88教案网

2.2整式的加减(2)-

每个老师不可缺少的课件是教案课件,规划教案课件的时刻悄悄来临了。需要我们认真规划教案课件工作计划,这样我们接下来的工作才会更加好!你们会写适合教案课件的范文吗?请您阅读小编辑为您编辑整理的《2.2整式的加减(2)-》,欢迎大家阅读,希望对大家有所帮助。

2.2整式的加减(2)

教学内容

课本第66页至第68页.

教学目标

1.知识与技能

能运用运算律探究去括号法则,并且利用去括号法则将整式化简.

2.过程与方法

经历类比带有括号的有理数的运算,发现去括号时的符号变化的规律,归纳出去括号法则,培养学生观察、分析、归纳能力.

3.情感态度与价值观

培养学生主动探究、合作交流的意识,严谨治学的学习态度.

重、难点与关键

1.重点:去括号法则,准确应用法则将整式化简.

2.难点:括号前面是“-”号去括号时,括号内各项变号容易产生错误.

3.关键:准确理解去括号法则.

教具准备

投影仪.

教学过程

一、新授

利用合并同类项可以把一个多项式化简,在实际问题中,往往列出的式子含有括号,那么该怎样化简呢?

现在我们来看本章引言中的问题(3):

在格尔木到拉萨路段,如果列车通过冻土地段要t小时,那么它通过非冻土地段的时间为(t-0.5)小时,于是,冻土地段的路程为100t千米,非冻土地段的路程为120(t-0.5)千米,因此,这段铁路全长为

100t+120(t-0.5)千米①

冻土地段与非冻土地段相差

100t-120(t-0.5)千米②

上面的式子①、②都带有括号,它们应如何化简?

思路点拨:教师引导,启发学生类比数的运算,利用分配律.学生练习、交流后,教师归纳:

利用分配律,可以去括号,合并同类项,得:

100t+120(t-0.5)=100t+120t+120×(-0.5)=220t-60

100t-120(t-0.5)=100t-120t-120×(-0.5)=-20t+60

我们知道,化简带有括号的整式,首先应先去括号.

上面两式去括号部分变形分别为:

+120(t-0.5)=+120t-60③

-120(t-0.5)=-120+60④

比较③、④两式,你能发现去括号时符号变化的规律吗?

思路点拨:鼓励学生通过观察,试用自己的语言叙述去括号法则,然后教师板书(或用屏幕)展示:

如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;

如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.

特别地,+(x-3)与-(x-3)可以分别看作1与-1分别乘(x-3).

利用分配律,可以将式子中的括号去掉,得:

+(x-3)=x-3(括号没了,括号内的每一项都没有变号)

-(x-3)=-x+3(括号没了,括号内的每一项都改变了符号)

去括号规律要准确理解,去括号应对括号的每一项的符号都予考虑,做到要变都变;要不变,则谁也不变;另外,括号内原有几项去掉括号后仍有几项.

二、范例学习

例1.化简下列各式:

(1)8a+2b+(5a-b);(2)(5a-3b)-3(a2-2b).

思路点拨:讲解时,先让学生判定是哪种类型的去括号,去括号后,要不要变号,括号内的每一项原来是什么符号?去括号时,要同时去掉括号前的符号.为了防止错误,题(2)中-3(a2-2b),先把3乘到括号内,然后再去括号.

解答过程按课本,可由学生口述,教师板书.

例2.两船从同一港口同时出发反向而行,甲船顺水,乙船逆水,两船在静水中的速度都是50千米/时,水流速度是a千米/时.

(1)2小时后两船相距多远?

(2)2小时后甲船比乙船多航行多少千米?

教师操作投影仪,展示例2,学生思考、小组交流,寻求解答思路.

思路点拨:根据船顺水航行的速度=船在静水中的速度+水流速度,船逆水航行速度=船在静水中行驶速度-水流速度.因此,甲船速度为(50+a)千米/时,乙船速度为(50-a)千米/时,2小时后,甲船行程为2(50+a)千米,乙船行程为(50-a)千米.两船从同一洪口同时出发反向而行,所以两船相距等于甲、乙两船行程之和.

解答过程按课本.

去括号时强调:括号内每一项都要乘以2,括号前是负因数时,去掉括号后,括号内每一项都要变号.为了防止出错,可以先用分配律将数字2与括号内的各项相乘,然后再去括号,熟练后,再省去这一步,直接去括号.

三、巩固练习

1.课本第68页练习1、2题.

2.计算:5xy2-[3xy2-(4xy2-2x2y)]+2x2y-xy2.[5xy2]

思路点拨:一般地,先去小括号,再去中括号.

四、课堂小结

去括号是代数式变形中的一种常用方法,去括号时,特别是括号前面是“-”号时,括号连同括号前面的“-”号去掉,括号里的各项都改变符号.去括号规律可以简单记为“-”变“+”不变,要变全都变.当括号前带有数字因数时,这个数字要乘以括号内的每一项,切勿漏乘某些项.

五、作业布置

1.课本第71页习题2.2第2、3、5、8题.

2.选用课时作业设计.

第二课时作业设计

一、选择题:

1.下列各式化简正确的是().

A.a-(2a-b+c)=-a-b+cB.(a+b)-(-b+c)=a+2b+c

C.3a-[5b-(2c-a)]=2a-5b+2cD.a-(b+c)-d=a-b+c-d

2.下面去括号错误的是().

A.a2-(a-b+c)=a2-a+b-cB.5+a-2(3a-5)=5+a-6a+5

C.3a-(3a2-2a)=3a-a2+aD.a3-[(a2-(-b))=a3-a2-b

3.将多项式2ab-4a2-5ab+9a2的同类项分别结合在一起错误的是().

A.(2ab-5ab)+(-4a2+9a)B.(2ab-5ab)-(4a2-9a2)

C.(2ab-5ab)+(9a2-4a2)D.(2ab-5ab)-(4a2+9a2)

二、化简下列各式:

4.2(-a3+2a2)-(4a2-3a+1).5.(4a2-3a+1)-3(-a3+2a2).

6.3(a2-4a+3)-5(5a2-a+2).7.3x2-[5x-2(x-)+2x2].

答案:

一、1.C2.B3.D

二、4.-2a3+3a-15.3a3-2a2-3a+16.-22a2-7a-17.x2-x-3.

相关知识

2.2整式的加减(1)--


每个老师需要在上课前弄好自己的教案课件,大家在认真写教案课件了。对教案课件的工作进行一个详细的计划,才能对工作更加有帮助!有多少经典范文是适合教案课件呢?以下是小编为大家精心整理的“2.2整式的加减(1)--”,仅供参考,欢迎大家阅读。

2.2整式的加减(1)

第4课时

教学内容:教科书第63—64页,2.2整式的加减:1.同类项。教学目标和要求:1.理解同类项的概念,在具体情景中,认识同类项。2.通过小组讨论、合作学习等方式,经历概念的形成过程,培养学生自主探索知识和合作交流的能力。3.初步体会数学与人类生活的密切联系。教学重点和难点:重点:理解同类项的概念。难点:根据同类项的概念在多项式中找同类项。教学方法:

分层次教学,讲授、练习相结合。教学过程:一、复习引入:

1、创设问题情境

⑴、5个人+8个人=

⑵、5只羊+8只羊=

⑶、5个人+8只羊=

(数学教学要紧密联系学生的生活实际、学习实际,这是新课程标准所赋予的任务。学生尝试按种类、颜色等多种方法进行分类,一方面可提供学生主动参与的机会,把学生的注意力和思维活动调节到积极状态;另一方面可培养学生思维的灵活性,同时体现分类的思想方法。)2、观察下列各单项式,把你认为相同类型的式子归为一类。8x2y,-mn2,5a,-x2y,7mn2,,9a,-,0,0.4mn2,,2xy2。由学生小组讨论后,按不同标准进行多种分类,教师巡视后把不同的分类方法投影显示。要求学生观察归为一类的式子,思考它们有什么共同的特征?请学生说出各自的分类标准,并且肯定每一位学生按不同标准进行的分类。(充分让学生自己观察、自己发现、自己描述,进行自主学习和合作交流,可极大的激发学生学习的积极性和主动性,满足学生的表现欲和探究欲,使学生学得轻松愉快,充分体现课堂教学的开放性。)二、讲授新课:1.同类项的定义:我们常常把具有相同特征的事物归为一类。8x2y与-x2y可以归为一类,2xy2与-可以归为一类,-mn2、7mn2与0.4mn2可以归为一类,5a与9a可以归为一类,还有、0与也可以归为一类。8x2y与-x2y只有系数不同,各自所含的字母都是x、y,并且x的指数都是2,y的指数都是1;同样地,2xy2与-也只有系数不同,各自所含的字母都是x、y,并且x的指数都是1,y的指数都是2。像这样,所含字母相同,并且相同字母的指数也分别相等的项叫做同类项(similarterms)。另外,所有的常数项都是同类项。比如,前面提到的、0与也是同类项。

通过特征的讲述,选择所含字母相同,并且相同字母的指数也分别相等的项作为研究对象,并称它们为同类项。(板书课题:同类项。)

(教师为了让学生理解同类项概念,可设问同类项必须满足什么条件,让学生归纳总结。)

板书由学生归纳总结得出的同类项概念以及所有的常数项都是同类项。

2.例题:例1:判断下列说法是否正确,正确地在括号内打“√”,错误的打“×”。(1)3x与3mx是同类项。()(2)2ab与-5ab是同类项。()(3)3x2y与-yx2是同类项。()(4)5ab2与-2ab2c是同类项。()(5)23与32是同类项。()(这组判断题能使学生清楚地理解同类项的概念,其中第(3)题满足同类项的条件,只要运用乘法交换律即可;第(5)题两个都是常数项属于同类项。一部分学生可能会单看指数不同,误认为不是同类项。)例2:游戏:规则:一学生说出一个单项式后,指定一位同学回答它的两个同类项。要求出题同学尽可能使自己的题目与众不同。可请回答正确的同学向大家介绍写一个单项式同类项的经验,从而揭示同类项的本质特征,透彻理解同类项的概念。(学生自行编题是一种创造性的思维活动,它可以改变一味由教师出题的程式化做法,并由编题学生指定某位同学回答,可使课堂气氛活跃,学生透彻理解知识,这种形式适合初中生的年龄特征。学生通过一定的尝试后,能得出只要改变单项式的系数,即可得到其同类项,实际是抓住了同类项概念中的两个“相同”,从而深刻揭示了概念的内涵。)例3:指出下列多项式中的同类项:(1)3x-2y+1+3y-2x-5;(2)3x2y-2xy2+xy2-yx2。解:(1)3x与-2x是同类项,-2y与3y是同类项,1与-5是同类项。(2)3x2y与-yx2是同类项,-2xy2与xy2是同类项。例4:k取何值时,3xky与-x2y是同类项?解:要使3xky与-x2y是同类项,这两项中x的次数必须相等,即k=2。所以当k=2时,3xky与-x2y是同类项。例5:若把(s+t)、(s-t)分别看作一个整体,指出下面式子中的同类项。(1)(s+t)-(s-t)-(s+t)+(s-t);(2)2(s-t)+3(s-t)2-5(s-t)-8(s-t)2+s-t。解:略。(组织学生口头回答上面三个例题,例3多项式中的同类项可由教师标出不同的下划线,并运用投影仪打出书面解答,为合并同类项作准备。例4让学生明确同类项中相同字母的指数也相同。例5必须把(s-t)、(s+t)分别看作一个整体。)(通过变式训练,可进一步明晰“同类项”的意义,在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、提高识别能力。)6.课堂练习:请写出2ab2c3的一个同类项.你能写出多少个?它本身是自己的同类项吗?(学生先在课本上解答,再回答,若有错误请其他同学及时纠正。)

三、课堂小结:

①理解同类项的概念,会在多项式中找出同类项,会写出一个单项式的同类项,会判断同类项。

②这堂课运用到分类思想和整体思想等数学思想方法。

③学习同类项的用途是为了简化多项式,为下一课的合并同类项打下基础。

(课堂小结不仅仅是知识点的罗列,应使知识条理化、系统化,应上升到数学思想方法的总结与运用.采用学生相互补充完善,教师适时点拨的课堂小结方式,可训练学生的归纳能力和表达能力,提高学生学习的积极性和主动性。)

四、课堂作业:若2amb2m+3n与a2n-3b8的和仍是一个单项式,则m与n的值分别是______

板书设计:

同类项

1.同类项的定义:2.例:………例:……………………………………………………………………………………………………………………学生练习:………………………………………………………………………………………………………………………………………………………………………………………………………………

教学后记:

建立在学生的认知发展水平上,从学生已有的生活经验出发,通过小组讨论,把一些实物进行分类,从而引出同类项这个概念,并通过练习、游戏、合作交流等学习活动让学生更清楚地认识同类项。在整堂课的教学活动中充分体现学生的主体性,向学生提供充分参与数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能,培养学生动手、动口、动脑的能力和学生的合作交流能力。

2.2整式的加减(3)


老师会对课本中的主要教学内容整理到教案课件中,大家开始动笔写自己的教案课件了。是时候对自己教案课件工作做个新的规划了,这样接下来工作才会更上一层楼!你们了解多少教案课件范文呢?下面是小编精心收集整理,为您带来的《2.2整式的加减(3)》,欢迎大家与身边的朋友分享吧!

2.2整式的加减(3)

第6课时

教学内容:

课本第66页至第68页.

教学目标

1.知识与技能

能运用运算律探究去括号法则,并且利用去括号法则将整式化简.

2.过程与方法

经历类比带有括号的有理数的运算,发现去括号时的符号变化的规律,归纳出去括号法则,培养学生观察、分析、归纳能力.

3.情感态度与价值观

培养学生主动探究、合作交流的意识,严谨治学的学习态度.

重、难点与关键

1.重点:去括号法则,准确应用法则将整式化简.

2.难点:括号前面是“-”号去括号时,括号内各项变号容易产生错误.

3.关键:准确理解去括号法则.

教学过程

一、新授

利用合并同类项可以把一个多项式化简,在实际问题中,往往列出的式子含有括号,那么该怎样化简呢?

现在我们来看本章引言中的问题(3):

在格尔木到拉萨路段,如果列车通过冻土地段要t小时,那么它通过非冻土地段的时间为(t-0.5)小时,于是,冻土地段的路程为100t千米,非冻土地段的路程为120(t-0.5)千米,因此,这段铁路全长为

100t+120(t-0.5)千米①

冻土地段与非冻土地段相差

100t-120(t-0.5)千米②

上面的式子①、②都带有括号,它们应如何化简?

思路点拨:教师引导,启发学生类比数的运算,利用分配律.学生练习、交流后,教师归纳:

利用分配律,可以去括号,合并同类项,得:

100t+120(t-0.5)=100t+120t+120×(-0.5)=220t-60

100t-120(t-0.5)=100t-120t-120×(-0.5)=-20t+60

我们知道,化简带有括号的整式,首先应先去括号.

上面两式去括号部分变形分别为:

+120(t-0.5)=+120t-60③-120(t-0.5)=-120+60④

比较③、④两式,你能发现去括号时符号变化的规律吗?

思路点拨:鼓励学生通过观察,试用自己的语言叙述去括号法则,然后教师板书(或用屏幕)展示:

如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;

如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.

特别地,+(x-3)与-(x-3)可以分别看作1与-1分别乘(x-3).

利用分配律,可以将式子中的括号去掉,得:

+(x-3)=x-3(括号没了,括号内的每一项都没有变号)

-(x-3)=-x+3(括号没了,括号内的每一项都改变了符号)

去括号规律要准确理解,去括号应对括号的每一项的符号都予考虑,做到要变都变;要不变,则谁也不变;另外,括号内原有几项去掉括号后仍有几项.

二、范例学习

例1.化简下列各式:

(1)8a+2b+(5a-b);(2)(5a-3b)-3(a2-2b).

思路点拨:讲解时,先让学生判定是哪种类型的去括号,去括号后,要不要变号,括号内的每一项原来是什么符号?去括号时,要同时去掉括号前的符号.为了防止错误,题(2)中-3(a2-2b),先把3乘到括号内,然后再去括号.

解答过程按课本,可由学生口述,教师板书.

例2.两船从同一港口同时出发反向而行,甲船顺水,乙船逆水,两船在静水中的速度都是50千米/时,水流速度是a千米/时.

(1)2小时后两船相距多远?

(2)2小时后甲船比乙船多航行多少千米?

教师操作投影仪,展示例2,学生思考、小组交流,寻求解答思路.

思路点拨:根据船顺水航行的速度=船在静水中的速度+水流速度,船逆水航行速度=船在静水中行驶速度-水流速度.因此,甲船速度为(50+a)千米/时,乙船速度为(50-a)千米/时,2小时后,甲船行程为2(50+a)千米,乙船行程为(50-a)千米.两船从同一洪口同时出发反向而行,所以两船相距等于甲、乙两船行程之和.

解答过程按课本.

去括号时强调:括号内每一项都要乘以2,括号前是负因数时,去掉括号后,括号内每一项都要变号.为了防止出错,可以先用分配律将数字2与括号内的各项相乘,然后再去括号,熟练后,再省去这一步,直接去括号.

三、巩固练习

1.课本第68页练习1、2题.

2.计算:5xy2-[3xy2-(4xy2-2x2y)]+2x2y-xy2.[5xy2]

思路点拨:一般地,先去小括号,再去中括号.

四、课堂小结

去括号是代数式变形中的一种常用方法,去括号时,特别是括号前面是“-”号时,括号连同括号前面的“-”号去掉,括号里的各项都改变符号.去括号规律可以简单记为“-”变“+”不变,要变全都变.当括号前带有数字因数时,这个数字要乘以括号内的每一项,切勿漏乘某些项.

学生作总结后教师强调要求大家应熟记法则,并能根据法则进行去括号运算。法则顺口溜:去括号,看符号:是“+”号,不变号;是“―”号,全变号。

五、作业布置

1.课本第71页习题2.2第2、3、5、8题.

板书设计:

《去括号》

1.去括号的法则:2.例:………例:……………………………………………………………………………………………………………………学生练习:…………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………

教学后记:

①通过回顾已经学过的知识,通过观察、比较,得到了整式的去括号法则。这样的通过实例,设计起点低,学生学起来更自然,对新知识更容易接受。

②在总结出去括号法则后,又给出了一个顺口溜,这是考虑到学生年龄小,顺口溜更便于记忆,而且也增加了学习的情趣。

③安排了例1到例5的一个组题,进行由浅入深、循序渐进的训练,以使学生更好地全方位地掌握去括号法则?另外,还安排了某些变式训练,既能让学生进一步熟悉去括号法则,又训练了他们的逆向思维。

整式的加减(2)


教案课件是每个老师工作中上课需要准备的东西,是认真规划好自己教案课件的时候了。只有规划好了教案课件新的工作计划,才能促进我们的工作进一步发展!你们知道多少范文适合教案课件?考虑到您的需要,小编特地编辑了“整式的加减(2)”,供您参考,希望能够帮助到大家。

数学课时授课计划
授课时间:2012年月日执教者:
课题4.6整式的加减课时第2课时课型新授课教学设计者
教学
目标①过实例体验整式加减的意义
②掌握整式的简单加减运算
③会运用整式的加减解决简单的实际问题

教学
重点本节的教学重点是整式的加减运算。教学
难点例3的问题情境比较复杂,还涉及含有字母的代数式的大小比较,是本节教学的难点
教学
方法讲练法教学
用具
教学过程集体备课稿个案补充
一、新课引入
如图,甲、乙两个零件截面的面积哪一个比较大?大多少?把结果填在下面的横线上。
a1.5a

vb2b
b
甲乙
截面甲的面积是
截面乙的面积是
甲、乙的、两个截面面积的差是()—()=
本引例让学生思考后回答,教师引导,让学生知道:1、作差法是比较大小的一种很好的方法;2、在解决这个实际问题时,将问题转化成两个整式的差,从而得以解决;3、整式的加减可以归结为去括号和合并同类项。
二、讲授新课
例1求整式3x+4y与2x-2y-1的和
教师教会学生1、列式(注意整体性);2、去括号(特别是减法);3、有同类项就合并同类项(至少不能合并为止)。
变式练习:求3x+4y与2x-2y-1的差(学生做,两个学生板演)。
三、课堂练习(课本“做一做”)
1、填空:
(1)3x与-5y的和是,3x与-5y的差是;
(2)a-b,b-c,c-a三个多项式的和是。
2、先化简,再求值:3x^2-[x^2-2(3x-x^2)],其中x=-7。
四、典例分析
例2小红家的收入分农业收入和其他收入两部分,今年农业收入是其他收入的1.5倍。预计明年农业收入将减少20%,而其他收入将增加40%,那么预计小红家明年的全年总收入是增加,还是减少?
这个例题是本节课的难带内,教师可以设置下列问题:
1、分析题目的已知量与未知量,及相互间的关系;
2、选哪个未知量用字母来表示比较方?其他未知量怎么表示?
3、填空:设小红家今年其他收入为a元,则
(1)今年农业收入为元;
(2)预计明年农业收入为元;
(3)预计明年其他收入为元;
(4)今年全年总收入为元;
(5)预计明年全年总收入为元。
4、增加还是减少?怎么判断?
教师总结:在解决实际问题时,我们经常把其中的一个量或几个量先用字母表示,然后列出数式,这是运用数学解决实际问题的一个重要策略。
五、教学反馈(课本“课内练习”)
1、计算:
(1)3/2x^2-(-1/2x^2)+(-2x^2);
(2)2(x-3x^2+1)-3(2x^2-x-2).
2、先化简,再求值:
(1)5x-[3x-x(2x-3)],其中x=1/2;
(2)5(3a^2b-ab^2)—(ab^2+3a^2b),其中a=1/2,b=-1。
3,如果某三角形第一条边长为(2a-b)cm,第二条边比第一条边长(a+b)cm,第三条边比第一条边的2倍少bcm,第三条边比第一条边的2倍少bcm,求这个三角形的周长。
六.探究活动
猜数游戏:游戏甲方把自己的出生年月份乘以2,加10,再把和乘5,再加上他家的人口数(小于10),将这样所得的结果告诉游戏乙方,乙方就能猜出甲方出生于何月,及他家有几口人。
本题有较大的难度,采取合作学习这种方式进行,启发学生利用本节中例2的解题策略及思想方法来分析这个题目。
教师可作以下工作:1、学生做甲方,教师做乙方猜测,让学生明白其中的奥秘(甲方告诉的结果的个位数字就是他家的人口数,结果减去人口数再减去50后除以10得到他的出生月份);2、组内积极展开游戏,并讨论这个游戏的原理是什么。(设甲方出生月份为x,家中人口数为y人,甲方告诉的结果是k(已知数),则结果k=5(2ax+10)+y=10x+50+y,所以结果k的个位数字是y,则(k-y-50)/10=x)。
七、小结、布置作业
教学
反思
改进
建议

文章来源:http://m.jab88.com/j/49542.html

更多

最新更新

更多