88教案网

微积分基本定理导学案

一名爱岗敬业的教师要充分考虑学生的理解性,作为高中教师就要精心准备好合适的教案。教案可以更好的帮助学生们打好基础,帮助高中教师有计划有步骤有质量的完成教学任务。优秀有创意的高中教案要怎样写呢?下面是小编帮大家编辑的《微积分基本定理导学案》,希望能为您提供更多的参考。

微积分基本定理导学案
一、教学目标
根据学生的认知结构特征以及教材内容的特点,依据新课程标准要求,确定本节课的教学目标如下:
(1)知识与技能目标:
1、了解微积分基本定理的含义;
2、会用牛顿-莱布尼兹公式求简单的定积分.
(2)过程与方法目标:通过直观实例体会用微积分基本定理求定积分的方法.
(3)情感、态度与价值观目标:
1、学会事物间的相互转化、对立统一的辩证关系,提高理性思维能力;
2、了解微积分的科学价值、文化价值.
3、教学重点、难点
重点:使学生直观了解微积分基本定理的含义,并能正确运用基本定理计算简单的定积分.
难点:了解微积分基本定理的含义.
二、教学设计
复习:1.定积分定义:
其中--积分号,-积分上限,-积分下限,-被积函数,-积分变量,-积分区间
2.定积分的几何意义:一般情况下,定积分的几何意义是介于轴、函数的图形以及直线之间各部分面积的代数和,在轴上方的面积取正号,在轴下方的面积去负号.
曲边图形面积:;
变速运动路程:;
3.定积分的性质:
性质1
性质2
性质3
性质4
二.引入新课:
计算(1)(2)
上面用定积分定义及几何意义计算定积分,比较复杂不是求定积分的一般方法。我们必须寻求计算定积分的比较一般的方法。
问题:
设一物体沿直线作变速运动,在时刻t时物体所在位置为S(t),速度为v(t)(),则物体在时间间隔[a,b]内经过的路程可用速度函数表示为。
另一方面,这段路程还可以通过位置函数S(t)在[a,b]上的增量S(b)-S(a)来表达,即s===S(b)-S(a)而。
推广:
微积分基本定理:如果函数是上的连续函数的任意一个原函数,则
为了方便起见,还常用表示,即
该式称之为微积分基本公式或牛顿—莱布尼兹公式。它指出了求连续函数定积分的一般方法,把求定积分的问题,转化成求原函数的问题,是微分学与积分学之间联系的桥梁。它不仅揭示了导数和定积分之间的内在联系,同时也提供计算定积分的一种有效方法,为后面的学习奠定了基础。因此它在教材中处于极其重要的地位,起到了承上启下的作用,不仅如此,它甚至给微积分学的发展带来了深远的影响,是微积分学中最重要最辉煌的成果。
例题1:计算
练习:

例2.计算定积分
练习
回顾:基本初等函数的导数公式

函数f(x)c
Sinxcosx
lnx
导函数f′(x)0n
cosx-sinx
新知:基本初等函数的原函数公式

被积函数f(x)c
sinxcosx
一个原函数F(x)cx
-cosxsinxln

课堂小结:
1.本节课借助于变速运动物体的速度与路程的关系以及图形得出了特殊情况下的牛顿-莱布尼兹公式.成立,进而推广到了一般的函数,得出了微积分基本定理,得到了一种求定积分的简便方法,运用这种方法的关键是找到被积函数的原函数,这就要求大家前面的求导数的知识比较熟练,希望,不明白的同学,回头来多复习!
2.微积分基本定理揭示了导数和定积分之间的内在联系,同时它也提供了计算定积分的一种有效方法.微积分基本定理是微积分学中最重要的定理。m.jab88.Com

相关知识

微积分基本定理导学案及练习题


一、基础过关
1.已知物体做变速直线运动的位移函数s=s(t),那么下列命题正确的是()
①它在时间段[a,b]内的位移是s=s(t)|ba;
②它在某一时刻t=t0时,瞬时速度是v=s′(t0);
③它在时间段[a,b]内的位移是s=limn→∞i=1nb-ans′(ξi);
④它在时间段[a,b]内的位移是s=bas′(t)dt.
A.①B.①②
C.①②④D.①②③④
2.若F′(x)=x2,则F(x)的解析式不正确的是()
A.F(x)=13x3B.F(x)=x3C.F(x)=13x3+1D.F(x)=13x3+c(c为常数)
3.10(ex+2x)dx等于()
A.1B.e-1C.eD.e+1
4.已知f(x)=x2,-1≤x≤0,1,0x≤1,则1-1f(x)dx的值为()
A.32B.43C.23D.-23
5.π20sin2x2dx等于()
A.π4B.π2-1C.2D.π-24
6.1-1|x|dx等于()
A.1-1xdx
B.1-1(-x)dx
C.0-1(-x)dx+10xdx
D.0-1xdx+10(-x)dx
二、能力提升
7.设f(x)=lgx,x0x+?a03t2dt,x≤0,若f[f(1)]=1,则a=________.
8.设函数f(x)=ax2+c(a≠0),若10f(x)dx=f(x0),0≤x0≤1,则x0的值为________.
9.设f(x)是一次函数,且10f(x)dx=5,10xf(x)dx=176,则f(x)的解析式为________.
10.计算下列定积分:
(1)21(ex+1x)dx;(2)91x(1+x)dx;(3)200(-0.05e-0.05x+1)dx;(4)211xx+1dx.

11.若函数f(x)=x3,x∈[0,1],x,x∈1,2],2x,x∈2,3].求30f(x)dx的值.

12.已知f(a)=10(2ax2-a2x)dx,求f(a)的最大值.

定积分的简单应用导学案


一位优秀的教师不打无准备之仗,会提前做好准备,高中教师要准备好教案为之后的教学做准备。教案可以让学生们充分体会到学习的快乐,使高中教师有一个简单易懂的教学思路。您知道高中教案应该要怎么下笔吗?以下是小编收集整理的“定积分的简单应用导学案”,供您参考,希望能够帮助到大家。

定积分的简单应用导学案
金台高级中学王庆
学习目标:通过求解平面图形的体积了解定积分的应用。
学习重点:定积分在几何中的应用
学习难点:求简单几何体的体积.
学法指导:探析归纳
一、课前自主学习(阅读课本内容找出问题答案).
1.定积分定义.
2旋转几何体的体积是根据旋转体的一个,再进行求出来的.
3解决的关键(1)找准旋转体
(2)通过准确建系,找出坐标,确定.
二、课堂合作探究:
1.给定直角边为1的等腰直角三角形,绕一条直角边旋转一周,得到一个圆锥体,求它的体积.

2.一个半径为1的球可以看成是由曲线与x轴所围成的区域(半圆)绕x轴旋转一周得到的,求球的体积.

三、当堂检测.
1.将由直线y=x,x=1,x=2围成的平面图形绕x轴旋转一周,得到一
个圆台,利用定积分求该圆台的体积.

2.求由直线,x轴,y轴以及直线x=1围成的区域绕x轴旋转一周得到的旋转体的体积.

3.求由双曲线,直线x=1,x=2围成的平面图形绕x轴旋转一周,得到的旋转体的体积.

四、巩固练习.
1.将由曲线y=x和所围成的平面图形绕x轴旋转一周,求所得旋转体的体积

2.求半椭圆绕x轴旋转一周所得到的旋转体的
体积.

3.求由曲线,直线x=1以及坐标轴围成的平面图形绕x轴旋转一周,得到的旋转体的体积.

五、课堂小结:
※学习小结:1.定积分应用之二求旋转几何体的体积。
2.旋转几何体体积的求法。
六、我的收获:
七、我的疑惑:

《正弦定理》导学案


《正弦定理》导学案

教学目标:
1.让学生从已有的几何知识出发,通过对任意三角形边角关系的探索,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,实验,猜想,验证,证明,由特殊到一般归纳出正弦定理,掌握正弦定理的内容及其证明方法,理解三角形面积公式,并学会运用正弦定理解决解斜三角形的两类基本问题。
2.通过对实际问题的探索,培养学生观察问题、提出问题、分析问题、解决问题的能力,增强学生的协作能力和交流能力,发展学生的创新意识,培养创造性思维的能力。
3.通过学生自主探索、合作交流,亲身体验数学规律的发现,培养学生勇于探索、善于发现、不畏艰辛的创新品质,增强学习的成功心理,激发学习数学的兴趣。
4.培养学生合情合理探索数学规律的数学思想方法,通过平面几何、三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。
五、教学重点与难点
教学重点:正弦定理的发现与证明;正弦定理的简单应用。
教学难点:正弦定理的猜想提出过程。
教学准备:制作多媒体课件,学生准备计算器,直尺,量角器。
六、教学过程:
(一)结合实例,激发动机
师生活动:
师:每天我们都在科技楼里学习,对科技楼熟悉吗?
生:当然熟悉。
师:那大家知道科技楼有多高吗?
学生不知道。激起学生兴趣!
师:给大家一个皮尺和测角仪,你能测出楼的高度吗?
学生思考片刻,教师引导。
生1:在楼的旁边取一个观测点C,再用一个标杆,利用三角形相似。
师:方法可行吗?
生2:B点位置在楼内不确定,故BC长度无法测量,一次测量不行。
师:你有什么想法?
生2:可以再取一个观测点D.
师:多次测量取得数据,为了能与上次数据联系,我们应把D点取在什么位置?
生2:向前或向后
师:好,模型如图(2):我们设正弦定理教学设计,正弦定理教学设计,CD=10m,那么我们能计算出AB吗?
生3:由正弦定理教学设计求出AB。
师:很好,我们可否换个角度,在正弦定理教学设计中,能求出AD,也就求出了AB。在正弦定理教学设计中,已知两角,也就相当于知道了三个角,和其中一个角的对边,要求出AD,就需要我们来研究三角形中的边角关系。
师:探究一般三角形中的边角关系,我们应从我们最熟悉的特殊三角形入手!
生4:直角三角形。
师:直角三角形的边与角之间存在怎样的关系?
生5:思考交流得出,如图4,在Rt正弦定理教学设计ABC中,设BC=a,AC=b,AB=c,
则有正弦定理教学设计,正弦定理教学设计,又正弦定理教学设计,
则正弦定理教学设计
从而在直角三角形ABC中,正弦定理教学设计
(三)证明猜想,得出定理
师生活动:
教师:那么,在斜三角形中也成立吗?
用几何画板演示,用多媒体的手段对结论加以验证!
但特殊不能代替一般,具体不能代替抽象,这个结果还需要严格的证明才能成立,如何证明哪?前面探索过程对我们有没有启发?
学生分组讨论,每组派一个代表总结。(以下证明过程,根据学生回答情况进行叙述)
教师:我们把这条性质称为正弦定理:在一个三角形中,各边和它所对角的正弦的比相等.
师:我们在前面学习了平面向量,向量是解决数学问题的有力工具,而且和向量的联系紧密,那么同学们能否用向量的知识证明正弦定理?
学生要思考一下。
师:观察式子结构,里面有边及其边的夹角,与向量的哪一部分知识有关?
生7:向量的数量积
师:那向量的数量积的表达式是什么?
生8:正弦定理教学设计
师:表达式里是角的余弦,我们要证明的式子里是角的正弦。
生:利用诱导公式。
师:式子变形为:正弦定理教学设计,再
师:很好,那我们就用向量来证明正弦定理,同学们请试一试!
学生讨论合作,就可以解决这个问题
教师:由于时间有限,对正弦定理的证明到此为止,有兴趣的同学下去再探索。
设计意图:经历证明猜想的过程,进一步引导启发学生利用已有的数学知识论证猜想,力图让学生体验数学的学习过程。
(三)利用定理,解决引例
师生活动:
教师:现在大家再用正弦定理解决引例中提出的问题。
学生:马上得出
在正弦定理教学设计中,正弦定理教学设计
正弦定理教学设计
(四)了解解三角形概念
设计意图:让学生了解解三角形概念,形成知识的完整性
教师:一般地,把三角形的三个角正弦定理教学设计、正弦定理教学设计、正弦定理教学设计和它们的对边正弦定理教学设计、正弦定理教学设计、正弦定理教学设计叫做三角形的元素,已知,三角形的几个元素,求其他元素的过程叫做解三角形。
设计意图:利用正弦定理,重新解决引例,让学生体会用新的知识,新的定理,解决问题更方便,更简单,激发学生不断探索新知识的欲望。
(五)运用定理,解决例题
师生活动:
教师:引导学生从分析方程思想分析正弦定理可以解决的问题。
学生:讨论正弦定理可以解决的问题类型:
①如果已知三角形的任意两个角与一边,求三角形的另一角和另两边,如正弦定理教学设计;
②如果已知三角形任意两边与其中一边的对角,求另一边与另两角,如正弦定理教学设计。
师生:例1的处理,先让学生思考回答解题思路,教师板书,让学生思考主要是突出主体,教师板书的目的是规范解题步骤。
例1:在正弦定理教学设计中,已知正弦定理教学设计,正弦定理教学设计,正弦定理教学设计,解三角形。
分析“已知三角形中两角及一边,求其他元素”,第一步可由三角形内角和为正弦定理教学设计求出第三个角∠C,再由正弦定理求其他两边。
例2:在正弦定理教学设计中,已知正弦定理教学设计,正弦定理教学设计,正弦定理教学设计,解三角形。
例2的处理,目的是让学生掌握分类讨论的数学思想,可先让中等学生讲解解题思路,其他同学补充交流
(七)尝试小结:
教师:提示引导学生总结本节课的主要内容。
学生:思考交流,归纳总结。
师生:让学生尝试小结,教师及时补充,要体现:
(1)正弦定理的内容(正弦定理教学设计)及其证明思想方法。
(2)正弦定理的应用范围:①已知三角形中两角及一边,求其他元素;②已知三角形中两边和其中一边所对的角,求其他元素。
(3)分类讨论的数学思想。
设计意图:通过学生的总结,培养学生的归纳总结能力和语言表达能力。

平面向量基本定理


每个老师不可缺少的课件是教案课件,大家在认真写教案课件了。只有写好教案课件计划,可以更好完成工作任务!有哪些好的范文适合教案课件的?以下是小编为大家精心整理的“平面向量基本定理”,希望能为您提供更多的参考。

课时5平面向量基本定理
【学习目标】
1.掌握平面向量的基本定理,能用两个不共线向量表示一个向量;或一个向量分解为两个向量。
2.能应用平面向量基本定理解决一些几何问题。
【知识梳理】
若,是不共线向量,是平面内任一向量
在平面内取一点O,作=,=,=,使=λ1=λ2
==+=λ1+λ2
得平面向量基本定理:

注意:1、必须不共线,且它是这一平面内所有向量的一组基底
2这个定理也叫共面向量定理
3λ1,λ2是被,,唯一确定的实数。
【例题选讲】
1.如图,ABCD是平行四边形,对角线AC,BD交于M,,,试用基底、表示。
2.设、是平面内一组基底,如果=3-2,=4+,=8-9,求证:A,B,D三点共线。

3.设、是平面内一组基底,如果=2+k,=--3,=2-,若A,B,D三点共线,求实数k的值。

4.中,,DE//BC,与边AC相交于点E,中线AM与DE交于点N,如图,,,试用、表示。

【归纳反思】
1.平面向量基本定理是平面向量坐标表示的基础,它说明同一平面内的任一向量都可以表示为其他两个不共线向量的线性组合。
2.在解具体问题时适当地选取基底,使其它向量能够用基底来表示,选择了两个不共线地向量,平面内的任何一个向量都可以用唯一表示,这样几何问题就可以转化为代数问题,转化为只含的代数运算。
【课内练习】
1.下面三种说法,正确的是
(1)一个平面内只有一对不共线的向量可作为表示该平面所有向量的基底;
(2)一个平面内有无数对不共线的向量可作为表示该平面所有向量的基底;
(3)零向量不可为基底中的向量;
2.如果、是平面内一组基底,,那么下列命题中正确的是
(1)若实数m,n,使m+n=,则m=n=0;
(2)空间任一向量可以表示为=m+n,这里m,n是实数;
(3)对实数m,n,向量m+n不一定在平面;
(4)对平面内的任一向量,使=m+n的实数m,n有无数组。
3.若G是的重心,D、E、F分别是AB、BC、CA的中点,则=
4.如图,在中,AM:AB=1:3,AN:AC=1:4,BN与CM交于点P,设,试用,表示。

5.设,,,求证:A、B、D三点共线。

【巩固提高】
1.设是平面内所有向量的一组基底,则下面四组中不能作为基底的是
A+和-B3-2和-6+4
C+2和+2D和+
2.若,,,则=
A+B+C+D+
3.平面直角坐标系中,O为原点,A(3,1),B(-1,3),点C满足,其中,且=1,则点C的轨迹方程为
4.O是平面上一定点,A,B,C是平面上不共线的三个点,动点P满足
,则P的轨迹一定通过的心
5.若点D在的边BC上,且=,则3m+n的值为
6.设=+5,=-2+8,=3(-),求证:A、B、D三点共线。

7.在图中,对于平行四边形ABCD,点M是AB的中点,点N在BD上,且BN=BD,求证:M,N,C三点共线。

8.已知=5+2,=6+y,,,是一组基底,求y的值。

9.如图,在中,D、E分别是线段AC的两个四等份点,点F是线段BC的中点,设,,试用,为基底表示向量。

问题统计与分析

文章来源:http://m.jab88.com/j/38149.html

更多

最新更新

更多