作为老师的任务写教案课件是少不了的,大家应该在准备教案课件了。只有规划好新的教案课件工作,这对我们接下来发展有着重要的意义!有没有出色的范文是关于教案课件的?下面是小编为大家整理的“为什么是0.618”,大家不妨来参考。希望您能喜欢!
为什么是0.618(第二课时)教案课件是老师上课做的提前准备,大家开始动笔写自己的教案课件了。只有制定教案课件工作计划,接下来的工作才会更顺利!适合教案课件的范文有多少呢?以下是小编收集整理的“为什么是0.618教案”,供大家借鉴和使用,希望大家分享!
为什么是0.618(第二课时)
教学目标:
1、分析具体问题中的数量关系,列出一元二次方程;
2、通过列方程解应用题,进一步提高逻辑思维能力和分析问题、解决问题的能力。
教学重点、难点:列一元一次方程解应用题,找出等量关系列方程。
教学程序:
一、复习:
1、黄金分割中的黄金比是多少?[准确数为5―12,近似数为0.618]
2、列方程解应用题的三个重要环节是什么?
3、列方程的关键是什么?(找等量关系)
4、销售利润=-
[销售价][销售成本]
二、新授
在日常生活生产中,我们常遇到一些实际问题,这些问题可用列一元二次方程的方法来解答。
1、讲解例题:
例2、新华商场销售某种冰箱,每台进货价为2500元,市场调研表明,为销售价为2900元时,平均每天能售出8台,而当销售价每降低50元时,平均每天就能多售出4台,商场要想使这种冰箱的销售利润平均每天达到5000元,每台冰箱的定价为多少元?
分析:
每天的销售量(台)每台的利润(元)总利润(元)
降价前84003200
降价后8+4×x50
400-x(8+4x50)×(400-x)
每台冰箱的销售利润×平均每天销售冰箱的数量=5000元
如果设每台冰箱降价为x元,那么每台冰箱的定价就是(2900-x)元,每台冰箱的销售利润为(2900-x-2500)元。这样就可以列出一个方程,进而解决问题了。
解:设每台冰箱降价x元,根据题意,得:
(2900-x-2500)(8+4×x50)=5000
2900-150=2750元
所以,每台冰箱应定价为2750元。
关键:找等量关系列方程。
2、做一做:某商场将进货价为30元的台灯以40元售出,平均每月能售出600个,调查表明这种台灯的售价每上涨一元,某销售量就减少10个,为了实现平均每月20000的销售利润,这种台灯的售价应定为多少?这时应进台灯多少个?
分析:每个台灯的销售利润×平均每天台灯的销售量=10000元
可设每个台灯涨价x元。
(40+x-30)×(600-10x)=10000
答案为:x1=10,x2=40
10+40=50,40+40=80
600-10×10=500600-10×40=200
三、练习:P68随堂练习1
四、小结:五、作业:P68习题2.91六、教学后记:
教案示例
第七节飞机为什么能飞上天
教学设计思想:
本节内容的特点是由实验现象学生很难得出实验结论,且学生对此节内容在生活中的感性认识几乎没有,要想让学生自己去探究这节内容中的规律不是十分可行,因此,在进行教学设计时,采用了教师讲授的模式来组织教学,在演示实验的基础上由老师引导学生分析得出结论后,再解释实验现象.为了培养学生的自学能力,课前请学生所及有关飞机的资料,用课堂演讲的形式来活化课堂.
教学重点:
老师做好演示实验,引导学生分析得出结论,并用结论解释生活中的现象.
教学难点:
引导学生分析得出结论.
实验器材:
按课本图8-43、图8-48、图8-49的要求准备实验器材.
教学过程:
在上一堂课结束后,给学生留一个作业——查找一些有关飞机的材料.
由乒乓球中的弧圈球和足球中的香蕉球引入新课,并请同学们观察一下实验:
请同学们利用前面所学的知识——力和运动来讨论上述实验想象.在教师的引导下,得出空气流动快的地方压强小,空气流动慢的地方压强大的结论.
河水在连续流动时,从上游流进多少水,就从下游流出多少水,在相同的时间内,水通过任何截面的流量都是相等的;在河水深度大致相同的地方,河宽的地方流速小,河面窄的地方流速大,在河面宽度大致相同的地方,河水深的地方流速小,河水浅的地方流速大.在纸条上方吹气,纸条上方的空气流速大,纸条下方的空气流速小,从纸条向上飘动可以得出,上方的压强小,下方的压强大.图8-48和图8-49中的实验结果也是如此.把“空气流动快的地方压强小,空气流动慢的地方压强大”的结论进行拓展,得出:流体流动时,流速大的地方压强小,流速小的地方压强大的结论.
用上述结论来分析飞机为什么能上天.
下面请同学们说说他们所了解的有关飞机的知识.
例如:飞机发展不懈的追求
文章来源:http://m.jab88.com/j/64564.html
更多