定在绝缘水平面上,导轨的一端连接阻值为R=1.0Ω的电阻。导轨所在空间存在竖直向下的匀强磁场,磁感应强度大小为B=0.50T。一根质量为m=10g的导体棒MN放在导轨上与导轨接触良好,导轨和导体棒的电阻均可忽略不计。现用一平行于导轨的拉力拉动导体棒沿导轨向右匀速运动,运动速度v=10m/s,在运动过程中保持导体棒与导轨垂直。求:
(1)在闭合回路中产生的感应电流的大小;
(2)作用在导体棒上的拉力的大小;
(3)当导体棒移动30cm时撤去拉力,求整个过程中电阻R上产生的热量。

18.(10分)(2009年江苏盐城市高三上学期月考)如图所示,电阻忽略不计的、两根两平行的光滑金属导轨竖直放置,其上端接一阻值为3Ω的定值电阻R。在水平虚线L1、L2间有一与导轨所在平面垂直的匀强磁场B,磁场区域的高度为d=0.5m。导体棒a的质量ma=0.2kg、电阻Ra=3Ω;导体棒b的质量mb=0.1kg、电阻Rb=6Ω,它们分别从图中M、N处同时由静止开始在导轨上无摩擦向下滑动,且都能匀速穿过磁场区域,当b刚穿出磁场时a正好进入磁场.设重力加速度为g=10m/s2。(不计a、b之间的作用)求:
(1)在整个过程中,a、b两棒克服安培力分别做的功;
(2)M点和N点距L1的高度。

19、(10分)(2009年广东物理18.)如图10-19(a)所示,一个电阻值为R,匝数为的圆形金属线圈与阻值为2R的电阻R1连接成闭合回路。线圈的半径为r1。在线圈中半径为r2的圆形区域内存在垂直于线圈平面向里的匀强磁场,磁感应强度B随时间t变化的关系图线如图10-19(b)所示。图线与横、纵轴的截距分别为t0和B0。导线的电阻不计。求0至t1时间内
(1)通过电阻R1上的电流大小和方向;
(2)通过电阻R1上的电量q及电阻R1上产生的热量。

相关阅读

高考物理单元质量评估复习004


单元质量评估(十一)
一、选择题(本题包括10小题,每小题给出的四个选项中,有的只有一个选项正确,有的有多个选项正确,全选对的得4分,选对但不全的得2分,有选错的得0分)
1.一矩形闭合线圈绕垂直于匀强磁场并位于线圈平面内的固定轴转动,下述说法正确的是()
A.穿过线圈的磁通量最大时,线圈中感应电流最大
B.穿过线圈的磁通量为零时,线圈中感应电流最大
C.若加大线圈的转速(其他条件不变),则线圈中交变电流的频率变大
D.若加大线圈的转速(其他条件不变),则线圈中交变电流的最大值不变

2..如图11-1所示,矩形线圈的匝数为N,面积为S,内阻为r,绕OO′轴以角速度ω做匀速转动.在它从如图所示的位置转过90°的过程中,下列说法正确的是()
A.通过电阻的电荷量为
B.通过电阻的电荷量为
C.外力所做的功为
D.外力所做的功为

3.一个边长6cm的正方形金属线框置于匀强磁场中,线框平面与磁场垂直,电阻为0.36,磁感应强度B随时间t的变化关系如图11-2所示,则线框中感应电流的有效值为()

A.B.
C.D.
4.一正弦交流电的电压随时间变化的规律如图所示.由图11-3可知()
A.该交流电的电压瞬时值的表达式为u=100sin(25t)V
B.该交流电的频率为25Hz
C.该交流电的电压的有效值为100
D.若将该交流电压加在阻值R=100Ω的电阻两端,则电阻消耗的功率为50W

5.将阻值为5Ω的电阻接到内阻不计的交流电源上,电源电动势随时间变化的规律如图11-4所示.下列说法正确的是()
A.电路中交变电流的频率为0.25Hz
B.通过电阻的电流为A
C.电阻消耗的电功率为2.5W
D.用交流电压表测得电阻两端的电压是5V

6.钳形电流表的外形和结构如图11-5(a)所示.图4(a)中电流表的读数为1.2A.图4(b)中用同一电缆线绕了3匝,则()
A.这种电流表能测直流电流,图4(b)的读数为2.4A
B.这种电流表能测交流电流,图4(b)的读数为0.4A
C.这种电流表能测交流电流,图4(b)的读数为3.6A
D.这种电流表既能测直流电流,又能测交流电流,图4(b)的读数为3.6A

7.如图11-6所示,理想变压器的原线圈a、b两端接正弦交流电压,副线圈c、d两端通过输电线接两只相同的灯泡L1、L2,输电线的等效电阻为,当开关由原来的闭合状态变为断开时,下列各量中减小的是()
A.副线圈c、d两端的输出电压
B.副线圈输电线等效电阻R上的电压
C.通过灯泡L1上的电流强度
D.原线圈上的电流强度

8.(08海南7)如图11-7,理想变压器原副线圈匝数之比为4∶1.原线圈接入一电压为u=U0sinωt的交流电源,副线圈接一个R=27.5Ω的负载电阻.若U0=220V,ω=100πHz,则下述结论正确的是()
A.副线圈中电压表的读数为55V
B.副线圈中输出交流电的周期为
C.原线圈中电流表的读数为0.5A
D.原线圈中的输入功率为

9..一理想变压器的原线圈上接有正弦交变电压,其最大值保持不变,副线圈接有可调电阻R。设原线圈的电流为I1,输入功率为P1,副线圈的电流为I2,输出功率为P2。当R增大时
A.I1减小,P1增大B.I1减小,P1减小
D.I2增大,P2减小D.I2增大,P2增大

10.(江苏淮安、连云港、宿迁、徐州四市2008第三次调研卷.物理.10)今年春节前后,我国部分省市的供电系统由于气候原因遭到严重破坏。为此,某小区启动了临时供电系统,它由备用发电机和副线圈匝数可调的变压器组成,如图11-8所示,图中R0表示输电线的电阻。滑动触头P置于a处时,用户的用电器恰好正常工作,在下列情况下,要保证用电器仍能正常工作,则()
A.当发电机输出的电压发生波动使V1示数小于
正常值,用电器不变时,应使滑动触头P向上滑动
B.当发电机输出的电压发生波动使V1示数小于正常值,用电器不变时,应使滑动触头P向下滑动
C.如果V1示数保持正常值不变,那么当用电器增加时,滑动触头P应向上滑
D.如果V1示数保持正常值不变,那么当用电器增加时,滑动触头P应向下滑
二、填空题(每小题4分,共16分)
11.频率为50Hz的交变电流,其电压u=120sinωtV,把它加在激发电压、熄灭电压均为84V的霓虹灯的两端,则在半个周期内霓虹灯点亮的时间为______________.(=1.4)

12.阻值R=50Ω的电热丝接在电压u=100sin100πtV的交流电源上,电流表的示数为_______A,电热丝两端电压表的示数为________V,在前0.005s内,流过电热丝的平均电流为_________A.如果将一个电容器接在该交流电源上,要使电容器不被击穿,所选的电容器能承受的最大电压应不小于__________V.

13.(07.上海物理卷)如图11-9所示,自耦变压器输入端A、B接交流稳压电源,其电压有效值UAB=100V,R0=40,当滑动片处于线圈中点位置时,C、D两端电压的有效值UCD为___________V,通过电阻R0的电流有效值为_____________A.

14.(06.上海物理卷)如图11-10所示,一理想变压器原、副线圈匝数分别为nl和n2,当负载电阻R中流过的电流为I时,原线圈中流过的电流为;现减小负载电阻R的阻值,则变压器的输入功率将(填“增大”、“减小”或“不变”).
三、计算题(4小题,共44分)
15.(10分)(2009届广东省新洲中学高三摸底考试试卷.物理.16)某发电站的输出功率P=104kW,输出电压U1=4kV,通过理想变压器升压后向远处供电.已知输电导线的总电阻为R=10Ω,输电线路损失的功率为输出功率的4%,求变压器的匝数比.

16.(10分)发电机输出功率为100kW,输出电压是250V,用户需要的电压是220V,输电线电阻为10Ω.若输电线中因发热而损失的功率为输送功率的4%,试求:
(1)在输电线路中设置的升、降压变压器原副线圈的匝数比.
(2)画出此输电线路的示意图.
(3)用户得到的电功率是多少?

17.(12分)(湖南郴州市2009届高三调研试题.物理.16)如图11-11所示,一矩形线圈在匀强磁场中绕OO轴匀速转动,磁场方向与转轴垂直.已知线圈匝数n=400,电阻r=0.1Ω,长L1=0.05m,宽L2=0.04m,角速度=l00rad/s,磁场的磁感应强度B=0.25T.线圈两端外接电阻R=9.9Ω的用电器和一个交流电流表(内阻不计),求:
(1)线圈中产生的最大感应电动势.
(2)电流表A的读数.
(3)用电器上消耗的电功率.

18.(12分)(浙江省2008届高三第一轮复习单元测试题卷.物理.19)如图11-12(甲)所示,边长为l和L的矩形线框、互相垂直,彼此绝缘,可绕中心轴O1O2转动,将两线框的始端并在一起接到滑环C,末端并在一起接到滑环D,C、D彼此绝缘.通过电刷跟C、D连接.线框处于磁铁和圆柱形铁芯之间的磁场中,磁场边缘中心的张角为45°,如图19(乙)所示(图中的圆表示圆柱形铁芯,它使磁铁和铁芯之间的磁场沿半径方向,如图箭头所示)。不论线框转到磁场中的什么位置,磁场的方向总是沿着线框平面.磁场中长为l的线框边所在处的磁感应强度大小恒为B,设线框和的电阻都是r,两个线框以角速度ω逆时针匀速转动,电阻R=2r.

(1)求线框转到图(乙)位置时感应电动势的大小;
(2)求转动过程中电阻R上的电压最大值;
(3)从线框进入磁场开始时,作出0~T(T是线框转动周期)时间内通过R的电流iR随时间变化的图象。

高考物理第一轮精编复习资料003


数学方法在物理中的应用
方法概述
数学是解决物理问题的重要工具,借助数学方法可使一些复杂的物理问题显示出明显的规律性,能达到打通关卡、长驱直入地解决问题的目的.中学物理《考试大纲》中对学生应用数学方法解决物理问题的能力作出了明确的要求,要求考生有“应用数学处理物理问题”的能力.对这一能力的考查在历年高考试题中也层出不穷,如2009年高考北京理综卷第20题、宁夏理综卷第18题、江苏物理卷第15题;2008年高考四川理综卷第24题、延考区理综卷第25题、上海物理卷第23题、北京理综卷第24题等.
所谓数学方法,就是要把客观事物的状态、关系和过程用数学语言表达出来,并进行推导、演算和分析,以形成对问题的判断、解释和预测.可以说,任何物理问题的分析、处理过程,都是数学方法的运用过程.本专题中所指的数学方法,都是一些特殊、典型的方法,常用的有极值法、几何法、图象法、数学归纳推理法、微元法、等差(比)数列求和法等.
一、极值法
数学中求极值的方法很多,物理极值问题中常用的极值法有:三角函数极值法、二次函数极值法、一元二次方程的判别式法等.
1.利用三角函数求极值
y=acosθ+bsinθ
=a2+b2(aa2+b2cosθ+ba2+b2sinθ)
令sinφ=aa2+b2,cosφ=ba2+b2
则有:y=a2+b2(sinφcosθ+cosφsinθ)
=a2+b2sin(φ+θ)
所以当φ+θ=π2时,y有最大值,且ymax=a2+b2.
2.利用二次函数求极值
二次函数:y=ax2+bx+c=a(x2+bax+b24a2)+c-b24a=a(x+b2a)2+4ac-b24a(其中a、b、c为实常数),当x=-b2a时,有极值ym=4ac-b24a(若二次项系数a0,y有极小值;若a0,y有极大值).
3.均值不等式
对于两个大于零的变量a、b,若其和a+b为一定值p,则当a=b时,其积ab取得极大值p24;对于三个大于零的变量a、b、c,若其和a+b+c为一定值q,则当a=b=c时,其积abc取得极大值q327.[来源:高考%资源网KS%5U]
二、几何法
利用几何方法求解物理问题时,常用到的有“对称点的性质”、“两点间直线距离最短”、“直角三角形中斜边大于直角边”以及“全等、相似三角形的特性”等相关知识,如:带电粒子在有界磁场中的运动类问题,物体的变力分析时经常要用到相似三角形法、作图法等.与圆有关的几何知识在力学部分和电学部分的解题中均有应用,尤其在带电粒子在匀强磁场中做圆周运动类问题中应用最多,此类问题的难点往往在圆心与半径的确定上,确定方法有以下几种.
1.依切线的性质确定.从已给的圆弧上找两条不平行的切线和对应的切点,过切点作切线的垂线,两条垂线的交点为圆心,圆心与切点的连线为半径.
2.依垂径定理(垂直于弦的直径平分该弦,且平分弦所对的弧)和相交弦定理(如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项)确定.如图8-1所示.
图8-1
由EB2=CEED
=CE(2R-CE)
得:R=EB22CE+CE2
也可由勾股定理得:
R2=(R-CE)2+EB2
解得:R=EB22CE+CE2.
以上两种求半径的方法常用于求解“带电粒子在匀强磁场中的运动”这类习题中.
三、图象法
中学物理中一些比较抽象的习题常较难求解,若能与数学图形相结合,再恰当地引入物理图象,则可变抽象为形象,突破难点、疑点,使解题过程大大简化.图象法是历年高考的热点,因而在复习中要密切关注图象,掌握图象的识别、绘制等方法.
1.物理图象的分类
整个高中教材中有很多不同类型的图象,按图形形状的不同可分为以下几类.
(1)直线型:如匀速直线运动的s-t图象、匀变速直线运动的v-t图象、定值电阻的U-I图象等.
(2)正弦曲线型:如简谐振动的x-t图象、简谐波的y-x图象、正弦式交变电流的e-t图象、正弦式振荡电流的i-t图象及电荷量的q-t图象等.
(3)其他型:如共振曲线的A-f图象、分子力与分子间距离的f-r图象等.
下面我们对高中物理中接触到的典型物理图象作一综合回顾,以期对物理图象有个较为系统的认识和归纳.
图象函数形式特例物理意义
y=c匀速直线运动的v-t图象做匀速直线运动的质点的速度是恒矢量.
y=kx①匀速直线运动的s-t图象
②初速度v0=0的匀加速直线运动的v-t图象(若v0≠0,则纵截距不为零)
③纯电阻电路的I-U图象①表示物体的位移大小随时间线性增大.
②表示物体的速度大小随时间线性增大.
③表示纯电阻电路中I随导体两端的电压U线性增大.
y=a-kx①匀减速直线运动的v-t图象
②闭合电路中的U-I图象(U=E-Ir)①表示物体的速度大小随时间线性减小.
②表示路端电压随电流的增大而减小.
y=ax+bx
(双曲线函数)①由纯电阻用电器组成的闭合电路的U-R图象(U=ER+rR)
②在垂直于匀强磁场的[XCzt71.tifBP]导轨上,自由导体棒在一恒定动力F的作用下做变加速运动的v-t图象①表示纯电阻电路中电源的端电压随外电阻而非线性增大.
②将达到稳定速度vm=FR总B2L2.

y=kx2
(抛物线函数)①小灯泡消耗的实际功率与外加电压的P-U图象
②位移与时间的s-t图象(s=12at2)
①表示小灯泡消耗的实际功率随电压的增大而增大,且增大得越来越快.
②表示位移随时间的增大而增大,且增大得越来越快.
xy=c
(双曲线函数)机械在额定功率下,其牵引力与速度的关系图象(P=Fv)表示功率一定时,牵引力与速度成反比.
y=Asinωt交流电的e-t图象(e=Emsinωt)表示交流电随时间变化的关系.
2.物理图象的应用
(1)利用图象解题可使解题过程更简化,思路更清晰.
利用图象法解题不仅思路清晰,而且在很多情况下可使解题过程得到简化,起到比解析法更巧妙、更灵活的独特效果.甚至在有些情况下运用解析法可能无能为力,但是运用图象法则会使你豁然开朗,如求解变力分析中的极值类问题等.
(2)利用图象描述物理过程更直观.
从物理图象上可以比较直观地观察出物理过程的动态特征.
(3)利用物理图象分析物理实验.
运用图象处理实验数据是物理实验中常用的一种方法,这是因为它除了具有简明、直观、便于比较和减少偶然误差的特点外,还可以由图象求解第三个相关物理量,尤其是无法从实验中直接得到的结论.
3.对图象意义的理解
(1)首先应明确所给的图象是什么图象,即认清图象中比纵横轴所代表的物理量及它们的“函数关系”,特别是对那些图形相似、容易混淆的图象,更要注意区分.例如振动图象与波动图象、运动学中的s-t图象和v-t图象、电磁振荡中的i-t图象和q-t图象等.
(2)要注意理解图象中的“点”、“线”、“斜率”、“截距”、“面积”的物理意义.
①点:图线上的每一个点对应研究对象的一个状态.要特别注意“起点”、“终点”、“拐点”、“交点”,它们往往对应着一个特殊状态.如有的速度图象中,拐点可能表示速度由增大(减小)变为减小(增大),即加速度的方向发生变化的时刻,而速度图线与时间轴的交点则代表速度的方向发生变化的时刻.
②线:注意观察图线是直线、曲线还是折线等,从而弄清图象所反映的两个物理量之间的关系.
③斜率:表示纵横坐标上两物理量的比值.常有一个重要的物理量与之对应,用于求解定量计算中所对应的物理量的大小以及定性分析变化的快慢.如v-t图象的斜率表示加速度.
④截距:表示纵横坐标两物理量在“边界”条件下物理量的大小.由此往往可得到一个很有意义的物理量.如电源的U-I图象反映了U=E-Ir的函数关系,两截距点分别为(0,E)和Er,0.
⑤面积:有些物理图象的图线与横轴所围的面积往往代表一个物理量的大小.如v-t图象中面积表示位移.
4.运用图象解答物理问题的步骤
(1)看清纵横坐标分别表示的物理量.
(2)看图象本身,识别两物理量的变化趋势,从而分析具体的物理过程.
(3)看两相关量的变化范围及给出的相关条件,明确图线与坐标轴的交点、图线斜率、图线与坐标轴围成的“面积”的物理意义.
四、数学归纳法
在解决某些物理过程中比较复杂的具体问题时,常从特殊情况出发,类推出一般情况下的猜想,然后用数学归纳法加以证明,从而确定我们的猜想是正确的.利用数学归纳法解题要注意书写上的规范,以便找出其中的规律.
五、微元法
利用微分思想的分析方法称为微元法.它是将研究对象(物体或物理过程)进行无限细分,再从中抽取某一微小单元进行讨论,从而找出被研究对象的变化规律的一种思想方法.微元法解题的思维过程如下.
(1)隔离选择恰当的微元作为研究对象.微元可以是一小段线段、圆弧或一小块面积,也可以是一个小体积、小质量或一小段时间等,但必须具有整体对象的基本特征.
(2)将微元模型化(如视为点电荷、质点、匀速直线运动、匀速转动等),并运用相关的物理规律求解这个微元与所求物体之间的关联.
(3)将一个微元的解答结果推广到其他微元,并充分利用各微元间的对称关系、矢量方向关系、近似极限关系等,对各微元的求解结果进行叠加,以求得整体量的合理解答.
六、三角函数法
三角函数反映了三角形的边、角之间的关系,在物理解题中有较广泛的应用.例如:讨论三个共点的平衡力组成的力的三角形时,常用正弦定理求力的大小;用函数的单调变化的临界状态来求取某个物理量的极值;用三角函数的“和积公式”将结论进行化简等.
七、数列法
凡涉及数列求解的物理问题都具有过程多、重复性强的特点,但每一个重复过程均不是原来的完全重复,而是一种变化了的重复.随着物理过程的重复,某些物理量逐步发生着前后有联系的变化.该类问题求解的基本思路为:
(1)逐个分析开始的几个物理过程;
(2)利用归纳法从中找出物理量变化的通项公式(这是解题的关键);
(3)最后分析整个物理过程,应用数列特点和规律求解.
无穷数列的求和,一般是无穷递减数列,有相应的公式可用.
等差:Sn=n(a1+an)2=na1+n(n-1)2d(d为公差).
等比:Sn=a1(1-qn)1-q(q为公比).
八、比例法
比例计算法可以避开与解题无关的量,直接列出已知和未知的比例式进行计算,使解题过程大为简化.应用比例法解物理题,要讨论物理公式中变量之间的比例关系,要清楚公式的物理意义和每个量在公式中的作用,以及所要讨论的比例关系是否成立.同时要注意以下几点.
(1)比例条件是否满足.物理过程中的变量往往有多个,讨论某两个量间的比例关系时要注意只有其他量为常量时才能成比例.
(2)比例是否符合物理意义.不能仅从数学关系来看物理公式中各量的比例关系,要注意每个物理量的意义.(如不能根据R=UI认定电阻与电压成正比)
(3)比例是否存在.讨论某公式中两个量的比例关系时,要注意其他量是否能认为是不变量.如果该条件不成立,比例也不能成立.(如在串联电路中,不能认为P=U2R中P与R成反比,因为R变化的同时,U也随之变化而并非常量)
许多物理量都是用比值法来定义的,常称之为“比值定义”.如密度ρ=mV,导体的电阻R=UI,电容器的电容C=QU,接触面间的动摩擦因数μ=fFN,电场强度E=Fq等.它们的共同特征是:被定义的物理量是反映物体或物质的属性和特征的,它和定义式中相比的物理量无关.对此,学生很容易把它当做一个数学比例式来处理而忽略了其物理意义,也就是说教学中还要防止数学知识在物理应用中的负迁移.
数学是“物理学家的思想工具”,它使物理学家能“有条理地思考”并能想象出更多的东西.可以说,正是有了数学与物理学的有机结合,才使物理学日臻完善.物理学的严格定量化,使得数学方法成为物理解题中一个不可或缺的工具.
热点、重点、难点
●例1如图8-2甲所示,一薄木板放在正方形水平桌面上,木板的两端与桌面的两端对齐,一小木块放在木板的正中间.木块和木板的质量均为m,木块与木板之间、木板与桌面之间的动摩擦因数都为μ.现突然以一水平外力F将薄木板抽出,要使小木块不从桌面上掉下,则水平外力F至少应为________.(假设木板抽动过程中始终保持水平,且在竖直方向上的压力全部作用在水平桌面上)
图8-2甲
A.2μmgB.4μmgC.6μmgD.8μmg
【解析】解法一F越大,木块与木板分离时的速度、位移越小,木块越不可能从桌面滑下.设拉力为F0时,木块恰好能滑至桌面的边缘,再设木块与木板分离的时刻为t1,在0~t1时间内有:
12(F0-μmg-2μmg)mt12-12μgt12=L2
对t1时间后木块滑行的过程,有:
v122μg=(μgt1)22μg=L2-12μgt12
解得:F0=6μmg.
解法二F越大,木块与木板分离时的速度、位移越小,木块越不可能从桌面滑出.若木块不从桌面滑出,则其v-t图象如图8-2乙中OBC所示,其中OB的斜率为μg,BC的斜率为-μg,t1=t2
图8-2乙
有:S△OBC=12μgt12×2≤L2
设拉力为F时,木板的v-t图象为图7-2乙中的直线OA,则S△OAB=L2
即12(v2-v1)t1=L2
其中v1=μgt1,v2=F-3μmgmt1
解得:F≥6μmg
即拉力至少为6μmg.
[答案]C
【点评】对于两物体间的多过程运动问题,在明确物理过程的基础上,画出物体各自的运动图象,这样两物体的运动特点就很明显了.利用图线与坐标轴所夹面积的关系明确物体间的位移关系,可省略一些物理量的计算,从而快速、简捷地解答问题,同类题可见专题一能力演练第3题.
●例2如图8-3甲所示,在竖直平面内的直角坐标系中,一个质量为m的质点在外力F的作用下从坐标原点O由静止沿直线ON斜向下运动,直线ON与y轴负方向成θ角(θ<π4),则F的大小至少为________;若F=mgtanθ,则质点的机械能大小的变化情况是__________________________.
[2008年高考上海物理卷]
图8-3甲
【解析】该质点在重力和外力F的作用下从静止开始做直线运动,说明质点做匀加速直线运动,如图8-3乙所示,当F的方向为a方向(垂直于ON)时,F最小为mgsinθ;若F=mgtanθ,即F可能为b方向或c方向,故除重力外的力F对质点可能做正功,也可能做负功,所以质点的机械能增加、减少都有可能.
图8-3乙
[答案]mgsinθ增加、减少都有可能
【点评】运用平行四边形(三角形)定则分析物体受力的变化情况(或用相似三角形比较受力)是一种常用的方法,同类题可见专题一同类拓展2和例题4.
●例3总质量为80kg的跳伞运动员从离地500m的直升机上跳下,经过2s拉开绳索开启降落伞,图8-4是跳伞过程中的v-t图象,试根据图象求:(取g=10m/s2)
图8-4
(1)t=1s时运动员的加速度和所受阻力的大小.
(2)估算14s内运动员下落的高度及克服阻力做的功.
(3)估算运动员从飞机上跳下到着地的总时间.
[2008年高考上海物理卷]
【解析】(1)从图象中可以看出,在t=2s内运动员做匀加速运动,其加速度的大小为:a=vtt=162m/s2=8m/s2
设此过程中运动员受到的阻力大小为f,根据牛顿第二定律,有:mg-f=ma
得:f=m(g-a)=80×(10-8)N=160N.
(2)v-t图象与t轴所包围的面积表示位移,由图象可知14s内该面积包含的格子为39格
所以h=39×2×2m=156m
根据动能定理,有:mgh-Wf=12mv2

所以Wf=mgh-12mv2
=(80×10×156-12×80×62)J
≈1.23×105J.
(3)14s后运动员做匀速运动的时间为:
t′=H-hv=500-1566s≈57s
运动员从飞机上跳下到着地所需要的总时间为:
t总=t+t′=(14+57)s≈71s.
[答案](1)160N(2)1.23×105J(3)71s
【点评】对于本题,应明确v-t图象中“面积”的含义,在数小方格个数时需注意合理取舍,即大于半格的算1个,小于半格的舍去.
●例4如图8-5甲所示,一质量m=1kg的木板静止在光滑水平地面上.开始时,木板右端与墙相距L=0.08m,一质量m=1kg的小物块以初速度v0=2m/s滑上木板左端.木板的长度可保证物块在运动过程中不与墙接触.物块与木板之间的动摩擦因数μ=0.1,木板与墙碰撞后以与碰撞前瞬时等大的速度反弹.取g=10m/s2,求:
图8-5甲
(1)从物块滑上木板到两者达到共同速度时,木板与墙碰撞的次数及所用的时间.
(2)达到共同速度时木板右端与墙之间的距离.
【解析】解法一物块滑上木板后,在摩擦力的作用下,木板从静止开始做匀加速运动.设木板的加速度大小为a,经历时间T后与墙第一次碰撞,碰撞时的速度为v1,则有:
μmg=ma
L=12aT2
v1=aT
可得:a=1m/s2,T=0.4s,v1=0.4m/s
物块与木板达到共同速度之前,在每两次碰撞之间,木板受到物块对它的摩擦力作用而做加速度恒定的运动,因而木板与墙相碰后将返回至初态,所用时间为T.设在物块与木板达到共同速度v之前木板共经历了n次碰撞,则有:
v=v0-(2nT+Δt)a=aΔt
式中Δt是碰撞n次后木板从起始位置至达到共同速度所需要的时间
上式可改写为:2v=v0-2nTa
由于木板的速率只能在0到v1之间,故有:
0≤v0-2nTa≤2v1
解得:1.5≤n≤2.5
由于n是整数,故n=2
解得:v=0.2m/s,Δt=0.2s
从开始到物块与木板达到共同速度所用的时间为:
t=4T+Δt=1.8s.
(2)物块与木板达到共同速度时,木板右端与墙之间的距离为:s=L-12aΔt2
解得:s=0.06m
解法二(1)物块滑上木板后,在摩擦力的作用下,木板做匀加速运动的加速度a1=μg=1m/s,方向向右
物块做减速运动的加速度a2=μg=1m/s,方向向左
可作出物块、木板的v-t图象如图8-5乙所示
由图可知,木板在0.4s、1.2s时刻两次与墙碰撞,在t=1.8s时刻物块与木板达到共同速度.
(2)由图8-5乙可知,在t=1.8s时刻木板的位移为:
s=12×a1×0.22=0.02m
木板右端距墙壁的距离Δs=L-s=0.06m.
图8-5乙
[答案](1)1.8s(2)0.06m
【点评】本题的两种解题方法都是在清晰地理解物理过程的前提下巧妙地应用数学方法解析的,专题一例4中的解法二也是典型地利用图象来确定物理过程的.
●例5图8-6所示为一个内外半径分别为R1和R2的圆环状均匀带电平面,其单位面积的带电量为σ.取环面中心O为原点,以垂直于环面的轴线为x轴.设轴上任意点P到O点的距离为x,P点的电场强度大小为E.下面给出E的四个表达式(式中k为静电力常量),其中只有一个是合理的.你可能不会求解此处的场强E,但是你可以通过一定的物理分析,对下列表达式的合理性作出判断.根据你的判断,E的合理表达式应为[2009年高考北京理综卷]()
图8-6
A.E=2πkσR1x2+R12-R2x2+R22x
B.E=2πkσ1x2+R12-1x2+R22x
C.E=2πkσR1x2+R12+R2x2+R22
D.E=2πkσ1x2+R12+1x2+R22x
【解析】A选项表达式可变形为:
E=2πkσR11+(R1x)2-R21+(R2x)2,对于这一表达式,当R1=0时,E=-2πkσR21+(R2x)2,随x的增大,E的绝对值增大,这与客观事实不符合,故A错误,对于C选项中的表达式,当x=0时,E=4πkσ,而事实由对称性知应该为E=0,故C错误.对于D选项,
E=2πkσ11+(R1x)2+11+(R2x)2
同样E随x增大而增大,当x=∞时E0,这与事实不符合,故D错误,只有B可能正确.
[答案]B
【点评】本例与2008年高考北京理综卷第20题相似,给出某一规律的公式,要求证它的正确性,这类试题应引起足够的重视.
●例6如图8-7所示,一轻绳吊着一根粗细均匀的棒,棒下端离地面高为H,上端套着一个细环.棒和环的质量均为m,相互间的最大静摩擦力等于滑动摩擦力kmg(k>1).断开轻绳,棒和环自由下落.假设棒足够长,与地面发生碰撞时触地时间极短,无动能损失.棒在整个运动过程中始终保持竖直,空气阻力不计.求:
图8-7
(1)棒第一次与地面碰撞后弹起上升的过程中,环的加速度.
(2)从断开轻绳到棒与地面第二次碰撞的瞬间,棒运动的路程s.
(3)从断开轻绳到棒和环都静止的过程中,摩擦力对环和棒做的总功W.
[2007年高考江苏物理卷]
【解析】(1)设棒第一次上升的过程中环的加速度为a环,由牛顿第二定律有:
a环=kmg-mgm=(k-1)g,方向竖直向上.
(2)棒第一次落地前瞬间的速度大小为:v1=2gH
设棒弹起后的加速度为a棒,由牛顿第二定律有:
a棒=-kmg+mgm=-(k+1)g
故棒第一次弹起的最大高度为:
H1=-v122a棒=Hk+1
路程s=H+2H1=k+3k+1H.
(3)解法一设棒第一次弹起经过t1时间后与环达到共同速度v1′
环的速度v1′=-v1+a环t1
棒的速度v1′=v1+a棒t1
解得:t1=1k2Hg
v1′=-2gHk
环的位移h环1=-v1t1+12a环t12=-k+1k2H
棒的位移h棒1=v1t1+12a棒t12=k-1k2H
x1=h环1-h棒1
解得:x1=-2Hk
棒、环一起下落至地,有:v22-v1′2=2gh棒1
解得:v2=2gHk
同理,环第二次相对棒的位移为:
x2=h环2-h棒2=-2Hk2
……
xn=-2Hkn
故环相对棒的总位移x=x1+x2+…+xn=-2Hk-1
所以W=kmgx=-2kmgHk-1.
解法二经过足够长的时间棒和环最终静止,设这一过程中它们相对滑动的总路程为l,由能量的转化和守恒定律有:
mgH+mg(H+l)=kmgl
解得:l=2Hk-1
故摩擦力对环和棒做的总功为:
W=-kmgl=-2kmgHk-1.
[答案](1)(k-1)g,方向竖直向上(2)k+3k+1H
(3)-2kmgHk-1
【点评】①高考压轴题中常涉及多个物体多次相互作用的问题,求解这类题往往需要应用数学的递推公式或数列求和知识.
②一对滑动摩擦力做功的总和W=-fs总,s总为相对滑动的总路程.
③对于涉及两个对象的运动过程,规定统一的正方向也很重要.
●例7如图8-8所示,两平行的光滑金属导轨安装在一光滑绝缘斜面上,导轨间距为l、足够长且电阻忽略不计,导轨平面的倾角为α,条形匀强磁场的宽度为d,磁感应强度大小为B,方向与导轨平面垂直.长度为2d的绝缘杆将导体棒和正方形的单匝线框连接在一起组成“”形装置,总质量为m,置于导轨上.导体棒中通以大小恒为I的电流(由外接恒流源产生,图中未画出).线框的边长为d(dl),电阻为R,下边与磁场区域上边界重合.将装置由静止释放,导体棒恰好运动到磁场区域下边界处返回,导体棒在整个运动过程中始终与导轨垂直.重力加速度为g.求:
图8-8
(1)装置从释放到开始返回的过程中,线框中产生的焦耳热Q.
(2)线框第一次穿越磁场区域所需的时间t1.
(3)经过足够长时间后,线框上边与磁场区域下边界的最大距离xm.
[2009年高考江苏物理卷]
【解析】(1)设装置由静止释放到导体棒运动到磁场下边界的过程中,作用在线框上的安培力做功为W,由动能定理得:
mgsinα4d+W-BIld=0
且Q=-W
解得:Q=4mgdsinα-BIld.
(2)设线框刚离开磁场下边界时的速度为v1,则接着向下运动2d,由动能定理得:mgsinα2d-BIld=0-12mv12
线框在穿越磁场中运动时受到的合力F=mgsinα-F′
感应电动势E=Bdv
感应电流I′=ER
安培力F′=BI′d
由牛顿第二定律,在t到(t+Δt)时间内,有Δv=FmΔt
则?Δv=∑[gsinα-B2d2vmR]Δt
有v1=gt1sinα-2B2d3mR
解得:t1=2m(BIld-2mgdsinα)+2B2d3Rmgsinα.
(3)经过足够长时间后,线框在磁场下边界与最大距离xm之间往复运动,由动能定理得:
mgsinαxm-BIl(xm-d)=0
解得:xm=BIldBIl-mgsinα.
[答案](1)4mgdsinα-BIld
(2)2m(BIld-2mgdsinα)+2B2d3Rmgsinα
(3)BIldBIl-mgsinα
能力演练
一、选择题(10×4分)
1.图示是用来监测在核电站工作的人员受到辐射情况的胸章,通过照相底片被射线感光的区域,可以判断工作人员受到何种辐射.当胸章上1mm铝片和3mm铝片下的照相底片被感光,而铅片下的照相底片未被感光时,则工作人员可能受到了辐射的射线是()
A.α和βB.α和γ
C.β和γD.α、β和γ
【解析】α粒子的穿透能力很弱,一张普通的纸就能把它挡住,题中无法说明辐射中不含α射线,能穿透1mm、3mm铝片而不能穿透5mm铅片的是β射线,若存在γ射线,则5mm厚的铅片也能被穿透,故A正确.
[答案]A
2.在电磁波发射技术中,使电磁波随各种信号而改变的技术叫调制,调制分调幅和调频两种.在图甲中有A、B两幅图.在收音机电路中天线接收下来的电信号既有高频成分又有低频成分,经放大后送到下一级,需要把高频成分和低频成分分开,只让低频成分输入下一级,如果采用如图乙所示的电路,图乙中虚线框a和b内只用一个电容器或电感器.以下关于电磁波的发射和接收的说法中,正确的是()
A.在电磁波的发射技术中,甲图中A是调幅波
B.在电磁波的发射技术中,甲图中B是调幅波
C.在图乙中a是电容器,用来通高频阻低频,b是电感器,用来阻高频通低频
D.在图乙中a是电感器,用来阻交流通直流,b是电容器,用来阻高频通低频
【解析】A图象中高频振荡的振幅随信号而变,为调幅波,B图象中高频振荡的频率随信号而变,为调频波,A正确,检波电路的作用为通低频阻高频,故a为电容较小的高频旁路电容器,b为高频扼流圈,C正确.
[答案]AC
3.如图所示,绝热汽缸固定在水平地面上,汽缸内用绝热活塞封闭着一定质量的理想气体,开始时活塞静止在图示位置,现用力使活塞缓慢向右移动一段距离,则在此过程中()
A.外界对汽缸内气体做正功
B.缸内气体的内能减小
C.缸内气体在单位时间内作用于活塞单位面积冲量增大
D.在单位时间内缸内气体分子与活塞碰撞的次数增加
【解析】体积膨胀,气体对外做功,内能减小,温度降低,选项A错误、B正确,由体积增大,温度降低知单位时间内气体对活塞的碰撞次数减少,压强减小,选项C、D错误.
[答案]B
4.两物体甲和乙在同一直线上运动,它们在0~0.4s时间内的v-t图象如图所示.若仅在两物体之间存在相互作用,则物体甲与乙的质量之比和图中时间t1分别为[2009年高考全国理综卷Ⅱ]()
A.13和0.30sB.3和0.30s
C.13和0.28sD.3和0.28s
【解析】根据图象的特点可知甲做匀加速运动,乙做匀减速运动,根据a=ΔvΔt,得两物体加速度大小的关系为3a甲=a乙,根据牛顿第二定律有Fm甲=13Fm乙,得m甲m乙=3,由a乙=10m/s2=10.4-t1,可解得t1=0.3s,B正确.
[答案]B
5.某物体的v-t图象如图所示,在下列给出的两段时间内,合外力的功和冲量都相同的是()
A.0~t1和t2~t4
B.t1~t2和t3~t4
C.0~t2和t2~t4
D.0~t1和t3~t4
【解析】0~t1合外力做功为12mv20,合外力冲量为mv0,t2~t4合外力做功和合外力冲量都为0,A错误;t3~t4时间内合外力做功为-12mv20,合外力冲量为mv0,t1~t2合外力做功为-12mv20,合外力的冲量-mv0,0~t2时间内,合外力做功和合外力冲量都为0.故C正确.
[答案]C
6.一列简谐横波沿x轴正向传播,t=0时刻波形如图所示,从图示时刻起经0.5s时间处于x=2的质点P刚好第二次出现波峰,下列说法正确的是()
A.t=0时刻,P质点的速度方向指向y轴正方向
B.Q质点开始振动时,P质点正在波峰
C.t=0.5s时刻,质点P的加速度方向指向y轴正方向
D.t=0.5s时刻,Q质点第一次出现波峰
【解析】t0=0时刻P质点正向上振动,A正确.又由题意知,t=0.5s=54T,得T=0.4s,PQ=8m=2λ,故Q开始振动时P处于平衡位置向上振动,B错误.t=0.5s时刻,P的位移为正,加速度方向为负,C错误;经过t=0.5s,波传播s=vt=40.4×0.5=5m,Q正处于波峰,D正确.
[答案]AD
7.如图所示,把一个带电小球A固定在光滑的水平绝缘桌面上,在桌面的另一处放置带电小球B.现给小球B一个垂直AB连线方向的速度v0,使其在水平桌面上运动,则下列说法中正确的是()
A.若A、B带同种电荷,B球一定做速度增大的曲线运动
B.若A、B带同种电荷,B球一定做加速度增大的曲线运动
C.若A、B带同种电荷,B球一定向电势较低处运动
D.若A、B带异种电荷,B球可能做速度和加速度大小都不变的曲线运动
【解析】若A、B带同种电荷,库仑力对B球做正功,B球做速度增大的曲线运动,B的电势能减小,又由于AB间距增大,故B的加速度减小,若A、B为异种电荷,当mv02r=kqAqBr2时,B球做匀速圆周运动,速度和加速度的大小都不变,D正确.
[答案]AD
8.某一空间存在着磁感应强度为B且大小不变、方向随时间t做周期性变化的匀强磁场(如图甲所示),规定垂直纸面向里的磁场方向为正.为了使静止于该磁场中的带正电的粒子能按a→b→c→d→e→f的顺序做横“∞”字曲线运动(即如图乙所示的轨迹),下列办法可行的是(粒子只受磁场力的作用,其他力不计)()
A.若粒子的初始位置在a处,在t=3T8时给粒子一个沿切线方向水平向右的初速度
B.若粒子的初始位置在f处,在t=T2时给粒子一个沿切线方向竖直向下的初速度
C.若粒子的初始位置在e处,在t=118T时给粒子一个沿切线方向水平向左的初速度
D.若粒子的初始位置在b处,在t=T2时给粒子一个沿切线方向竖直向上的初速度
【解析】要使粒子的运动轨迹如图乙所示,粒子做圆周运动的轨迹的周期应为T0=2πmqB=T2,结合左手定则可知,选项A、D正确.
[答案]AD
9.水力采煤是利用高速水流冲击煤层而进行的,煤层受到3.6×106N/m2的压强冲击即可破碎,若水流沿水平方向冲击煤层,不考虑水的反向溅射作用,则冲击煤层的水流速度至少应为()
A.30m/sB.40m/sC.45m/sD.60m/s
【解析】建立如图所示模型,设水柱面积为S,由动量定理:
FΔt=0-(ρSv0Δt)×(-v0)
可得压强:p=FS=ρv20
故使煤层破碎的速度至少应为v0=pρ=60m/s.
[答案]D
10.如图甲所示,传送带通过滑道将长为L、质量为m的匀质物块以初速度v0向右送上水平台面,物块前端在台面上滑动s距离停下来.已知滑道上的摩擦不计,物块与台面间的动摩擦因数为μ而且sL,则物块的初速度v0为()

A.2μgLB.2μgs-μgL
C.2μgsD.2μgs+μgL
【解析】
物块位移在由0增大到L的过程中,对台面的压力随位移由0均匀的增加至mg,故整个过的摩擦力的大小随位移变化的图象如图乙所示,图中梯形“面积”即为物块克服摩擦力所做的功.

由动能定理得:12μmg(s-L+s)=12mv02
可解得v0=2μgs-μgL.
[答案]B
二、非选择题(共60分)
11.(6分)某实验小组拟用如图甲所示的装置研究滑块的运动.实验器材有滑块、钩码、纸带、米尺、带滑轮的木板以及由漏斗和细线组成的单摆等.实验中,滑块在钩码的作用下拖动纸带做匀加速直线运动,同时单摆沿垂直于纸带运动的方向摆动,漏斗漏出的有色液体在纸带上留下的痕迹记录了漏斗在不同时刻的位置.[2008年高考重庆理综卷]
(1)在图乙中,从________纸带可看出滑块的加速度和速度的方向一致.
(2)用该方法测量滑块加速度的误差主要来源有:____________________、____________________.(写出2个即可)
【解析】要使速度和加速度的方向相同,则必须选纸带B,因为B中相等的时间内纸带运动的距离越来越大.
[答案](1)B(2分)
(2)摆长测量漏斗的重心变化(或液体痕迹偏粗、阻力变化等)(每空2分)
12.(9分)用高电阻放电法测电容的实验,是通过对高阻值电阻放电的方法,测出电容器的充电电压为U时,所带的电荷量为Q,从而再求出待测电容器的电容C.某同学的实验情况如下:
A.按图甲所示的电路连接好实验电路;
B.接通开关S,调节电阻箱R的阻值,使小量程电流表的指针偏转接近满刻度,记下这时电流表的示数I0=490μA及电压表的示数U0=6.2V,I0和U0分别是电容器放电的初始电流和电压;
C.断开开关S,同时开始计时,每隔5s或10s测一次电流I的值,将测得数据填入预先设计的表格中,根据表格中的数据(10组)在以时间t为横坐标、电流I为纵坐标的坐标纸上描点,即图乙中用“×”表示的点.
(1)实验中,电阻箱所用的阻值R=________Ω.
(2)试根据上述实验结果,在图乙中作出电容器放电的I-t图象.
(3)经估算,该电容器两端的电压为U0时所带的电荷量Q0约为______C;该电容器的电容C约为______F.
【解析】由ΔQ=IΔt知,电荷量为I-t图象与坐标轴所包围的面积,计面积时可数格数(四舍五入).
[答案](1)1.3×104(3分)(2)用平滑曲线连接(2分)
(3)(8.0~9.0)×10-3(1.29~1.45)×10-3(每空2分)
13.(10分)质量为60kg的消防队员从一根竖直的轻绳上由静止滑下,经2.5s落地.轻绳受到的拉力变化情况如图甲所示,取g=10m/s2.在消防队员下滑的过程中
(1)其最大速度和落地速度各是多大?
(2)在图乙中画出其v-t图象.
(3)其克服摩擦力做的功是多少?
【解析】(1)设该队员先在t1=1s的时间内以加速度a1匀加速下滑,然后在t2=1.5s的时间内以加速度a2匀减速下滑
第1s内由牛顿第二定律得:
mg-F1=ma1(1分)
最大速度vm=a1t1(1分)
代入数据解得:vm=4m/s(1分)
后1.5s内由牛顿第二定律得:
F2-mg=ma2
该队员落地时的速度v=vm-a2t2(1分)
代入数据解得:v=1m/s.
(2)图象如图丙所示.(2分)
(3)该队员在第1s内下滑的高度h1=12a1t12(1分)
该队员在后1.5s内下滑的高度h2=vmt2-12a2t22(1分)
由动能定理得:
mg(h1+h2)-Wf=12mv2(1分)
代入数据解得:Wf=3420J.(1分)

[答案](1)最大速度为4m/s,落地速度为1m/s
(2)如图丙所示(3)3420J
14.(11分)A、B两小球由柔软的细线相连,线长L=6m,现将A、B球先后以相同的初速度v0=4.5m/s从同一地点水平抛出(先A、后B),相隔时间t0=0.8s.取g=10m/s2,问:
(1)B球抛出后经过多长时间细线刚好被拉直?(线拉直时,两球都未落地)
(2)细线刚被拉直时,A、B两球的水平位移(相对抛出点)各为多大?
【解析】(1)A球先抛出,0.8s时间内
水平位移s0=v0t0=4.5×0.8m=3.6m(1分)
竖直位移:h0=12gt2=12×10×0.82m=3.2m(1分)
A、B球都抛出后,若A球以B球为参照物,则水平方向相对速度为:vABx=0,竖直方向上A相对B的速度为:
vABy=gt0=8m/s(1分)
设B球抛出后经过时间t线被拉直,则有:
(h0+vAByt)2+s02=L2(2分)
解得:t=0.2s.(1分)
(2)至线拉直A球运动的总时间:
tA=t0+t=1s(2分)
故A球的水平位移sA=v0tA=4.5m(2分)
B球的水平位移sB=v0t=0.9m(1分)
[答案](1)0.2s(2)4.5m0.9m
15.(12分)光滑平行的金属导轨MN和PQ的间距L=1.0m,它们与水平面之间的夹角α=30°,匀强磁场的磁感应强度B=2.0T,方向垂直于导轨平面向上,M、P间连接有阻值R=2.0Ω的电阻,其他电阻不计,质量m=2.0kg的金属杆ab垂直于导轨放置,如图甲所示.用恒力F沿导轨平面向上拉金属杆ab,使其由静止开始运动,其v-t图象如图乙所示.取g=10m/s2,设导轨足够长.
(1)求恒力F的大小.
(2)金属杆的速度为2.0m/s时,加速度为多大?
(3)根据v-t图象估算在前0.8s内电阻上产生的热量.
【解析】(1)由图乙知,杆运动的最大速度vm=4m/s(2分)
此时有:F=mgsinα+F安
=mgsinα+B2L2vmR(1分)
代入数据得:F=18N.(1分)
(2)对杆进行受力分析,如图丙所示,由牛顿第二定律可得:

F-F安-mgsinα=ma(1分)
a=F-B2L2vR-mgsinαm
代入数据得:a=2.0m/s2.(1分)
(3)由图乙可知,0.8s末金属杆的速度v1=2.2m/s(1分)
前0.8s内图线与t轴所包围的小方格的个数约为27,面积为27×0.2×0.2=1.08,即前0.8s内金属杆的位移为:
s=1.08m(2分)
由能的转化与守恒定律得:
Q=Fs-mgssinα-12mv12(2分)
代入数据得:Q=3.80J.(1分)
[答案](1)18N(2)2.0m/s2(3)3.80J
16.(12分)为研究静电除尘,有人设计了一个盒状容器,容器侧面是绝缘的透明有机玻璃,它的上下底面是面积S=0.04m2的金属板,间距L=0.05m,当连接到U=2500V的高压电源正负两极时,能在两金属板间产生一个匀强电场,如图所示.现把一定量均匀分布的烟尘颗粒密闭在容器内,每1m3有烟尘颗粒1×1013个,假设这些颗粒都处于静止状态,每个颗粒的带电荷量q=+1.0×10-17C,质量m=2.0×10-15kg,不考虑烟尘颗粒之间的相互作用和空气阻力,并忽略烟尘颗粒所受的重力.问合上开关后:
(1)经过多长时间烟尘颗粒可以被全部吸附?
(2)除尘过程中电场力对烟尘颗粒共做了多少功?
(3)经过多长时间容器中烟尘颗粒的总动能达到最大?
【解析】(1)由题意可知,只要位于上板表面的烟尘能被吸附到下板,烟尘即被认为全部吸收.设经过时间t烟尘颗粒可以被全部吸附,烟尘所受的电场力F=qUL(1分)
L=12at2=12Fmt2=qUt22mL(2分)
得:t=2mqUL=0.02s.(1分)
(2)由于板间烟尘颗粒均匀分布,可以认为烟尘的质心位于板间中点位置,因此,除尘过程中电场力对烟尘所做的总功为:
W=12NSLqU=2.5×10-4J.(3分)
(3)设烟尘颗粒下落的距离为x,则板内烟尘的总动能为:
Ek=12mv2NS(L-x)=qULxNS(L-x)(1分)
当x=L2时,Ek达最大(1分)
又x=12at12(1分)
所以t1=2xa=mqUL=0.014s.(2分)
[答案](1)0.02s(2)2.5×10-4J(3)0.014s

高考物理考点单元知识复习


第四课时单元知识整合
本章知识结构
1.汤姆孙在发现电子后,提出原子模型是枣糕模型,卢瑟福根据著名的α粒子散射实验总结出原子的核式结构模型,他提出原子中心有一个很小的原子核,它集中了原子的所有正电荷和几乎全部的质量,电子绕核旋转,原子核直径的数量级是10-15~10-14m。
2.在玻尔理论中,原子的能量和电子的轨道半径都是量子化的,原子在能级之间跃迁时要吸收或辐射特定频率的光子,且光子能量E=hγ=Em-En。这也解释了氢原子的线状光谱。
3.天然放射现象中的三种射线:α射线是速度约为光速1/10的氦核流,贯穿本领很弱,电离作用很强;β射线是高速电子流,贯穿本领很强,电离作用较弱;γ射线是一种电磁波,贯穿本领极强,电离作用很弱。
4.原子核放出α粒子或β粒子后,就变成新的原子核,我们把这种变化叫衰变。半衰期是放射性原子核有半数发生衰变所需的时间,它是由核内部本身因素决定的;衰变时的质量数和电荷数都是守恒的。
5.具有相同质子数和不同中子数的原子互称同位素,放射性同位素的应用(1)利用它的射线(2)作为示踪原子
6.爱因斯坦质能方程为E=mc2,质量亏损△m时所释放的核能为△E=△mc2,获取核能的主要方式有重核裂变和轻核聚变。
1.实验法:研究物理学的重要手段,近代物理中的很多物理规律都是通过实验获取的。
2.假设法:通过对物理实验现象的观察和研究提出假说解释现象,这是物理研究的重要思维方法,如光子说、原子核式结构学说、轨道量子化假设等。假说必须有一定的实验和理论依据,并能成功解释一些物理现象。
3.辩证思想:在宏观世界中波是波,粒是粒,而在微观世界中,光既具有粒子性又具有波动性,是辩证统一的而不是一对矛盾。玻尔模型成功地解释了氢原子线状光谱的形成;而原子吸收高能量光子后又可电离(光电效应);物体的质量和能量之间存在着简单的正比关系——要用联系的观点看问题。4.模型法、类比法:光子、物质波、原子核式结构、玻尔模型、原子核(质子、中子)等物理微观模型不能直接看到,需要在头脑中构建一个模型来替代,同时,也要注意与宏观模型的类比,如玻尔模型与人造卫星的圆周运动模型相类比,有很多类似规律,但要注意宏观世界与微观世界的区别。
5.守恒思想:核反应过程中质量数、电荷数守恒;动量守恒定律对宏观世界和微观世界都是成立的;核反应前后的总能量(含核能)也是守恒的。
类型一原子物理知识的综合应用
【例1】(07年江苏省扬州市一模)美国“里根”号核动力航空母舰的动力来自核反应堆,其中主要的核反应方程式是
(1)在括号内填出前的系数;
(2)用m1、m2、m3均分别表示核的质量,m表示中子的质量,则上述核反应过程中一个铀235核发生裂变产生的核能ΔE是多少?
(3)假设核反应堆的功率P=6.0×105kW,若一个铀235核裂变产生的能量为2.8×10-11J,则该航空母舰在海上航行一个月需要消耗多少千克铀235?(铀235的摩尔质量μ=0.235kg/mol,一月约为t=2.6×106s,阿伏伽德罗常数NA=6.0×1023mol-1。(计算结果保留两位有效数字)
导示:(1)3
(2)(3)一个月内核反应产生的总能量为E=Pt
同时
所以
类型二原子物理与社会生活及科学技术的结合
【例2】天文学家测得银河系中氦的含量约为25%。有关研究表明,宇宙中氦生成的途径有两条:一是在宇宙诞生后3分钟左右生成的;二是在宇宙演化到恒星诞生后,由恒星内部的氢核聚变反应生成的。
(1)把氢核取变反应简化为4个氢核聚变成氦核(),同时放出2个正电子和2个中微子,请写出该氢核聚变反应的方程,并计算一次反应释放的能量。
(2)研究表明,银河系的年龄约为t=3.8×1017s,每秒钟银河系产生的能量约为1×1037J(即P=1×1037J/S)。现假定该能量全部来自上述氢核聚变反应,试估算银河系中氦的含量(最后结果保留一位有效数字)。
(3)根据你的估算结果,对银河系中氦的主要生成途径做出判断。(可能用到的数据:银河系质量约为M=3×1041kg,原子质量单位1u=1.66×10-27kg,1u相当于1.5×10-10J的能量,电子质量me=0.0005u,氦核质量mα=4.0026u,氢核质量mp=1.0078u,中微子质量为零。)
导示:(1)
(2)
氦的含量
(3)由估算结果可知,远小于25%的实际值,所以银河系中的氢重要是宇宙诞生后不久生成的。
类型三原子物理与动量、能量结合的问题
【例3】(07海南卷)一速度为v的高速α粒子()与同方向运动的氖核()发生弹性正碰,碰后α粒子恰好静止。求碰撞前后氖核的速度(不计相对论修正)。
导示:设α粒子与氖核的质量分别为ma与mNe,氖核在碰撞前后的速度分别为vNe与。由动量守恒与机械能守恒定律,有


解得③

已知⑤
将⑤式代入③④式得⑥

1.(07年江苏省扬州市一模)太阳光垂直照射到地面上时,地面上1m2的面积上接受太阳光的功率为1.4kW,其中可见光部分约占45%。
(1)假如认为可见光的波长为0.55μm,日地间距离R=1.5×1011m,普朗克常数为h=6.63×l0-34Js,估算太阳每秒辐射出的可见光光子数为多少?
(2)若已知地球的半径为6.4×106m,估算地球接受太阳光的总功率。(计算结果均保留一位有效数字)

2.在能源中,核能具有能量密度大、环境无污染的好处。在核电站中,核反应堆释放的核能转化为电能。核反应堆的工作原理是利用中子轰击重核发生裂变反应,释放出大量核能。
(1)核反应方程是反应堆中发生的许多核反应中的一种,n为中子,X为待求粒子,a为X的个数,则X为,a=。以mU、mBa、mKr分别表示核的质量,mn、mP分别表示中子、质子的质量,c为光在真空中传播的速度,则在上述核反应过程中放出的核能为ΔE=。
(2)有一座发电能力为P=1.00×106kW的核电站,核能转化为电能的效率为η=40%。假定反应堆中发生的裂变反应全是上述核反应,已知每次核反应过程放出的核能ΔE=2.78×10-11J,23592U核的质量mU=390×10-27kg,求每年(1年=3.15×107s)消耗的的质量。

3.一个原来静止的锂核()俘获一个速度为7.7×104m/s的中子后,生成一个氚核和一个氦核,已知氚核的速度大小为1.0×103m/s,方向与中子的运动方向相反。
(1)试写出核反应方程;
(2)求出氦核的速度;
(3)若让一个氘核和一个氚核发生聚变时,可产生一个氦核同时放出一个中子,求这个核反应释放出的能量。(已知氘核质量为mD=2.014102u,氚核质量为mT=3.016050u,氦核的质量mHe=4.002603u,中子质量mn=1.008665u,1u=1.6606×10-27kg)

答案:1、(1)5×1044(2)2×1014kW;
2、(1)、3、(mU-mBa-mKr-2mn)c2
(2))M=mUPTηΔE(T为1年的时间);
3、(1)
(2)2×104m/s
(3)2.82×10-12J。

高考物理单元知识整合复习


第六课时单元知识整合
1、类比法:本章概念抽象,不易理解,要注意通过实验和类比的方法掌握。如ф、△ф、△ф/△t的关系可与v、△v、△v/△t的关系类比。
2、因果关系法:楞次定律反映了“因果”之间的辩证关系,原因导致结果,结果又反过来影响(“阻碍”)原因,从而引导我们既可由“因”索“果”,也可由“果”索“因”地分析电磁感应现象;左、右手定则之间的区别,也主要是“因果”不同,左手定则“因电而受力”,右手定则“因动而生电”。
3、等效法:不规则导体垂直切割磁感线产生的电动势可用其等效长度替代;对复杂的电磁感应综合问题,要善于画出导体、框架的等效电路图。
4、一般与特殊的关系:右手定则是楞次定律的特殊形式,E=n△ф/△t和E=Blvsinθ是一般(普遍)和特殊的关系。
5、整体把握本章内容:本章涉及楞次定律和法拉第电磁感应定律两大规律,前者判断感应电流的方向,后者计算感应电动势的大小,都是高考考查的重点。
6、电磁感应中的动力学问题要理顺力学量和电学量间的关系,关注安培力F=B2L2v/R的二级结论并注意F受v的影响这一特殊点;电路问题要注意应用“先电后力”的思路分析。
7、电磁感应过程是其他形式的能和电能的转化过程,因此有关电磁感应和能量的转化和守恒的综合性题目应当引起我们的高度重视。
类型一研究电磁感应现象的实验
【例1】(上海松江区08届高三第一学期期末卷)如图所示的器材可用来研究电磁感应现象及判定感应电流的方向。
(1)在给出的实物图中,用笔线代替导线将实验仪器连成完整的实验电路。
(2)将线圈L1插入线圈L2中,合上开关S,能使线圈L2中感应电流的磁场方向与线圈L1中原磁场方向相同的实验操作是()
A.插入铁芯FB.拔出线圈L1
C.使变阻器阻值R变大D.断开开关S
导示:(1)在上图中,用笔线代替导线将实验仪器连成完整的实验电路。
(2)BCD

类型二楞次定律推论的应用
【例2】(上海金山区08届高三第一学期期末测试卷)著名物理学家费曼曾设计过这样一个实验装置:一块绝缘圆板可绕其中心的光滑轴自由转动,在圆板的中部有一个线圈,圆板的四周固定着一圈带电的金属小球,如图所示。当线圈接通电源后,将产生流过图示方向的电流,则下列说法正确的是()
A、接通电源瞬间,圆板不会发生转动
B、线圈中电流强度的增大或减小会引起圆板向不同方向转动
C、若金属小球带正电,接通电源瞬间圆板转动方向与线圈中电流流向相同
D、若金属小球带负电,接通电源瞬间圆板转动方向与线圈中电流流向相同
导示:选择BD。带电的金属小球旋转,作定向移动将形成电流。根据楞次定律可以知道,当线圈中电流强度的增大或减小时,会引起圆板向不同方向转动。接通电源瞬间,原来电流由无到有,带正电的圆板的转动方向将与原来电流方向相反,带负电的圆板的转动方向将与原来电流方向相同。

类型三运动和力问题
【例3】.(上海黄浦区08届高三第一学期期末测试卷)如图所示,两条平行的金属导轨MP、NQ与水平面夹角为,设导轨足够长。导轨处在与导轨平面垂直的匀强磁场中,磁感应强度B=0.80T,与导轨上端相连的电源电动势E=4.5V,内阻r=0.4Ω,水平放置的导体棒ab的电阻R=1.5Ω,两端始终与导轨接触良好,且能沿导轨无摩擦滑动,与导轨下端相连的电阻R1=1.0Ω,电路中其它电阻不计。当单刀双掷开关S与1接通时,导体棒刚好保持静止状态,求:
(1)磁场的方向;
(2)S与1接通时,导体棒的发热功率;
(3)当开关S与2接通后,导体棒ab在运动过程中,单位时间(1s)内扫过的最大面积。
导示:(1)磁场的方向:垂直斜面向下。
(2)当S与1接通时
导体棒上的电流
导体棒的发热功率
(3)S与1接通时,导体棒平衡有:
S与2接通后,导体棒切割磁感线产生电流,最后匀速运动单位时间内扫过面积最大,匀速运动时

得单位时间扫过最大面积为
类型四能量转化问题
【例4】.(上海松江区08届高三第一学期期末测试卷)如图所示,光滑的平行水平金属导轨MN、PQ相距L,在M点和P点间连接一个阻值为R的电阻,在两导轨间cdfe矩形区域内有垂直导轨平面竖直向上、宽为d的匀强磁场,磁感应强度为B。
一质量为m、电阻为r、长度也刚好为L的导体棒ab垂直搁在导轨上,与磁场左边界相距d0。现用一个水平向右的力F拉棒ab,使它由静止开始运动,棒ab离开磁场前已做匀速直线运动,棒ab与导轨始终保持良好接触,导轨电阻不计,F随ab与初始位置的距离x变化的情况如图,F0已知。求:
(1)棒ab离开磁场右边界时的速度。
(2)棒ab通过磁场区域的过程中整个回路所消耗的电能。
(3)d0满足什么条件时,棒ab进入磁场后一直做匀速运动。
导示:(1)设离开右边界时棒ab速度为v,则有:
;;对棒有:
解得:
(2)在ab棒运动的整个过程中,根据动能定理:
由功能关系:,解得:
(3)设棒刚进入磁场时的速度为v0,则有
当v0=v,即时,进入磁场后一直匀速运动。

类型三综合应用问题
【例5】.(上海普陀区08届高三年级期末调研试卷)如图所示,一有界匀强磁场,磁感应强度大小均为B,方向分别垂直纸面向里和向外,磁场宽度均为L,在磁场区域的左侧相距为L处,有一边长为L的正方形导体线框,总电阻为R,且线框平面与磁场方向垂直。现使线框以速度v匀速穿过磁场区域。若以初始位置为计时起点,规定B垂直纸面向里时为正,
(1)试画出线框通过磁场区域过程中,线框中的磁通量与前进的时间t之间的函数关系;
(2)求线框在通过磁场过程中,线框中电流的最大值;
(3)求线框在通过磁场过程中,拉力功率的最大值;
(4)在此过程中,线框中产生的热量Q。
导示:(1)见下图
(2)Imax=2BLvR
(3)F=FA=4B2L2vR,P=Fv=4B2L2v2R
(4)Q=6B2L3vR

1.(上海长宁区08届高三第一学期期末质量检测)如图a所示,圆形线圈P静止在水平桌面上,其正上方固定一螺线管Q,P和Q共轴,Q中通有变化电流i,电流随时间变化的规律如图b所示,P所受的重力为G,桌面对P的支持力为N,则在下列时刻()
A、t1时刻N>G,P有收缩的趋势.
B、t2时刻N=G,此时穿过P的磁通量最大.
C、t3时刻N=G,此时P中无感应电流.
D、t4时刻N<G,此时穿过P的磁通量最小.

2、(上海虹口区08届高三第一学期期末测试卷)如图所示,两根足够长的固定平行金属光滑导轨位于同一水平面,导轨上横放着两根相同的导体棒ab、cd与导轨构成矩形回路。导体棒的两端连接着处于压缩状态的两根轻质弹簧,两棒的中间用细线绑住,它们的电阻均为R,回路上其余部分的电阻不计。在导轨平面间有一竖直向下的匀强磁场。开始时,导体棒处于静止状态。剪断细线后,下列叙述中正确的是()
A.回路中有感应电动势。
B.两根导体棒所受安培力方向相同。
C.两导体棒最终将相对静止,弹簧处于原长状态。
D.剪断细线的同时,若磁场突然增强,两根导体棒可能保持静止。

3、(上海普陀区08届高三年级期末调研试卷)如图14所示,有一通电直导线MN,其右侧有一边长为L的正方形线圈abcd,导线与线圈在同一平面内,且导线与ab边平行,距离为L。导线中通以如图方向的恒定电流,当线圈绕ab边沿逆时针方向(从上往下看)转过角度θ(θ<90)的过程中,线圈中产生感应电流的方向为________方向(选填“abcda”或“adcba”);当线圈绕ab边转过角度θ=________时,穿过线圈中的磁通量最小。

4.如图所示,位于同一水平面内的两根平行导轨间的距离为l,导体的左端连接一个耐压足够大的电容器,电容器的电容为C放在导轨上的导体杆cd与导轨接触良好,cd杆在平行导轨平面的水平力作用下从静止开始匀加速运动,加速度为a.磁感强度为B的匀强磁场垂直导轨平面竖直向下,导轨足够长,不计导轨、导体杆和连接电容器导线的电阻,导体杆的摩擦也可忽略。求从导体杆开始运动经过时间t电容器吸收的能量E=?
5、如图所示,水平放置的金属细圆环半径为0.1m,竖直放置的金属细圆柱(其半径比0.1m小得多)的端面与金属圆环的上表面在同一平面内,圆柱的细轴通过圆环的中心O,将一质量和电阻均不计的导体棒一端固定一个质量为10g的金属小球,被圆环和细圆柱端面支撑,棒的一端有一小孔套在细轴O上,固定小球的一端可绕轴线沿圆环作圆周运动,小球与圆环的摩擦因素为0.1,圆环处于磁感应强度大小为4T、方向竖直向上的恒定磁场中,金属细圆柱与圆环之间连接如图电学元件,不计棒与轴及与细圆柱端面的摩擦,也不计细圆柱、圆环及感应电流产生的磁场,开始时S1断开,S2拔在1位置,R1=R3=4Ω,R2=R4=6Ω,C=30uF,求:(1)S1闭合,问沿垂直于棒的方向以多大的水平外力作用于棒的A端,才能使棒稳定后以角速度10rad/s匀速转动?
(2)S1闭合稳定后,S2由1拔到2位置,作用在棒上的外力不变,则至棒又稳定匀速转动的过程中,流经R3的电量是多少?

答案:1、AB;2、ACD;3、adcba,120;
4、C(Blat)2/2;
5、(1)F=1.4×10-2N;(2)3.6×10-6C

文章来源:http://m.jab88.com/j/73300.html

更多

最新更新

更多