88教案网

人教版七年级第一章第四节有理数的除法(二)教案

教案课件是老师需要精心准备的,是认真规划好自己教案课件的时候了。认真做好教案课件的工作计划,才能促进我们的工作进一步发展!有没有出色的范文是关于教案课件的?下面是小编精心为您整理的“人教版七年级第一章第四节有理数的除法(二)教案”,欢迎阅读,希望您能够喜欢并分享!

人教版七年级第一章第四节有理数的除法(二)教案

【教学目标】
(一)知识技能
1、熟练进行有理数的乘除混合运算,能运用简便算法计算;
2、掌握有理数的加减乘除混合运算顺序,并能准确进行运算;
3、能解决有理数混合运算的应用题.
(二)过程方法
在小学已有的乘除法混合运算顺序知识的基础上,把知识推广运用到有理数的范围,用类比的方法,感知新知和旧知的联系.
(三)情感态度
1.在数学学习活动中体验成功的喜悦,形成良好的数学思维习惯.
2.结合实际问题,体验数学的实用价值.
教学重点
加减乘除混和运算。
教学难点
运算时一定要注意运算顺序。
【复习引入】
1.复习有理数的乘除法法则(两个).
(1)除以一个不为零的数,等于乘以这个数的倒数
(2)两数相除,同号得正,异号得负,并把绝对值相除。零除以不等于零的数。都得0。
2.某人购买股票三月份亏损1500元,四月份赢利1200元,这两个月平均每月赢利多少元?
应怎样列出式子?怎样计算?
由此引出有理数混和运算问题。
【教学过程】
1、例题分析
例1计算:
(1)-54×(-2)÷(-4)×;(2)63×(-1)+(-)÷(-0.9).
解:(1)-54×(-2)÷(-4)×
=-(54×)
=-6
(2)63×(-1)+(-)÷(-0.9).
=(-91)+

说明:(1)将除法转化为乘法,再运用乘法的法则进行计算也可以从左至右依次进行计算,有理数的除法的符号法则与有理数的乘法法则是一样的;(2)先算乘除,再算加减.
2、共同讨论:
例2观察下列解题过程,看有没有错误.如果有,请说明错误的原因,并给予纠正;如果没有错误,请指明用了什么运算律.
计算:-9÷=-9÷1=-9.
分析:-9÷是乘除混合运算,应该从左到右按顺序进行计算,或者运用除法的法则将除法统一成乘法,再按乘法法则进行计算.
答:解法有错误,错误的原因是在只含乘除的同级运算里,没有按从左到右的顺序进行,而错误地先算,正确的解答是:
-9÷=-9×=-4.
说明:这是一个不注意就会出现的错误,另外,本例是阅读理解错题,是当前中考的一个热点题型.
3.归纳概括:有理数加减乘除混合运算,无括号时,“先乘除,后加减”,有括号时,先算括号内的,同级运算,“从左到右”。计算时注意符号的确定,还要灵活应用运算律使运算简便。
4.巩固应用
例3计算
(1)(2)(-81)÷×(-16)
(3)(4)
分析:第(1)、(2)小题应先把带分数化为假分数,然后进行运算;第(3)小题有括号,应先算括号里面的,再把除法转化为乘法进行计算;第(4)小题有0作被除数,早发现可使运算简便.
解:(1)=
(2)(-81)÷×(-16)=(-81)××(-16)=81××16=256
(3)==
(4)=1.3+0=1.3
说明:在一个算式里,如果含有带分数,应先把带分数化成假分数,再按运算顺序进行运算.另外,在运算过程中,乘和除是同级运算,应按照从左到右的顺序计算,不能随便约分.
例4某公司去年1~3月平均每月亏损1.5万元,4~6月平均每月盈利2万元,7~10月平均每月盈利1.7万元,11~12月平均每月亏损2.3万元.这个公司去年总的盈亏情况如何?
解:记盈利额为正数,亏损额为负数。公司去年全年盈亏额为
(-1.5)×3+2×3+1.7×4+(-2.3)×2
=-4.5+6+6.8-4.6
=3.7(万元)
答:这个公司去年全年盈利3.7万元。
5.通过例题讲解和练习训练,要注意到以下几点:
(1)有理数乘除法法则遵循“符号优先”原则,即先确定符号,再把绝对值相乘除。
(2)对于多个有理数相乘除,运算时可以从左到右进行,也可把除法转化成乘法后再进行计算。
(3)要正确使用符号法则,确定各步运算结果的符号。

【课堂作业】
1.计算:
(1)(-0.4)÷(+0.02)×(-5);
(2)2÷(-)×÷(-5);
(3)(-5)÷(-15)÷(-3);
(4)(-)÷(-1)-(+)÷(-).
(5)-1÷(-5)×;(6)-209÷19.
2.某冷冻厂的一个冷库现在的室温是-4℃,现有一批食品需要在-30℃冷藏.如果每小时降温4℃,问几小时能降到所需要的温度?

3.若有理数a,b在数轴上的位置如下:

4.下面的解题过程是否正确?若正确,请指明运用了什么运算律;若不正确,请指明错误的原因,并作出正确解答.
计算:(-)÷().
解:原式=(-)÷-(-)÷+(-)÷-(-)÷
=-+-+
=.
5.已知a的相反数是,b的倒数是-2,求的值.

参考答案:
1.(1)100(2)(3)(4)(5)(6)
2.6.5小时
3.解:|a||b|,且a<0,b>0,
∴a+b<0.

4.错误。除法没有分配率
原式=

5.由题意得a=,b=.

【教学反思】
前面已学过有理数加法、减法、乘法,除法运算为学习有理数混合运算作了铺垫,而加减乘除混合运算在小学时已经学过,而且是非常熟悉四则混合运算的法则。所以这节课学生并不难把握。通过学生自己的出题并解答的形式,培养学生观察问题、分析问题和解决问题的能力。
通过学生自主学习、探究,培养学生自立的精神。学习中,教师可以有意识地培养学生的竞争意识,让学生在学习过程中能及时反思自己出现的问题,培养良好的学习习惯。

相关推荐

第一章 有理数复习


老师职责的一部分是要弄自己的教案课件,大家在着手准备教案课件了。是时候对自己教案课件工作做个新的规划了,未来工作才会更有干劲!有多少经典范文是适合教案课件呢?为满足您的需求,小编特地编辑了“第一章 有理数复习”,仅供参考,希望能为您提供参考!

第一章有理数复习

一、【课标要求】

考点

知识点

知识与技能目标

了解

理解

掌握

灵活应用

有理数及有理数的意义

相反数和绝对值

有理数的运算

科学计数法和近似数

二、知识结构

有理数

概念

有理数

相反数

大小比较

绝对值

倒数

数轴

运算

加法

减法

乘法

除法

乘方

混合运算

科学记数法

用计算器进行简单的计算

近似数与有效数字

三、主要考点

考点一:有理数的分类

正有理数

负有理数

正整数

正分数

负整数

负分数

有理数

含正有限小数和无限循环小数

含负有限小数和无限循环小数
有理数的另一种分类

整数

分数

正整数

负整数

0

负分数

正分数

自然数

1、填空

①_____________统称整数。_____________统称分数。_____________统称有理数。0既不是,也不是。

②增加-20%,实际的意思是。

甲比乙大-3表示的意思是。

③月球表面的白天平均温度为126℃,记作+126℃,夜间平均温度零下150°C,记作℃.白天比夜间高℃

想一想:零是整数吗?自然数一定是整数吗?自然数一定是正整数吗?整数一定是自然数吗?

零是整数;自然数一定是整数;自然数不一定是正整数,因为零也是自然数;整数不一定是自然数,因为负整数不是自然数

2、把下列各数填在相应额大括号内:

1,-0.1,-789,25,0,-20,-3.14,-590

正整数集{…}

负整数集{…}

正分数集{…}

负分数集{…}

正有理数集{…}

负有理数集{…}

自然数集{…}

3、判断正误

①不带“-”号的数都是正数()

②如果a是正数,那么-a一定是负数()

③不存在既不是正数,也不是负数的数()

④0℃表示没有温度()

考点二:数轴

1、填空

①规定了,和的直线叫做数轴。

②比-3大的负整数是_______;已知m是整数且-4m3,则m为_______________。③有理数中,最大的负整数是____,最小的正整数是____。最大的非正数是__。

④与原点的距离为三个单位的点有____个,他们分别表示的有理数是________。

2、选择题

①下列数轴画法正确的是()

②在数轴上,原点及原点左边所表示的数是()

A整数B负数C非负数D非正数

③下列语句中正确的是()

A数轴上的点只能表示整数B数轴上的点只能表示分数

C数轴上的点只能表示有理数D所有有理数都可以用数轴上的点表示出来

考点三:相反数

1、填空

①-2的相反数是;它的倒数是;它的绝对值是。

②|-3|的相反数是;它的倒数是;它的绝对值是。

③相反数是它本身的数是;倒数是它本身的数是;绝对值是它本身的数是。

2、选择

①的若a和b是互为相反数,则a+b=()

A、–2aB、2bC、0D、任意有理数

②下列说法正确的是()

A、–1/4的相反数是0.25B、4的相反数是-0.25

C、0.25的倒数是-0.25D、0.25的相反数的倒数是-0.25

③用-a表示的数一定是()

A、负数B、正数C、正数或负数D、都不对

④一个数的相反数是最小的正整数,那么这个数是()

A、–1B、1C、±1D、0

3、判断

①互为相反的两个数在数轴上位于原点两旁()

②在一个数前面添上“-”号,它就成了一个负数()

③只要符号不同,这两个数就是相反数()

4、计算:已知和的值互为相反数,求x的值。

考点五:绝对值

1、绝对值的意义是(1)一个正数的绝对值是它本身;(2)一个负数数的绝对值是它的相反数(3)0的绝对值是0;(4)|a|大于或者等于0。

2、化简

(1)-|-2/3|=_____;

(2)|-3.3|-|+4.3|=___;

(3)1-|-1/2|=___;

(4)-1-|1-1/2|=______。

3、填空题。

①若|a|=3,则a=____;|a+1|=0,则a=____。

②若|a-5|+|b+3|=0,则a=___,b=___。

③若|x+2|+|y-2|=0,则x=___,y=___。

④绝对值小于2的整数有________。

⑤绝对值等于它本身的数有___________。

⑥绝对值不大于3的负整数有__________。

⑦数a和b的绝对值分别为2和5,且在数轴上表示a的点在表示b的点左侧,则b的值为

考点五:有理数加减法

1、有理数的加、减法法则

①同号两数相加,取符号,并把绝对值。

②互为相反数的两个数相加得。

③一个数同0相加,仍得。

④减去一个数,等于加上这个数的。

2、计算

⑷-(-12)-(-25)-18+(-10)

⑸⑹

考点六:乘除法法则

1、填空

①两数相乘,同号得,异号得,并把绝对值。0乘以任何数,都得。

②几个数相乘,积的符号由负因数的个数确定,负因数的个数为时,积为正;负因数的个数为时,积为负。

③两数相除,同号得;异号得;并把绝对值。

④乘以一个数等于除以一个数的。

2、计算:

3、化简:

考点七:乘方

1、填空

①这种求n个的运算,叫做乘方。

②中,底数是,指数是,幂是;读作:。或读作:。

③23中,底数是;指数是;结果是;读作:。

④(-2)2中,底数是;结果是;

⑤-22中,底数是;结果是。

⑥5中,底数是;指数是。

⑦中,底数是;指数是;幂是。

⑧中,底数是;指数是;幂是。

⑨18表示个相乘,结果是。

2、计算:

32=;-23=;-14=;

(-3)2=;05=;0.13=.

考点八:运算律及混合运算

1、基本知识

v加法交换律:

v乘法交换律:

v加法结合律:

v乘法结合律:

v乘法分配律:

v有理数混合运算顺序:先;再;最后算。

有括号,先算;同级运算由。

2、计算

(5)

考点十:科学记数法

1、把一个大于10的数表示成的形式(其中a是整数数位只有一位的数,n是正整数)叫做科学记数法。

2、用科学记数法表示一个n位整数,其中10的指数是______。

(1)-9800000=-9.8×106;

(2)298.6=2.986×102

3、把下列各数用科学记数法表示

4、写出下列用科学记数法表示的数的原数

考点十一:近似数和有效数字

1、在近似数中,从左边第一个的数字起,到止,所有的数字都是有效数字。

2、按括号中的要求对下列各位取近似数

(1)0.34082(精确到千分位)

(2)1.5064(精确到0.01)

(3)0.0692(保留2个有效数字)

(4)30542(精确到百位)

3、填空题:

1、2.008(精确到0.01)≈.

2、320400(保留2个有效数字)≈.

3、近似数3.05万精确到位,有个有效数字。

七年级数学上第一章1.4有理数的乘除法(人教版)


为了促进学生掌握上课知识点,老师需要提前准备教案,大家正在计划自己的教案课件了。只有规划好教案课件计划,这样我们接下来的工作才会更加好!有哪些好的范文适合教案课件的?急您所急,小编为朋友们了收集和编辑了“七年级数学上第一章1.4有理数的乘除法(人教版)”,欢迎大家阅读,希望对大家有所帮助。

1.4有理数的乘除法
1.4.1有理数的乘法
第1课时有理数的乘法法则

1.了解有理数乘法的实际意义.
2.理解有理数的乘法法则.
3.能熟练的进行有理数乘法运算.

阅读教材P28~30,思考并回答下列问题.
知识探究
1.有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.
2.通过有理数的乘法,进一步体会有理数运算包含两步思考:先确定积的符号,再计算积的绝对值.
3.乘积为1的两个数互为倒数.
如:-3的倒数是-13,0.5的倒数是2,-212的倒数是-25.
自学反馈
计算:
(-114)×(-45)=1,(+3)×(-2)=-6,
0×(-4)=0,123×(-115)=-2,
(-15)×(-13)=5,-│-3│×(-2)=6.
(1)运用乘法法则,先确定积的符号,再把绝对值相乘;(2)0没有倒数.

活动1小组讨论
例1计算:
(1)(-3)×9;(2)8×(-1);(3)(-12)×(-2).
解:(1)(-3)×9=-27.
(2)8×(-1)=-8.
(3)(-12)×(-2)=1.
例2用正负数表示气温的变化量,上升为正,下降为负.登山队攀登一座山峰,每登高1km气温的变化量为-6℃,攀登3km后,气温有什么变化?
解:(-6)×3=-18.
答:气温下降18℃.
活动2跟踪训练
1.计算:
(1)(-5)×0.2=-1;
(2)(-8)×(-0.25)=2;
(3)(-312)×(-27)=1;
(4)0.1×(-0.01)=-0.001.
2.若a×(-56)=1,则a=-65.已知一个有理数的倒数的绝对值是7,则这个有理数是±17.
3.判断对错:
(1)两数相乘,若积为正数,则这两个数都是正数.(×)
(2)两数相乘,若积为负数,则这两个数异号.(√)
(3)互为相反的数之积一定是负数.(×)
(4)正数的倒数是正数,负数的倒数是负数.(√)
活动3课堂小结
1.有理数的乘法法则:两个有理数相乘,同号得正,异号得负,并把绝对值相乘.
2.倒数:乘积是1的两个数互为倒数.(负倒数:乘积为-1)
第2课时多个有理数的乘法

进一步学习有理数乘法运算,掌握多个有理数相乘积的符号的确定.

阅读教材P31,思考并回答下列问题.
知识探究
体会几个不等于零的有理数相乘,积的符号的确定方法:
1.几个不为0的数相乘,积的符号由负因数的个数决定.当负因数的个数是偶数时,积为正;当负因数的个数是奇数时,积为负.
2.几个数相乘,如果其中有因数为0,那么积等于0.
自学反馈
计算:(-2)×(-3)×(-5)=-30,
(-723)×3×(-123)=1,
(-9.89)×(-6.2)×(-26)×(-30.7)×0=0.

活动1小组讨论
例计算:
(1)(-3)×56×(-95)×(-14);
(2)(-5)×6×(-45)×14.
解:(1)-98.(2)6.
活动2跟踪训练
计算:
(1)(-59)×0.01×0=0;
(2)(-2)×(-5)×(+56)×(-30)=-250.
活动3课堂小结
1.几个不为0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数.
2.任何数同0相乘,都得0.
第3课时有理数的乘法运算律

1.进一步应用乘法法则进行有理数的乘法运算.
2.能自主探究理解乘法交换律、结合律、分配律在有理数运算中的应用.
3.培养学生通过观察、思考找到合理解决问题的能力.

阅读教材P32~33,思考并回答下列问题.
知识探究
乘法交换律的文字表达:两个数相乘,交换因数的位置,积相等.
乘法交换律的字母表达:ab=ba.
乘法结合律的文字表达:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等.
乘法结合律的字母表达:(ab)c=a(bc).
乘法分配律的文字表达:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.
乘法分配律的字母表达:a(b+c)=ab+ac.
自学反馈
1.计算:(-3)×56×(-95)×(-14)×(-8)×(-1).
解:-9.
2.计算:
(1)-34×(8-43-1415);
(2)191819×(-15).
解:(1)-4310.(2)-299419.
运用运算律进行简便运算.

活动1小组讨论
例计算:
(1)(-0.5)×(-316)×(-8)×113;
(2)(-10556)×12;
(3)(-34+156-78)×(-24);
(4)317×(317-713)×722×2122;
(5)(23-49+527)×27-1117×8+117×8.
解:(1)-1.(2)-1270.(3)-5.(4)-4.(5)3.
活动2跟踪训练
1.运用分配律计算(-3)×(-4+2-3),下面有四种不同的结果,其中正确的是(D)
A.(-3)×4-3×2-3×3
B.(-3)×(-4)-3×2-3×3
C.(-3)×(-4)+3×2-3×3
D.(-3)×(-4)-3×2+3×3
2.在运用分配律计算3.96×(-99)时,下列变形较合理的是(C)
A.(3+0.96)×(-99)B.(4-0.04)×(-99)
C.3.96×(-100+1)D.3.96×(-90-9)
3.对于算式2007×(-8)+(-2007)×(-18),逆用分配律写成积的形式是(C)
A.2007×(-8-18)B.-2007×(-8-18)
C.2007×(-8+18)D.-2007×(-8+18)
4.计算1357×316,最简便的方法是(D)
A.(13+57)×316B.(14-27)×316
C.(10+357)×316D.(16-227)×316
5.计算:
(1)(-4)×8×(-2.5)×0.1×(-0.125)×10;
(2)(134-78-112)×117;
(3)(-5.25)×(-4.73)-4.73×(-19.75)-25×(-5.27);
解:(1)-10.(2)1921.(3)250.
活动3课堂小结
1.有理数乘法交换律.
2.有理数乘法结合律.
3.有理数乘法分配律.
1.4.2有理数的除法
第1课时有理数的除法法则

1.理解除法的意义,掌握有理数的除法法则.
2.能熟练进行有理数的除法运算.

阅读教材P34,思考并回答下列问题.
知识探究
1.有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数.
2.两数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不等于0的数,都得0.
自学反馈
计算:
(1)(-18)÷9=-2;
(2)0÷(-35)=0;
(3)2.25÷(-1.5)=-32.

活动1小组讨论
例计算:
(1)(-36)÷9;(2)(-1225)÷(-35).
解:(1)(-36)÷9=-(36÷9)=-4.
(2)(-1225)÷(-35)=(-1225)×(-53)=45.
在做除法运算时,先定符号,再算绝对值.若算式中有小数、带分数,一般情况下化成真分数和假分数进行计算.
活动2跟踪训练
1.两个不为零的有理数的和等于0,那么它们的商是(B)
A.正数B.-1C.0D.±1
2.计算:
(1)-0.125÷(-38);(2)(-215)÷1110.
解:(1)13.(2)-2.
活动3课堂小结
1.a÷b=a1b(b≠0).
2.两数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不为0的数仍得
第2课时有理数的乘除混合运算

1.掌握有理数除法法则,能够化简分数.
2.能熟练地进行有理数的乘除混合运算.

阅读教材P35,思考并回答下列问题.
自学反馈
1.化简:(1)204=5;(2)-255=-5.
2.计算:(1)5÷15=25;(2)(-12)÷3×4=-16.

活动1小组讨论
例1化简下列分数:
(1)-123;(2)-45-12;
解:(1)-123=(-12)÷3=-4.
(2)-45-12=(-45)÷(-12)=45÷12=154.
例2计算:
(1)(-12557)÷(-5);(2)-2.5÷58×(-14).
解:(1)2517.(2)1.
活动2跟踪训练
1.化简:
(1)-729;(2)-30-45;(3)0-75.
解:(1)-8.(2)23.(3)0.
2.计算:
(1)(-45)÷(-43)×0;
(2)-112÷34×(-0.2)×134÷1.4×(-35).
解:(1)0.(2)-310.
活动3课堂小结
1.化简分数.
2.乘除混合运算要先将除法化成乘法,然后确定积的符号,最后求出结果.
第3课时有理数的加减乘除混合运算

1.能熟练地掌握有理数加减乘除混合运算的顺序,并能准确计算.
2.能解决有理数加减乘除混合运算应用题.
3.了解用计算器进行有理数的加减乘除运算.

阅读教材P36~37,思考并回答下列问题.
知识探究
有理数加减乘除混合运算的顺序:先乘除,后加减,有括号的先算括号内的.
自学反馈
计算:
(1)6-(-12)÷(-3);
(2)3×(-4)+(-28)÷7;
(3)(-48)÷8-(-25)×(-6);
(4)42×(-23)+(-34)÷(-0.25).
解:(1)2.(2)-16.(3)-156.(4)-25.
在做有理数的乘除混合运算时:①先将除法转化为乘法;②确定积的符号;③适时运用运算律;④若出现带分数可化为假分数,小数可化为分数计算;⑤注意运算顺序.

活动1小组讨论
例1计算:
(1)-8+4÷(-2);
(2)(-7)×(-5)-90÷(-15).
解:(1)-8+4÷(-2)=-8+(-2)=-10.
(2)(-7)×(-5)-90÷(-15)=35-(-6)=35+6=41.
例2一架直升机从高度450米的位置开始,先以20米/秒的速度上升60秒,后以12米/秒的速度下降120秒,这时直升机所在高度是多少?
解:210米.
活动2跟踪训练
1.计算:
(1)(-3)×(-12)-(-5)÷(-2);
(2)|-512|÷(13-12)×(-111).
解:(1)-1.(2)3.
2.高度每增加1千米,气温大约降低6℃,今测量高空气球所在高度的温度为-7℃,地面温度为17℃,求气球的大约高度.
解:4千米.
3.某探险队利用温度测量湖水的深度,他们利用仪器侧得湖面的温度是12℃,湖底的温度是5℃,已知该湖水温度每降低0.7℃,深度就增加30米,求该湖的深度.
解:300米.
活动3课堂小结
有理数加减乘除混合运算的顺序:无括号,先算乘除,后算加减;有括号,先算括号里面的.

人教版七年级第一章第五节有理数的乘方(二)教案


每个老师不可缺少的课件是教案课件,大家在仔细设想教案课件了。教案课件工作计划写好了之后,这样我们接下来的工作才会更加好!你们会写一段适合教案课件的范文吗?下面是小编帮大家编辑的《人教版七年级第一章第五节有理数的乘方(二)教案》,仅供参考,大家一起来看看吧。

人教版七年级第一章第五节有理数的乘方(二)教案
【教学目标】
(一)知识技能
1、进一步掌握有理数的运算法则和运算律.
2、使学生能够熟练地按有理数运算顺序进行混合运算.
3、培养学生对数的感觉,提高学生正确运算的能力,培养学生思维的逻辑性和灵活性,进一步发展学生的思维能力。
(二)过程方法
在前面已有知识的基础上,巩固和加深对有理数运算的理解。
(三)情感态度
组织学生积极参与数学学习活动,在活动中形成解题技巧,发展解题能力。
教学重点
有理数的混合运算。
教学难点
准确地掌握有理数的运算顺序和运算中的符号问题。
【情景引入】
1、复习回顾:
(1)、指出下列各幂是正数还是负数:
指出:乘方运算的符号法则。

2、师生共同玩“24点游戏”,教师介绍游戏规则:从一副牌中(去掉大、小王)任意抽取4张,根据牌上的数字进行混合运算.每张牌只能用一次,使得运算结果为24或-24,其中红色代表负数,黑色代表正数,J,Q,K分别代表11、12、13.比如现在抽到一张黑桃1,一张黑桃3,一张方块6,一张梅花9,可通过(1+9÷3)×(-6)的方法把它们凑成-24.
例如:对1,2,3,4,可进行运算(1+2+3)×4=24
现有4个有理数3,4,-6,10运用上述规则写出不同方法的运算式使其结果等于24.(1)___________________________________(2)___________________________________(3)___________________________________
【教学过程】
教师提出问题:在这个式子中,存在着哪几种运算?
学生回答后,教师继续提问:这道题应按什么顺序运算?前面我们已经学习加减乘除四则运算,知道要先算乘除,再算加减,现在又多一种乘方运算,你们认为在做有理数混合运算时,应注意哪些运算顺序?请分小组讨论(4人一组).
1、小组讨论后,请小组代表汇报、交流讨论结果,最后归纳出有理数混合运算的运算顺序如下:
①先乘方,再乘除,最后加减;
②同级运算,从左到右进行;
③如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行.
注意:加法和减法叫做第一级运算;乘法和除法叫做第二级运算;乘方和开方(今后将会学到)叫做第三级运算。
可以应用运算律,适当改变运算顺序,使运算简便.
2.试一试:指出下列各题的运算顺序:
(1);运算顺序为:____________________
(2);运算顺序为:____________________
(3);运算顺序为:____________________
(4);运算顺序为:____________________
(5);运算顺序为:____________________
(6);运算顺序为:____________________
(7)运算顺序为:____________________
3、例题分析:
例1(1)(-2)3+(-3)×[(-4)2+2]-(-3)2÷(-2);
(2)(3)
解:(1)原式=(-8)+(-3)×18-9÷(-2)=(-8)+(-54)-(-)=-57
(2)
(3)

这里要注意三点:
①小括号先算;
②进行分数的乘除运算,一般要把带分数化为假分数,把除法转化为乘法;
③同级运算,按从左往右的顺序进行,这一点十分重要.
例2计算:(1)
解:原式=
=
=3+(-)-1
=
(2)
解:原式=
=[1-]×(-7)
=×(-7)
=
(3)计算:
解:
=
=
=-2+1+-
=-3
例3、观察下面三行数:
-2,4,-8,16,-32,64,…;①
0,6,-6,18,-30,66,…;②
-1,2,-4,8,-16,32,….③
(1)第①行数按什么规律排列?
(2)第②③行数与第①行数分别有什么关系?
(3)取每行数的第10个数,计算这三个数的和.
解:(1)第①行数是-2,
(2)第②行数是第①行对应的数+2,即
第③行数是第①行对应的数的0.5倍,即
(3)每行数的第10个数的和是
=2562
【课堂作业】
1.计算
(1)-2+2×(-4)2(2)-22+(-7)÷()
(3)(4)
(5)
2、下列计算有无错误?若有错,应该怎样改正?
(1)74-22÷70=70÷70=1()改正
(2)2×32==62=36()改正
(3)6÷(2×3)=6÷2×3=3×3=9()改正
(4)()改正:
3.m为任意有理数,下列说法正确的是()
A.(m+1)2的值总是正的B.m2+1的值总是正的
C.-(m+1)2总是负数D.1-m2的值总比1小

4.计算:
(1).(2)
(3)2×-4×(-3)+15.
(4);(5);
(6);(7)
5、一杯饮料,第一次倒去一半,第二次倒去剩下的一半,……如此倒下去,第八次后剩下的饮料是原来的几分之几?

参考答案:
1.⑴30⑵0⑶-8⑷⑸-25
2.(1)错。改正:74-22÷70=70=(2)错。改正:2×32=2×9=18
(3)错。改正:6÷(2×3)=6÷6=1
(4)错。改正:
3.B
4.⑴⑵10⑶-27⑷⑸-6⑹-8⑺
5.

【教学反思】
1、有理数的运算是数学中很多其他运算的基础,培养学生正确迅速的运算能力,是数学教学中的一项重要目标,在加、减、乘、除、乘方这几种运算基本掌握的前提下,学生进行混合运算,首先应注意的就是运算顺序的问题,教师应告诉学生这几种运算可以分成三级:其中加减是第一级运算;乘除是第二级运算;乘方与开方是第三级运算.
2、小组讨论有理数运算法则后,教师应提醒学生牢固掌握有理数混合运算的几项规定,在教学时,要注意结合学生平时练习中出现的问题,及时纠正学生在运算上出现的问题,特别是加入乘方以后,学生对乘方运算不熟悉,容易出错.
组织学生在课堂上玩24点游戏,创设良好的氛围,让学生动脑动手动口,不仅可以提高学生学习兴趣,训练学生的思维,还可以培养学生的数学运算能力和数学表达能力.

文章来源://m.jab88.com/j/49674.html

更多

猜你喜欢

更多

最新更新

更多