88教案网

四年级数学上册《商的变化规律》教案分析

教案课件是老师需要精心准备的,规划教案课件的时刻悄悄来临了。只有规划好教案课件工作计划,才能规范的完成工作!你们了解多少教案课件范文呢?以下是小编收集整理的“四年级数学上册《商的变化规律》教案分析”,供您参考,希望能够帮助到大家。

四年级数学上册《商的变化规律》教案分析

课型:新授
教学目标:知识与技能:1、学生通过观察,能够发现并总结商的变化规律。2、会灵活运用商的变化规律。3、培养学生用数学语言表达数学结论的能力
过程与方法:使学生经历引导学生思考发现商的变化规律的过程,灵活运用商的变化规律。
情感、态度和价值观:培养学生初步的抽象、概括能力及善于观察、勤于思考、勇于探索的良好习惯。
教学重点:引导学生自己发现并总结商的变化规律。
教学难点:引导学生自己发现并总结商的变化规律。
教具准备:图片
教学过程:
一、故事导入
安排老猴子分桃子的故事
1、8个桃子分2天吃完,16个桃子分4天吃完,32个桃子分8天吃完,64个桃子分16天吃完。(将数字板书在黑板上)
2、提问:老猴子运用了什么知识教育了小猴子?今天我们一起来研究一下。
二、探究新知
1、提问:观察数字,你发现了什么?你怎么知道的?
学生说方法,教师板书。
8÷2=4
16÷4=4
32÷8=4
64÷16=4
2、我们分别用第2、3、4式与第1个算式进行比较,你发现了什么?
被除数、除数分别都乘以一个相同的数。(扩大)
3、教师带领学生分别比较。
4、提问:谁能给我们总结一下,你发现了什么?
5、学生讨论,并发现:
在除法里,被除数、除数同时扩大相同的倍数,商不变。(教师板书)
6、提问:为什么说是“同时”,“相同”?可以举例子来证明
7、我们分别用第1、2、3式与第4个算式进行比较,你又发现了什么?
被除数、除数分别都除以一个相同的数。(缩小)
8、通过观察,谁能再给我们总结一下,你发现了什么?
在除法里,被除数、除数同时扩大(或缩小)相同的倍数,商不变。
板书课题:商的变化规律
三、总结:
1、提问:通过观察,我们发现了除法里有商的变化规律,那么谁能说说你觉得这个规律需要我们注意的有哪些?
2、你们看我这样写对吗?为什么?新-课-标-第-一-网
48÷12=(48×0)÷(12×0)
让学生判断。
四、巩固练习
1、书P941(填空)
2、书P942(填空)
3、书P943、4
五、总结
在运用商的变化规律时,一定要注意什么?(“同时”,“相同”。)
六、作业:第95页5、6、思考题
教后反思:
1.结合实际教材内容顺序,使学生容易理解、掌握。教材内容先是商变化规律,然后是商不变规律,在教学中,商变化的规律是个难点,学生不容易发现与表述,所以我有意放慢速度,让孩子们吸收、掌握好后才进行的商不变规律的研究。
2.以教师为主导,学生为主体,充分体现“活力课堂”。我采取书上的例题中的除法算式,探究、揭示商变化规律。抓住“什么没变,什么变了,怎么变的”这一主干线,完全放手让孩子们自己迁移前面(商变化规律)方法主动去观察,并口述规律,得出结论,充分体现“以学生为主体,教师为主导”。M.jAb88.COm

精选阅读

四年级上册《商的变化规律》教学设计


四年级上册《商的变化规律》教学设计

教学目标:
1、使学生结合具体情境,通过计算、观察、比较,发现商随除数(或被除数)变化而变化的规律,并在此基础上放手探讨商不变的规律。
2、培养学生初步的抽象概括能力和用数学语言表达数学结论的能力。
3、使学生体会数学来自生活实际的需要,进一步产生对数学的好奇心与兴趣。
教学重点:发现规律,掌握规律
教学难点:利用商的变化规律进行简便计算。
教学准备:小黑板
教学过程:
一、故事设疑、激发兴趣
1、故事:花果山风景秀丽,气候宜人,那里住着一群猴子。有一天,猴王给小猴分桃子。猴王说:“给你6个桃子,平均分给你们3只小猴吧。”小猴一想,自己只能得到2个桃子,连连摇头说:“太少了,太少了。”
猴王又说:“好吧,给你60个桃子,平均分给30只小猴,怎么样?”小猴子得寸进尺,挠挠头皮,试探地说:“大王,再多给点行不行啊?”猴王一拍桌子,显示出慷慨大度的样子:“那好吧,给你600个桃子,平均分给300只小猴,你总该满意了吧?”小猴听到猴王要给600个桃子,开心地笑了,猴王也笑了。
2、师:谁是聪明的一笑?为什么?
生:猴王的笑是聪明的一笑,不管增加多少,每只小猴得到的都是2个桃子。
师:“你是怎么知道的呀?”
二、探究新知、激发冲突
1、口算比赛,并进行分类
(请在老师喊开始后,想出得数的同学就可以直接在座位上回答。)
(1)出示口算卡片:6÷3=60÷30=120÷60600÷300=
200÷2=200÷20=200÷40=
16÷4=160÷4=1600÷4=
生:快速抢答后把这六道算式进行分类。(指名板演师帮忙调整)
再说一说为什么这样分?
【设计意图:通过算式分类,使学生便于观察比较,从中发现商的变化规律。】
(2)指导学生观察比较除数不变的一组算式,发现、归纳除数不变时,商的变化规律。
16÷4=160÷4=1600÷4=
师:我们先来观察这一组中的三道算式,它们的除数不变(标上“不变”),那被除数和商怎么变的,有什么规律吗?和同桌说一说。
生:反馈。(师注意引导学生规范的说,并用彩笔标出变化过程。)
师:谁能把我们从上往下观察到的规律用一句话说一说。
生:除数不变,被除数乘几,商也乘几。
师:你真聪明,那么在这句话中,前后两个几是怎样的数?
生:相同的数。
师:所以这句话还可以这样说(边说边出示)
除数不变,被除数乘一个数,商也乘一个相同的数。全班一起把这个规律说一遍。(生齐读)
师:刚才我们是从上往下观察这三道算式,如果从下往上观察呢?
生:反馈。(师用不同颜色的彩笔标出变化过程。)
师:谁也能用一句话说一说?
生:小结规律。(师把规律补充完整,全班齐读)
(3)指导学生观察比较被除数不变的一组算式,发现、归纳被除数不变时,商的变化规律。
200÷2=200÷20=200÷40=
师:你们真了不起,懂得用观察、比较、归纳的方法发现除数不变时,被除数和商的变化规律。下面我们再来观察这一组,被除不变(标上“不变”),除数和商又是怎么变化的呢?和同桌说一说。
【学情预设:通过前一个环节的教学,学生可能会出现直接说出规律和继续说算式间的变化过程再总结规律两种情况。】
A:如果学生直接说出规律,请学生具体地说一说是怎么发现的吗?(师把规律补充完整,全班齐读)
B:如果学生说的是算式间的变化过程,请学生像刚才那样也用一句话来说一说。(师把规律补充完整,全班齐读)
(4)每个学生各写一组除法算式(2-3道),验证这两个商的变化规律的普遍性。
【设计意图:让学生验证规律是为了体现科学的严谨性。】
2、认识商不变规律
(1)6÷3=60÷30=120÷60600÷300=
师:刚才我们研究了除数不变时,商的变化规律;又研究了被除数不变时,商的变化规律,下面我们继续来研究一组除法算式。
师:你发现了什么?
生:商不变。
师:有什么问题要提吗?
生:反馈。(师出示问题:被除数和除数怎样变,商才不变?)
师:老师请1、2两组的同学从左往右观察,请3、4两组的同学从右往左观察,然后在四人小组中说一说你发现了什么规律?
(2)引导学生发现、归纳商不变规律,师把规律补充完整。
(3)应用商不变规律填一填:24÷8=3(24○□)÷(8○□)=3
【设计意图:通过应用商不变规律填空,加强学生对规律的认识,并从中发现0除外,从而把商不变规律补充完整。】
师:下面我们就运用发现的这个规律,想一想要使商不变,这里的○和□应该怎样填?
【学情预设:学生可能在填写过程中会出现乘0或除以0,教师借机教学0除外。】
师:很好,可见这句话不完整,那应该怎样补充?(生说0除外,师再补充0除外)然后介绍这个规律叫“商不变规律”,全班齐读,再找关键词。
三、应用——提升
师:那么这些规律在我们平时的计算中有什么作用?能不能对计算有帮助呢?下面我们运用我们得出的规律算一算。
1、我会算。
3420÷57=6076800÷240=3205600÷140=40
34200÷57=76800÷24=560÷14=
342÷57=76800÷2400=56000÷1400=
(学生口答得数)
师:这么大的数,大家怎么做的这么快?
生:利用刚才的发现的规律。
师:能不能说的详细点呢?(生说每组所应用的规律)
师:到底算的对不对呢?规律在这里用的合不合理呢?用计算器来验证一下。(学生用计算器验证)
5600……0÷1400……0=
100个0
100个0
师:计算器没有这么多位可以出现的,怎么办?
2、我会填。
根据规定32÷8=4,在□里填上合适的数,在○里填上符号。
(32×4)÷(8○□)=4
(32○□)÷(8÷2)=4
(32○□)÷(8○15)=4
(32○□)÷(8○□)=4
师指最后一个算式:这样的算式能写完吗?老师也来写几个:(32×m)÷(8×m)=4,(32÷m)÷(8÷m)=4,可以吗?你觉得对m有什么要求吗?得出:m≠0(板书:0除外)
3、我会简算。运用学过的规律不列竖式进行口算。(写出简便计算的过程)
(1)600÷25=
(2)2100÷125=
[通过练习,进一步熟悉商的变化规律,特别是商不变规律,了解商不变的规律的应用价值。]
四、总结
师:今天这节我们一起学习了什么?(出示课题:商的变化规律)
师:你认为你自己最大的收获是什么
板书:商的变化规律
教学反思:一、给学生足够的探索空间,把课堂还给学生。
在数学课中,教师要为学生创设各种不平衡的问题情境,放手让他们自己去尝试、探究、猜想、思考,留给学生足够的思维空间。我在这节课中尽量体现这一点。由故事导入新课,当学生回答:“谁是聪明的一笑?”之后,我让学生说出原因(算式),随机板书算式,然后让他们分小组讨论,把自己的发现在小组内交流,最后全班一起总结出“在除法里,被除数和除数同时扩大或缩小相同的倍数,商不变”。
二、改变了教材的编排顺序。
教材先是安排学习商的两个变化规律,然后,由填写表格,学习商不变的性质。在教学时,我改变了教材的顺序,先讲商不变的性质,再讲商的两个变化规律。符合由易到难的特点,学生易于掌握。
三、注重培养学生总结知识的能力。
本节课,学习了商的变化规律的三条规律,每一次都是让学生通过“观察——探索——交流——总结”完成任务,最后,一个环节,我都让学生根据黑板上的板书,用数学语言自己总结出规律,这样,更加深了学生对规律的记忆,理解。
由于,这节课的课堂容量比较大,因此,时间安排不够合理,前面花的时间较多,导致练习的时间较少;回答问题没能够面向全体学生;课堂气愤不够活跃,部分学生的积极性不够高!

四年级数学上册《商是两位数的笔算除法》教案分析


四年级数学上册《商是两位数的笔算除法》教案分析

教学目标
1、知识目标:使学生理解除数是两位数、商也是两位数的笔算除法的算理,掌握除数是两位数的除法笔算方法,并能够运用方法正确进行计算。
2、技能目标:让学生经历商是两位数的除法的笔算过程,培养学生的迁移类推能力和抽象概括能力。
3、情感目标:在独立思考、与人交流算法的过程中获得成功的体验,培养学习的主动性以及合作交流的意识,产生对数学的积极情感,提高解决实际问题的能力。
教学重点
理解和掌握除数是两位数的除法计算方法。
教学难点
灵活地掌握试商方法。
教学过程:
一、复习铺垫,情境导入
1、下面括号里最大能填几?
30×()15440×()202
60×()18670×()225
2、笔算。
768÷4=367÷8=128÷32=
学生独立列式计算,指名板演,集体反馈。
3、除数是一位数的除法的计算方
4、导入
现在提倡环保,学校成立了环保小组,看,同学们正在清洁校园。(出示例6情境图)我们一起来解决以下问题。
二、探索新知
(一)解决例6
学校共有612名学生,每18人组成一个环保小组,可以组成几组?
1、让学生读题。
2、怎样列式,为什么用除法算?
3、我们不着急计算,先估一估大约能组成多少组?
4、学生独立计算。
5、指名板演,说说两位数除三位数的笔算过程。
6、小结。
(二)教学例7
1、出示:940÷31
2、请学生独立完成,指名板演,师巡视指导。
3、你说说怎样想的。
4、突破:余下的数不够商1怎么办?
5、为什么商的个位商0?
6、如果被除数是930,商的各位商几?
(三)小结
这就是我们今天要研究的商是两位数的笔算除法。引出课题:两位数的笔算除法
(四)归纳总结计算法则
1、除数是两位数的除法与除数是一位数的除法有什么相同点和不同点?
2、说一说商是两位数的除法的计算方法吗
三、实践应用
1、教材第84页“做一做”1。
(先判断商是几位数,再选择1题做。)
2、练习十六第6题。
3、练习十六第4题。
四、全课总结,渗透环保教育
师:通过今天的学习,你又学到了什么新的本领?我们美丽的生活环境离不开大家的共同努力,让我们争取做一名“环保小卫士”,为学校、家乡、祖国的美丽尽一份自己的力量!

四年级上册《积的变化规律》教案


教案课件是老师需要精心准备的,到写教案课件的时候了。在写好了教案课件计划后,才能够使以后的工作更有目标性!有没有好的范文是适合教案课件?以下是小编收集整理的“四年级上册《积的变化规律》教案”,希望能为您提供更多的参考。

四年级上册《积的变化规律》教案

【教学内容】义务教育课程标准实验教科书人教版数学四年级上册第四单元第四课时《积的变化规律》。
【课标与教学分析】
在乘法运算中探索积的变化规律是整数四则运算中内容结构的一个重要方面,本课例题以两组乘法算式为载体,引导学生探索当一个因数不变时,另一个因数与积的变化情况,从中归纳出积的变化规律。通过这个过程的探索,不但让学生理解两数相乘时,积的变化随其中一个因数(或两个因数)的变化而变化,同时体会事物间是密切相关的,
收到辩证思想的启蒙教育。
例题的设计分为三个层次,思路的引导非常清晰:
(1)研究问题:教材设计了两组既有联系又有区别的乘法算式,在观察、计算、对比的基础上发现问题。
(2)归纳规律:结合广泛交流,畅说发现的规律,尝试用简洁的语言说明积的变化规律。
(3)验证规律:举例验证积的变化规律的普适性。
通过本例的教学,让学生体验规律探索的基本方法:研究具体问题──归纳发现规律──举例验证规律。与实验教材相比,这里的编排还给出了规律的文本表示,便于学生系统掌握规律。
德育渗透点:通过探索,不但让学生理解两数相乘时,积的变化随其中一个因数(或两个因数)的变化而变化,同时体会事物间是密切相关的,收到辩证思想的启蒙教育。
【学情分析】
利用乘法运算,培养学生的推理能力,特别是合情推理能力是本单元教学的重要任务。本单元不但在相关的练习设计中,编排了一些引导学生探索规律的内容,如练习八中的第12题,练习九中的第4、6题等等(这些题中虽然有些打上了“*”号,不作普遍要求,但却是发展学生推理能力的好素材),而且将探索“积的变化规律”作为例题专门加以研究。教学中,应鼓励、引导学生参与到探寻运算规律的活动中去,通过观察数据特点,解释计算的合理性等,不但可使学生形成合理、灵活的计算能力,而且还利于培养学生数感和推理能力。
【教学目标】
知识与能力:
探索并掌握积的变化规律,能将这一规律恰当地运用于计算和解决简单的实际问题中。
过程与方法:
经历积的变化规律的探究过程,尝试用简洁的语言表达积的变化规律,培养初步的概括和表达能力。初步获得探索和发现数学规律的一般方法和经验。
情感、态度与价值观:
通过学习活动的参与,使学生获得成功的乐趣,增强学习的兴趣和自信心。
教学重点:引导学生自己发现并总结积的变化规律。
教学难点:灵活应用规律。
【教学、具准备】多媒体课件。
教学方法:合作交流法、自主探索法
【教学过程】
一、复习:口算
6×2=6×20=6×200
8×4=40×4=20×4=
研究“两数相乘,其中一个因数变化,它们的积如何变化的规律。
二、研究问题,概括规律。
(1)两数相乘,一个因数不变,另一个因数乘几时,积怎么变化。
学生完成下列两组计算,想一想发现了什么?你能根据每组算式的特点接下去再写两道算式吗?试试看
6×2=
6×20=
6×200=
组织小组交流。
归纳规律:两数相乘,当一个因数不变,另一个因数乘几时,积也要乘几。
(2)两数相乘,一个因数不变,另一个因数除以几时,积有怎么变化?学生完成下列两组计算,想一想有发现了什么?根据每组算式的特点接下去再写两道算式吗?试试看
8×4=25×160=
40×4=25×40=
20×4=25×10=
引导学生概括:两数相乘,当一个因数不变,另一个因数除以几时,积也要除以几。
(3)整体概括规律
问:谁能用一句话将发现的两条规律概括为一条?
引导学生总结规律。
3、应用规律
完成例4下面的做一做
三、巩固新知
1、书上练习九的1、2、3。
2、一个长方形的面积是256平方厘米,如果长缩小到原来的,宽扩大到原来的4倍,这个长方形就变成了正方形,这个正方形的面积是多少?它的边长是多少?
五、总结:这节课有什么收获?
六、作业:第54页4、5,、6。
教学设计:《积的变化规律》
6×2=8×4=
6×20=40×4=
6×200=20×4=
两数相乘,当一个因数不变,另一个因数乘几或除以几(0除外),也乘或除以几。

文章来源:http://m.jab88.com/j/60039.html

更多

猜你喜欢

更多

最新更新

更多