一位优秀的教师不打无准备之仗,会提前做好准备,作为教师就要在上课前做好适合自己的教案。教案可以让学生更好地进入课堂环境中来,帮助教师提前熟悉所教学的内容。那么如何写好我们的教案呢?以下是小编收集整理的“函数的表示方法(2)教案苏教版必修1”,希望对您的工作和生活有所帮助。
2.1.2函数的表示方法(2)
教学目标:
1.进一步理解函数的表示方法的多样性,理解分段函数的表示,能根据实际问题列出符合题意的分段函数;
2.能较为准确地作出分段函数的图象;
3.通过教学,进一步培养学生由具体逐步过渡到符号化,代数式化,并能对以往学习过的知识进行理性化思考,对事物间的联系的一种数学化的思考.
教学重点:
分段函数的图象、定义域和值域.
教学过程:
一、问题情境
1.情境.
复习函数的表示方法;
已知A={1,2,3,4},B={1,3,5},试写出从集合A到集合B的两个函数.
2.问题.
函数f(x)=|x|与f(x)=x是同一函数么?区别在什么地方?
二、学生活动
1.画出函数f(x)=|x|的图象;
2.根据实际情况,能准确地写出分段函数的表达式.
三、数学建构
1.分段函数:在定义域内不同的部分上,有不同的解析表达式的函数通常叫做分段函数.
(1)分段函数是一个函数,而不是几个函数;
(2)分段函数的定义域是几部分的并;
(3)定义域的不同部分不能有相交部分;
(4)分段函数的图象可能是一条连续但不平滑的曲线,也可能是由几条曲线共同组成;
(5)分段函数的图象未必是不连续,不连续的图象表示的函数也不一定是分段函数,如反比例函数的图象;
(6)分段函数是生活中最常见的函数.
四、数学运用
1.例题.
例1某市出租汽车收费标准如下:在3km以内(含3km)路程按起步价7元收费,超过3km以外的路程按2.4元/km收费.试写出收费额关于路程的函数解析式.
例2如图,梯形OABC各顶点的坐标分别为O(0,0),A(6,0),B(4,2),C(2,2).一条与y轴平行的动直线l从O点开始作平行移动,到A点为止.设直线l与x轴的交点为M,OM=x,记梯形被直线l截得的在l左侧的图形的面积为y.求函数y=f(x)的解析式、定义域、值域.
例3将函数f(x)=|x+1|+|x-2|表示成分段函数的形式,并画出其图象,根据图象指出函数f(x)的值域.
2.练习:
练习1:课本35页第7题,36页第9题.
练习2:
(1)画出函数f(x)=的图象.
(2)若f(x)=求f(-1),f(0),f(2),f(f(-1)),f(f(0)),f(f(12))的值.
(3)试比较函数f(x)=|x+1|+|x|与g(x)=|2x+1|是否为同一函数.
(4)定义[x]表示不大于x的最大整数,试作出函数f(x)=[x](x∈[-1,3))的图象.并将其表示成分段函数.
练习3:如图,点P在边长为2的正方形边上按A→B→C→D→A的方向移动,试将AP表示成移动的距离x的函数.
五、回顾小结
分段函数的表示→分段函数的定义域→分段函数的图象;
含绝对值的函数常与分段函数有关;
利用对称变换构造函数的图象.
六、作业
课堂作业:课本35页习题第3题,36页第10,12题;
课后探究:已知函数f(x)=2x-1(x∈R),试作出函数f(|x|),|f(x)|的图象.
课题:函数的表示方法
教学目标
能熟练掌握函数的三种不同表示,了解函数不同表示法的优缺点。了解分段
函数。
教学重点
函数的三种不同表示的相互间转化。
教学难点
函数的解析式的表示,理解和表示分段函数。
教学过程
一.问题情景
课本第21页上三个函数问题在表示方法上有什么区别?
二.学生活动
问题1:观察三个函数问题,你能说出各种函数表现形式上的各自特点吗?
三.建构数学
问题2:如何用数学语言来准确地表述函数表示法?
问题3:你能说出几种函数表示法的各自优缺点吗?
四.数学运用
1.例题
例1.下面哪些等式是函数的解析式?
(1)y=x.(2)f(x)=|x|
x,x≥0
(3)f(x)=
x,x0
例2.购买某种饮料x听,所需钱数为y元.若每听2元,试分别用解析法、列表法、图象法将y表示成x(x∈{1,2,3,4})的函数,并指出该函数的值域.
例2.画出函数f(x)=|x|的图象,并求f(-3),f(3),f(-1),f(1)的值.
例3.某市出租汽车收费标准如下:在3km(含3km)按起步价7元收费,超过3km的路程按规定.2.4元/km.试写出收费额关于路程的函数解析式.
2.练习:
第31页练习第1,4题.
3.回题下列问题:
(1)任何一个函数都可以用列表法表示吗?
(2)任何一个函数的解析式都存在吗?
(3)一个函数的图象一定是孤立的点吗?一定是曲线吗?一定是一段曲线吗?一个函数的图象一定与直线x=a相交吗?
五.回顾小结:
本节课研究了函数的表示法,求函数的表达式即函数的解析式是研究函数的基本要求,也是重点.其中要注意定义域的限制.
六.课外作业
第31页练习第2,3题.
第32页习题2.1(2)第1,2,3,6题.
1.1.2集合的表示方法
一、教学目标:1、集合的两种表示方法(列举法和特征性质描述法).
2、能选择适当的方法正确的表示一个集合.
重点:集合的表示方法。
难点:集合的特征性质的概念,以及运用特征性质描述法表示集合。
二、复习回顾:
1.集合中元素的特性:______________________________________.
2.常见的数集的简写符号:自然数集整数集正整数集
有理数集实数集
三、知识预习:
1._______________________________________________________________________________________________________________________________________________叫做列举法;
2.___________________________________________________________________________叫做集合A的一个特征性质.___________________________________________________________________________________
叫做特征性质描述法,简称描述法.
说明:概念的理解和注意问题
1.用列举法表示集合时应注意以下5点:
(1)元素间用分隔号“,”;
(2)元素不重复;
(3)不考虑元素顺序;
(4)对于含有较多元素的集合,如果构成该集合的元素有明显规律,可用列举法,但必须把元素间的规律显示清楚后方能用省略号.
(5)无限集有时也可用列举法表示。
2.用特征性质描述法表示集合时应注意以下6点;
(1)写清楚该集合中元素的代号(字母或用字母表达的元素符号);
(2)说明该集合中元素的性质;
(3)不能出现未被说明的字母;
(4)多层描述时,应当准确使用“且”和“或”;
(5)所有描述的内容都要写在集合符号内;
(6)用于描述的语句力求简明,准确.
四、典例分析
题型一用列举法表示下列集合
例1用列举法表示下列集合
(1)A={xN|0<x≤5}(2)B={x|-5x+6=0}(3)C={xZ|N}
变式训练:○1课本7页练习A第1题。○2课本9页习题A第3题。
题型二用描述法表示集合
例2用描述法表示下列集合
(1){-1,1}(2)大于3的全体偶数构成的集合(3)在平面内,线段AB的垂直平分线
变式训练:课本8页练习A第2题、练习B第2题、9页习题A第4题。
题型三集合表示方法的灵活运用
例3分别判断下列各组集合是否为同一个集合:
(1)A={x|x+32}B={y|y+32}
(2)A={(1,2)}B={1,2}
(3)M={(x,y)|y=+1}N={y|y=+1}
变式训练:1、集合A={x|y=,xZ,yZ},则集合A的元素个数为()
A4B5C10D12
2、课本8页练习B第1题、习题A第1题
例4已知集合A={x|k-8x+16=0}只有一个元素,试求实数k的值,并用列举法表示集合A.
作业:课本第9页A组第2题、B组第1、2题。
限时训练
1.选择
(1)集合的另一种表示法是(B)
A.B.C.D.
(2)由大于-3小于11的偶数所组成的集合是(D)
A.B.
C.D.
(3)方程组的解集是(D)
A.(5,4)B.C.(-5,4)D.(5,-4)
(4)集合M=(x,y)|xy0,x,y是(D)
A.第一象限内的点集B.第三象限内的点集
C.第四象限内的点集D.第二、四象限内的点集
(5)设a,b,集合1,a+b,a=0,,b,则b-a等于(C)
A.1B.-1C.2D.-2
2.填空
(1)已知集合A=2,4,x2-x,若6,则x=___-2或3______.
(2)由平面直角坐标系内第二象限的点组成的集合为____.
(3)下面几种表示法:○1;○2;○3;
○4(-1,2);○5;○6.能正确表示方程组
的解集的是__○2__○5_______.
(4)用列举法表示下列集合:
A==___{0,1,2}________________________;
B==___{-2,-1,0,1,2}________________________;
C==___{(2,0),(-2,0),(0,2),(0,-2)}___________.
(5)已知A=,B=,则集合B=__{0,1,2}________.
3.已知集合A=,且-3,求实数a.(a=)
4.已知集合A=.
(1)若A中只有一个元素,求a的值;(a=0或a=1)
(2)若A中至少有一个元素,求a的取值范围;(a≤1)
(3)若A中至多有一个元素,求a的取值范围。(a=0或a≥1)
1.2.2函数的表示
一、内容及其解析
(一)内容:函数的表示。
(二)解析:本节课要学的内容函数的表示指的是列表法、图象法、解析法,理解它关键就是,体会三种表示方法的特点,能够根据实际问题情境选择恰当的方法表示一个函数以获得一个函数的游泳信息,培养学生的灵活运用知识的能力。学生已经学过了函数的概念并且在初中的时候接触过函数的三种表示法本节课的内容函数的表示法就是在此基础上的发展。由于它还与实际问题有必要的联系,所以在本学科有着很重要的地位,是学习后面知识的基础,是本学科的核心内容。教学的重点是函数的三种表示方法及根据不同的需要选择恰当的方法表示一个函数,所以解决重点的关键是结合实例让学生加深理解。
二、目标及其解析
(一)教学目标
1.理解函数的三种表示方法;
2.理解分段函数以及表示和映射的概念;
3.理解映射的概念;
(二)解析
1.理解函数的三种表示方法就是指能够根据不同的需要选择恰当的方法表示一个函数;
2.理解分段函数以及表示和映射的概念就是指了解分段函数在解决实际问题中的应用,及分段函数解析式的建立及图象的描绘;
3.理解映射的概念就是指要学生体会由特殊到一般的思维方法,掌握映射的概念,会判断一个对应关系是否是映射,并且体验用映射刻画函数的方法,理解函数式一种特殊的映射。
三、问题诊断分析
在本节课的教学中,学生可能遇到的问题是根据不同的需要选择恰当的方法表示一个函数和分段函数解析式的建立及图象的描绘,产生这一问题的原因是:学生根据实际问题情境获取有用信息和灵活运用知识的能力还有待提高;。要解决这一问题,就要在多结合实际问题其中关键是理论联系实际。
四、教学过程设计
一、导入新课
在学习函数概念时,三个实例分别是怎样去表示它是函数的?
二、提出问题
问题1:某种笔记本的单价是5元,买x(x∈{1,2,3,4,5})个笔记本需要y元.试用适当的方式表示函数y=f(x).
1.该函数用解析法怎样表示?
2.该函数用列表法怎样表示?
3.该函数用图象法怎样表示?
问题2:下表是某校高一(1)班三位同学在高一学年度六次数学测试的成绩及
班级平均分表:
第1次第2次第3次第4次第5次第6次
王伟988791928895
张诚907688758680
赵磊686573727582
班级平均分88.278.385.480.375.782.6
1.上表反映了几个函数关系?这些函数的自变量是什么?定义域是什么?
2.上述4个函数能用解析法表示吗?能用图象法表示吗?
3.若分析、比较每位同学的成绩变化情况,用哪种表示法为宜?
问题3:某市某条公交线路的总里程是20公里,在这条线路上公交车“招手即停”,其票价如下:
(1)5公里以内(含5公里),票价2元;
(2)5公里以上,每增加5公里,票价增加1元(不足5公里按照5公里计算).
1.里程与票价之间的对应关系是否为函数?若是,函数的自变量是什么?定义域是什么?
2.该函数用解析法怎样表示?
3.该函数用列表法怎样表示?
4.该函数用图象法怎样表示?
问题4:映射的定义是什么?
1.函数一定是映射吗?映射一定是函数吗?
2.映射有哪几种对应形式?
3.设集合A=N,B={x|x是非负偶数},你能给出一个对应关系f,使从集合A到集合B的对应是一个映射吗?并指出其对应形式.
4.有人说映射有“三性”,即“有序性”,“存在性”和“唯一性”,对此你是怎样理解的?
三.概念的巩固和应用
例1、设周长为20cm的矩形的一边长为xcm,面积为Scm2,那么x与S的对应关系是否为函数?若是,试用适当的方法表示出来.
例2、画出函数y=|x|的图象.
例3、试判断下面给出的对应是否为从集合A到集合B的映射?
(1)集合A={P|P是数轴上的点},集合B=R,对应关系f:数轴上的点与它所代表的实数对应;
(2)集合A={P|P是平面直角坐标系中的点},集合B={(x,y)|x∈R,y∈R},对应关系f:平面直角坐标系中的点与它的坐标对应;
(3)集合A={x|x是三角形},集合B={x|x是圆},对应关系f:每一个三角形都对应它的内切圆;
(4)集合A={x|x是师大附中的班级},集合B={x|x是师大附中的学生},对应关系f:每一个班级都对应班里的学生;
(5)集合A={1,2,3,4},B={3,4,5,6,7,8,9},对应关系f:x→2x+1
例2、已知集合A={a,b},集合B={c,d,e}.
(1)试建立一个从集合A到集合B的映射?
(2)一共可建立多少个从集合A到集合B的映射?
例3、下列对应关系f是否为从集合A到集合B的函数?
四.课堂目标检测
优化设计:随堂练习.
五.小结
1、函数的三种表示方法及各自的特点;
2、分段函数解析式的建立及图象的描绘;
3、映射的概念,并且体验用映射刻画函数的方法,理解函数式一种特殊的映射。
文章来源:http://m.jab88.com/j/5377.html
更多