88教案网

人教版七年级数学上册全册学案

为了促进学生掌握上课知识点,老师需要提前准备教案,大家应该在准备教案课件了。用心制定好教案课件的工作计划,这对我们接下来发展有着重要的意义!有没有出色的范文是关于教案课件的?为满足您的需求,小编特地编辑了“人教版七年级数学上册全册学案”,供大家借鉴和使用,希望大家分享!

第一章有理数
课题:1.1正数和负数(1)
【学习目标】:1、掌握正数和负数概念;
2、会区分两种不同意义的量,会用符号表示正数和负数;
3、体验数学发展是生活实际的需要,激发学生学习数学的兴趣。
【重点难点】:正数和负数概念

【导学指导】:
一、知识链接:
1、小学里学过哪些数请写出来:、、。
2、阅读课本P1和P2三幅图(重点是三个例子,边阅读边思考)
回答下面提出的问题:
3、在生活中,仅有整数和分数够用了吗?有没有比0小的数?如果有,那叫做什么数?

二、自主学习
1、正数与负数的产生
(1)、生活中具有相反意义的量
如:运进5吨与运出3吨;上升7米与下降8米;向东50米与向西47米等都是生活中遇到的具有相反意义的量。
请你也举一个具有相反意义量的例子:。
(2)负数的产生同样是生活和生产的需要

2、正数和负数的表示方法
(1)一般地,我们把上升、运进、零上、收入、前进、高出等规定为正的,而与它相反的量,如:下降、运出、零下、支出、后退、低于等规定为负的。正的量就用小学里学过的数表示,有时也在它前面放上一个“+”(读作正)号,如前面的5、7、50;负的量用小学学过的数前面放上“—”(读作负)号来表示,如上面的—3、—8、—47。
(2)活动两个同学为一组,一同学任意说意义相反的两个量,另一个同学用正负数表示.
(3)阅读P3练习前的内容
3、正数、负数的概念
1)大于0的数叫做,小于0的数叫做。
2)正数是大于0的数,负数是的数,0既不是正数也不是负数。

【课堂练习】:

1.P3第一题到第四题(直接做在课本上)。

2.小明的姐姐在银行工作,她把存入3万元记作+3万元,那么支取2万元应记作_______,-4万元表示________________。
3.已知下列各数:,,3.14,+3065,0,-239;
则正数有_____________________;负数有____________________。
4.下列结论中正确的是…………………………………………()
A.0既是正数,又是负数B.O是最小的正数
C.0是最大的负数D.0既不是正数,也不是负数
5.给出下列各数:-3,0,+5,,+3.1,,2004,+2010;
其中是负数的有……………………………………………………()
A.2个B.3个C.4个D.5个
【要点归纳】:
正数、负数的概念:
(1)大于0的数叫做,小于0的数叫做。
(2)正数是大于0的数,负数是的数,0既不是正数也不是负数。

【拓展训练】:
1.零下15℃,表示为_________,比O℃低4℃的温度是_________。
2.地图上标有甲地海拔高度30米,乙地海拔高度为20米,丙地海拔高度为-5米,其中最高处为_______地,最低处为_______地.
3.“甲比乙大-3岁”表示的意义是______________________。
4.如果海平面的高度为0米,一潜水艇在海水下40米处航行,一条鲨鱼在潜水艇上方10米处游动,试用正负数分别表示潜水艇和鲨鱼的高度。

【总结反思】:

课题:1.1正数和负数(2)
【学习目标】:
1、会用正、负数表示具有相反意义的量;
2、通过正、负数学习,培养学生应用数学知识的意识;

【学习重点】:用正、负数表示具有相反意义的量;
【学习难点】:实际问题中的数量关系;
【导学指导】
一、知识链接.
通过上节课的学习,我们知道在实际生产和生活中存在着两种不同意义的量,为了区分它们,我们用__________和___________来分别表示它们。

问题:“零”为什么即不是正数也不是负数呢?
引导学生思考讨论,借助举例说明。
参考例子:温度表示中的零上,零下和零度。

二.自主探究

问题:(课本第4页例题)
先引导学生分析,再让学生独立完成
例(1)一个月内,小明体重增加2kg,小华体重减少1kg,小强体重无变化,写出他们这个月的体重增长值;
2)2001年下列国家的商品进出口总额比上一年的变化情况是:
美国减少6.4%,德国增长1.3%,
法国减少2.4%,英国减少3.5%,
意大利增长0.2%,中国增长7.5%.
写出这些国家2001年商品进出口总额的增长率;

解:(1)这个月小明体重增长__________,小华体重增长_________,小强体重增长_________;

2)六个国家2001年商品进出口总额的增长率:
美国___________德国__________
法国___________英国__________
意大利__________中国__________

【课堂练习】
1.课本第4页练习
2、阅读思考
(课本第8页)用正负数表示加工允许误差;
问题:直径为30.032mm和直径为29.97的零件是否合格?
【要点归纳】
1、本节课你有那些收获?
2、还有没解决的问题吗?

【拓展训练】

1)甲冷库的温度是-12°C,乙冷库的温度比甲冷酷低5°C,则乙冷库的温度是;

2)一种零件的内径尺寸在图纸上是9±0.05(单位:mm),表示这种零件的标准尺寸是9mm,加工要求最大不超过标准尺寸多少?最小不小于标准尺寸多少?
课题:1.2.1有理数
【学习目标】:
1、掌握有理数的概念,会对有理数按一定标准进行分类,培养分类能力;
2、了解分类的标准与集合的含义;
3、体验分类是数学上常用的处理问题方法;
【学习重点】:正确理解有理数的概念
【学习难点】:正确理解分类的标准和按照一定标准分类
【导学指导】
一、温故知新
1、通过两节课的学习,,那么你能写出3个不同类的数吗?.(4名学生板书)

__________________________________________
二、自主探究
问题1:观察黑板上的12个数,我们将这4位同学所写的数做一下分类;
该分为几类,又该怎样分呢?先分组讨论交流,再写出来
分为类,分别是:

引导归纳:
统称为整数,统称为有理数。
问题2:我们是否可以把上述数分为两类?如果可以,应分为哪两类?
师生共同交流、归纳
2、正数集合与负数集合
所有的正数组成集合,所有的负数组成集合

【课堂练习】
1、P8练习(做在课本上)
2.把下列各数填入它所属于的集合的圈内:
15,-,-5,,,0.1,-5.32,-80,123,2.333;
正整数集合负整数集合

正分数集合负分数集合

【要点归纳】:
有理数分类
或者
【拓展训练】

1、下列说法中不正确的是……………………………………………()
A.-3.14既是负数,分数,也是有理数
B.0既不是正数,也不是负数,但是整数
c.-2000既是负数,也是整数,但不是有理数
D.O是正数和负数的分界
2、在下表适当的空格里画上“√”号
有理数整数分数正整数负分数自然数
-8是
-2.25是

课题:1.2.2数轴
【学习目标】:
1、掌握数轴概念,理解数轴上的点和有理数的对应关系;
2、会正确地画出数轴,利用数轴上的点表示有理数;
3、领会数形结合的重要思想方法;
【重点难点】:数轴的概念与用数轴上的点表示有理数;
【导学指导】
一、知识链接
1、观察下面的温度计,读出温度.分别是°C、°C、°C;

2、在一条东西向的马路上,有一个汽车站,汽车站东3m和7.5m处分别有一棵柳树
和一棵杨树,汽车站西3m和4.8m处分别有一棵槐树和一根电线杆,试画图表示这一
情境?

汽车站
请同学们分小组讨论,交流合作,动手操作

二、自主探究
1、由上面的两个问题,你受到了什么启发?能用直线上的点来表示有理数吗?

2、自己动手操作,看看可以表示有理数的直线必须满足什么条件?
引导归纳:
1)、画数轴需要三个条件,即、方向和长度。
2)数轴
【课堂练习】
1、请你画好一条数轴

2、利用上面的数轴表示下列有理数
1.5,—2,2,—2.5,,0;
3、写出数轴上点A,B,C,D,E所表示的数:
三、寻找规律
1、观察上面数轴,哪些数在原点的左边,哪些数在原点的右边,由此你有什么发现?

2、每个数到原点的距离是多少?由此你又有什么发现?

3、进一步引导学生完成P9归纳

【要点归纳】:
画数轴需要三个条件是什么?

【拓展练习】
1、在数轴上,表示数-3,2.6,,0,,,-1的点中,在原点左边的点有个。
2、在数轴上点A表示-4,如果把原点O向正方向移动1个单位,那么在新数轴上点A表示的数是()
A.-5,B.-4C.-3D.-2
3、你觉得数轴上的点表示数的大小与点的位置有什么关系?

课题:1.2.3相反数
【学习目标】:
1、掌握相反数的意义;
2、掌握求一个已知数的相反数;
3、体验数形结合思想;
【学习重点】:求一个已知数的相反数;
【学习难点】:根据相反数的意义化简符号。
【导学指导】
一、温故知新
1、数轴的三要素是什么?在下面画出一条数轴:

2、在上面的数轴上描出表示5、—2、—5、+2这四个数的点。
3、观察上图并填空:数轴上与原点的距离是2的点有个,这些点表示的数是;与原点的距离是5的点有个,这些点表示的数是。

从上面问题可以看出,一般地,如果a是一个正数,那么数轴上与原点的距离是a的点有两个,即一个表示a,另一个是,它们分别在原点的左边和右边,我们说,这两点关于原点对称。

二、自主学习
自学课本第10、11的内容并填空:

1、相反数的概念
像2和—2、5和—5、3和—3这样,只有不同的两个数叫做互为相反数。
2、练习
(1)、2.5的相反数是,—和是互为相反数,的相反数是2010;
(2)、a和互为相反数,也就是说,—a是的相反数
例如a=7时,—a=—7,即7的相反数是—7.
a=—5时,—a=—(—5),“—(—5)”读作“-5的相反数”,而—5的相反数是5,所以,
—(—5)=5
你发现了吗,在一个数的前面添上一个“—”号,这个数就成了原数的
(3)简化符号:-(+0.75)=,-(-68)=,
-(-0.5)=,-(+3.8)=;
(4)、0的相反数是.
3、数轴上表示相反数的两个点和原点的距离。

【课堂练习】P11第1、2、3题
【要点归纳】:
1、本节课你有那些收获?
2、还有没解决的问题吗?

【拓展训练】
1.在数轴上标出3,-1.5,0各数与它们的相反数。

2.-1.6的相反数是,2x的相反数是,a-b的相反数是;
3.相反数等于它本身的数是,相反数大于它本身的数是;
4.填空:
(1)如果a=-13,那么-a=;
(2)如果-a=-5.4,那么a=;
(3)如果-x=-6,那么x=;
(4)-x=9,那么x=;
5.数轴上表示互为相反数的两个数的点之间的距离为10,求这两个数。

课题:1.2.4绝对值
【学习目标】:
1、理解、掌握绝对值概念.体会绝对值的作用与意义;
2、掌握求一个已知数的绝对值和有理数大小比较的方法;
3、体验运用直观知识解决数学问题的成功;

【重点难点】:绝对值的概念与两个负数的大小比较
【导学指导】
一、知识链接
问题:如下图
小红和小明从同一处O出发,分别向东、西方向行走10米,他们行走的路线(填相同或不相同),他们行走的距离(即路程远近)
二、自主探究
1、由上问题可以知道,10到原点的距离是,—10到原点的距离也是
到原点的距离等于10的数有个,它们的关系是一对。
这时我们就说10的绝对值是10,—10的绝对值也是10;
例如,—3.8的绝对值是3.8;17的绝对值是17;—6的绝对值是
一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记作∣a∣。
2、练习
(1)、式子∣-5.7∣表示的意义是。
(2)、—2的绝对值表示它离开原点的距离是个单位,记作;
(3)、∣24∣=.∣—3.1∣=,∣—∣=,∣0∣=;
3、思考、交流、归纳
由绝对值的定义可知:一个正数的绝对值是;一个负数的绝对值是它的;
0的绝对值是。

用式子表示就是:
1)、当a是正数(即a0)时,∣a∣=;
2)、当a是负数(即a0)时,∣a∣=;
3)、当a=0时,∣a∣=;

4、随堂练习P12第1、2大题(直接做在课本上)

5、阅读思考,发现新知
阅读P12问题—P13第12行,你有什么发现吗?
在数轴上表示的两个数,右边的数总要左边的数。
也就是:
1)、正数0,负数0,正数大于负数。
2)、两个负数,绝对值大的。
【课堂练习】:
1、自学例题P13(教师指导)

2、比较下列各对数的大小:—3和—5;—2.5和—∣—2.25∣
【要点归纳】:
一个正数的绝对值是;一个负数的绝对值是它的;
0的绝对值是。

【拓展练习】
1.如果,则的取值范围是…………………………()
A.>OB.≥OC.≤OD.<O
2.,则;,则.
3.如果,则,.
4.绝对值等于其相反数的数一定是…………………………………()
A.负数B.正数C.负数或零D.正数或零

5.给出下列说法:
①互为相反数的两个数绝对值相等;②绝对值等于本身的数只有正数;
③不相等的两个数绝对值不相等;④绝对值相等的两数一定相等.
其中正确的有…………………………………………………()
A.0个B.1个C.2个D.3个
课题:1.3.1有理数的加法(1)
【学习目标】:
1、理解有理数加法意义,掌握有理数加法法则,会正确进行有理数加法运算;
2、会利用有理数加法运算解决简单的实际问题;
【学习重点】:有理数加法法则
【学习难点】:异号两数相加
【导学指导】
一、知识链接
1、正有理数及0的加法运算,小学已经学过,然而实际问题中做加法运算的数有可能超出正数范围。例如,足球循环赛中,可以把进球数记为正数,失球数记为负数,它们的和叫做净胜球数。如果,红队进4个球,失2个球;蓝队进1个球,失1个球。
于是红队的净胜球数为4+(-2),
蓝队的净胜球数为1+(-1)。
这里用到正数和负数的加法。那么,怎样计算4+(-2)
下面我们一起借助数轴来讨论有理数的加法。
二、自主探究
1、借助数轴来讨论有理数的加法
1)如果规定向东为正,向西为负,那么一个人向东走4米,再向东走2米,两次共向东走了米,这个问题用算式表示就是:
2)如果规定向东为正,向西为负,那么一个人向西走2米,再向西走4米,两
次共向西走多少米?很明显,两次共向西走了米。
这个问题用算式表示就是:
如图所示:
3)如果向西走2米,再向东走4米,那么两次运动后,这个人从起点向东走了米,写成算式就是这个问题用数轴表示如下图所示:

4)利用数轴,求以下情况时这个人两次运动的结果:
①先向东走3米,再向西走5米,这个人从起点向()走了()米;
②先向东走5米,再向西走5米,这个人从起点向()走了()米;
③先向西走5米,再向东走5米,这个人从起点向()走了()米。
写出这三种情况运动结果的算式
5)如果这个人第一秒向东(或向西)走5米,第二秒原地不动,两秒后这个人
从起点向东(或向西)运动了米。写成算式就是
2、师生归纳两个有理数相加的几种情况。
3.你能从以上几个算式中发现有理数加法的运算法则吗?
有理数加法法则
(1)同号的两数相加,取的符号,并把相加。
(2)绝对值不相等的异号两数相加,取的加数的符号,并用较大的绝对值较小的绝对值.互为相反数的两个数相加得;
(3)一个数同0相加,仍得。
4.新知应用
例1计算(自己动动手吧!)
(1)(-3)+(-9);(2)(-4.7)+3.9.

例2(自己独立完成)
【课堂练习】:
1.填空:(口答)
(1)(-4)+(-6)=;(2)3+(-8)=;
(4)7+(-7)=;(4)(-9)+1=;
(5)(-6)+0=;(6)0+(-3)=;
2.课本P18第1、2题
【要点归纳】:
有理数加法法则:

【拓展训练】:
1.判断题:
(1)两个负数的和一定是负数;
(2)绝对值相等的两个数的和等于零;
(3)若两个有理数相加时的和为负数,这两个有理数一定都是负数;
(4)若两个有理数相加时的和为正数,这两个有理数一定都是正数。

2.已知│a│=8,│b│=2;
(1)当a、b同号时,求a+b的值;
(2)当a、b异号时,求a+b的值。

课题:1.3.1有理数的加法(2)
【学习目标】:掌握加法运算律并能运用加法运算律简化运算;

【重点难点】:灵活运用加法运算律简化运算;
【导学指导】
一、温故知新
1、想一想,小学里我们学过的加法运算定律有哪些?先说说,再用字母表示写在下面:、

2、计算
⑴30+(-20)=(-20)+30=
⑵[8+(-5)]+(-4)=8+[(-5)]+(-4)]=

思考:观察上面的式子与计算结果,你有什么发现?

二、自主探究
1、请说说你发现的规律
2、自己换几个数字验证一下,还有上面的规律吗
3、由上可以知道,小学学习的加法交换律、结合律在有理数范围内同样适应,

即:两个数相加,交换加数的位置,和.式子表示为

三个数相加,先把前两个数相加,或者先把后两个数相加,和
用式子表示为
想想看,式子中的字母可以是哪些数?

例1计算:1)16+(-25)+24+(-35)

2)(—2.48)+(+4.33)+(—7.52)+(—4.33)

例2每袋小麦的标准重量为90千克,10袋小麦称重记录如下:
919191.58991.291.388.788.891.891.1
10袋小麦总计超过多少千克或不足多少千克?10袋小麦的总重量是多少千克?
想一想,你会怎样计算,再把自己的想法与同伴交流一下。
【课堂练习】
课本P20页练习1、2

【要点归纳】:
你会用加法交换律、结合律简化运算了吗?

【拓展训练】
1.计算:
(1)(-7)+11+3+(-2);(2)
2.绝对值不大于10的整数有个,它们的和是.

3、填空:
(1)若a>0,b>0,那么a+b0.
(2)若a<0,b<0,那么a+b0.
(3)若a>0,b<0,且│a│>│b│那么a+b0.
(4)若a<0,b>0,且│a│>│b│那么a+b0.

3.某储蓄所在某日内做了7件工作,取出950元,存入5000元,取出800元,存入12000元,取出10000元,取出2000元.问这个储蓄所这一天,共增加多少元?

课题:1.3.2有理数的减法(1)
【学习目标】:
1、经历探索有理数减法法则的过程.理解并掌握有理数减法法则;
2、会正确进行有理数减法运算;
3、体验把减法转化为加法的转化思想;
【重点难点】:有理数减法法则和运算

【导学指导】
一、知识链接
1、世界上最高的山峰珠穆郎玛峰海拔高度约是8844米,吐鲁番盆地的海拔高度约为—154米,两处的高度相差多少呢?
试试看,计算的算式应该是.能算出来吗,画草图试试
2、长春某天的气温是―2°C~3°C,这一天的温差是多少呢?(温差是最高气温减最低气温,单位:°C)显然,这天的温差是3―(―2);
想想看,温差到底是多少呢?那么,3―(―2)=;
二、自主探究
1、还记得吗,被减数、减数差之间的关系是:被减数—减数=;
差+减数=。
2、请你与同桌伙伴一起探究、交流:
要计算3―(―2)=?,实际上也就是要求:?+(—2)=3,所以这个数(差)应该是;也就是3―(―2)=5;
再看看,3+2=;所以3―(―2)3+2;
由上你有什么发现?请写出来.
3、换两个式子计算一下,看看上面的结论还成立吗?
—1—(—3)=,—1+3=,所以—1—(—3)—1+3;
0—(—3)=,0+3=,所以0—(—3)0+3;
4、师生归纳
1)法则:
2)字母表示:

三、新知应用
1、例题
例1计算:
(1)(-3)―(―5);(2)0-7;
(3)7.2―(―4.8);(4)-3;
请同学们先尝试解决
【课堂练习】课本P231.2
【要点归纳】:
有理数减法法则:

【拓展训练】
1、计算:
(1)(-37)-(-47);(2)(-53)-16;
(3)(-210)-87;(4)1.3-(-2.7);
(5)(-2)-(-1);
2.分别求出数轴上下列两点间的距离:
(1)表示数8的点与表示数3的点;
(2)表示数-2的点与表示数-3的点;

课题:1.3.2有理数的减法(2)
【学习目标】:
1、理解加减法统一成加法运算的意义;
2、会将有理数的加减混合运算转化为有理数的加法运算;
【重点难点】:有理数加减法统一成加法运算;
【导学指导】
一、知识链接
1、一架飞机作特技表演,起飞后的高度变化如下表:
高度的变化上升4.5千米下降3.2千米上升1.1千米下降1.4千米
记作+4.5千米—3.2千米+1.1千米—1.4千米

请你们想一想,并和同伴一起交流,算算此时飞机比起飞点高了千米。

2、你是怎么算出来的,方法是
二、自主探究
1、现在我们来研究(—20)+(+3)—(—5)—(+7),该怎么计算呢?还是先自己独立动动手吧!
2、怎么样,计算出来了吗,是怎样计算的,与同伴交流交流,师巡视指导。
3、师生共同归纳:遇到一个式子既有加法,又有减法,第一步应该先把减法转化为.再把加号记在脑子里,省略不写

如:(-20)+(+3)-(-5)-(+7)有加法也有减法
=(-20)+(+3)+(+5)+(-7)先把减法转化为加法
=-20+3+5-7再把加号记在脑子里,省略不写
可以读作:“负20、正3、正5、负7的”或者“负20加3加5减7”.
4、师生完整写出解题过程
课题:1.4.1有理数的乘法(1)
【学习目标】:
1、理解有理数的运算法则;能根据有理数乘法运算法则进行有理的简单运算;
2、经历探索有理数乘法法则过程,发展观察、归纳、猜想、验证能力;
【重点难点】:有理数乘法法则
【导学指导】
一、温故知新
1.有理数加法法则内容是什么?

2.计算
(1)2+2+2=(2)(-2)+(-2)+(-2)=
3.你能将上面两个算式写成乘法算式吗?

二、自主探究
1、自学课本28-29页回答下列问题
(1)如果它以每分2cm的速度向右爬行,3分钟后它在什么位置?
可以表示为.
(2)如果它以每分2cm的速度向左爬行,3分钟后它在什么位置?
可以表示为

(3)如果它以每分2cm的速度向右爬行,3分钟前它在什么位置?
可以表示为
(4)如果它以每分2cm的速度向左爬行,3分钟前它在什么位置?
可以表示为

由上可知:
(1)2×3=;(2)(-2)×3=;
(3)(+2)×(-3)=;(4)(-2)×(-3)=;
(5)两个数相乘,一个数是0时,结果为0
观察上面的式子,你有什么发现?能说出有理数乘法法则吗?

归纳有理数乘法法则
两数相乘,同号,异号,并把相乘。
任何数与0相乘,都得。

2、直接说出下列两数相乘所得积的符号

【课堂练习】
课本30页练习1.2.3(直接做在课本上)

【要点归纳】:
有理数乘法法则:

课题:1.4.1有理数的乘法(2)
【学习目标】:
1、经历探索多个有理数相乘的符号确定法则;
2、会进行有理数的乘法运算;
3、通过对问题的探索,培养观察、分析和概括的能力;
【学习重点】:多个有理数乘法运算符号的确定;
【学习难点】:正确进行多个有理数的乘法运算;
【导学指导】
一、温故知新
1、有理数乘法法则:

二、自主探究
1、观察:下列各式的积是正的还是负的?
2×3×4×(-5),
2×3×(-4)×(-5),
2×(-3)×(-4)×(-5),
(-2)×(-3)×(-4)×(-5);
思考:几个不是0的数相乘,积的符号与负因数的个数之间有什么关系?
分组讨论交流,再用自己的语言表达所发现的规律:

几个不是0的数相乘,负因数的个数是时,积是正数;
负因数的个数是时,积是负数。
2、新知应用
1、例题3,(P31页)

请你思考,多个不是0的数相乘,先做哪一步,再做哪一步?

你能看出下列式子的结果吗?如果能,理由
7.8×(-8.1)×O×(-19.6)
师生小结:
【课堂练习】
计算:(课本P32练习)
(1)、—5×8×(—7)×(—0.25);(2)、;
【要点归纳】:
1.几个不是0的数相乘,负因数的个数是时,积是正数;
负因数的个数是时,积是负数。
2.几个数相乘,如果其中有一个因数为0,积等于0;

【拓展训练】:
一、选择
1.若干个不等于0的有理数相乘,积的符号()
A.由因数的个数决定B.由正因数的个数决定
C.由负因数的个数决定D.由负因数和正因数个数的差为决定
2.下列运算结果为负值的是()
A.(-7)×(-6)B.(-6)+(-4)C.0×(-2)(-3)D.(-7)-(-15)
3.下列运算错误的是()
A.(-2)×(-3)=6B.
C.(-5)×(-2)×(-4)=-40D.(-3)×(-2)×(-4)=-24
二、计算:
1.4.1课题:有理数的乘法(3)
【学习目标】:
1、熟练有理数的乘法运算并能用乘法运算律简化运算;
2、学生通过观察、思考、探究、讨论,主动地进行学习;
【学习重点】:正确运用运算律,使运算简化
【学习难点】:运用运算律,使运算简化
【导学指导】
一、知识链接
1、请同学们计算.并比较它们的结果:

(1)(-6)×5=5×(-6)=

(2)[3×(-4)]×(-5)=3×[(-4)×(-5)]=

请以小组为单位,相互检查,看计算对了吗?

二、自主探究
1、下面我们以小组为单位,仔细观察上面的式子与结果,把你的发现相互交流交流。
2、怎么样,在有理数运算律中,乘法的交换律,结合律以及分配律还成立吗?
3、归纳、总结
乘法交换律:两个数相乘,交换因数的位置,积。
即:ab=
乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积
即:(ab)c=
4、新知应用
例题4
用两种方法计算(+-)×12;
课题:1.4.2有理数的除法(1)
【学习目标】:
1、理解除法是乘法的逆运算;
2、理解倒数概念,会求有理数的倒数;
3、掌握除法法则,会进行有理数的除法运算;

【重点难点】:有理数的除法法则

【导学指导】
一、知识链接
1)、小红从家里到学校,每分钟走50米,共走了20分钟。
问小红家离学校有米,列出的算式为。

2)放学时,小红仍然以每分钟50米的速度回家,应该走分钟。
列出的算式为

从上面这个例子你可以发现,有理数除法与乘法之间的关系是

3)写出下列各数的倒数
-4的倒数,3的倒数,-2的倒数;
二、合作交流、探究新知
1、小组合作完成
比较大小:8÷(-4)8×(一);
(-15)÷3(-15)×;
(一1)÷(一2)(-1)×(一);

再相互交流、并与小学里学习的乘除方法进行类比与对比,
归纳有理数的除法法则:
1)、除以一个不等于0的数,等于;
2)、两数相除,同号得,异号得,并把绝对值相,0除以任何一个不等于0的数,都得;

1.自学P34例5、例6
【课堂练习】

1、练习:P35

2、练习:P36第1、2题
【要点归纳】:
有理数的除法法则:
课题:1.4.2有理数的除法(2)
【学习目标】:
1、学会用计算器进行有理数的除法运算;
2、掌握有理数的混合运算顺序;
【学习重点】:有理数的混合运算;
【学习难点】:运算顺序的确定与性质符号的处理;
【导学指导】
一、知识链接
1、计算
(1)(-8)÷(-4);
(2)(-9)÷3;
(3)(—0.1)÷×(—100);
2.有理数的除法法则:
二、自主探究
1.例8计算
(1)(—8)+4÷(-2)(2)(-7)×(-5)—90÷(-15)
你的计算方法是先算法,再算法。X|k|b|1.c|o|m
有理数加减乘除的混合运算顺序应该是
写出解答过程

【课堂练习】
1、计算(P36练习)
(1)6—(—12)÷(—3);(2)3×(—4)+(—28)÷7;

(3)(—48)÷8—(—25)×(—6);(4);

2.P37练习
【拓展训练】
1、选择题
(1)下列运算有错误的是()
A.÷(-3)=3×(-3)B.
C.8-(-2)=8+2D.2-7=(+2)+(-7)
(2)下列运算正确的是()
A.;B.0-2=-2;C.;D.(-2)÷(-4)=2;
2、计算
1)、18—6÷(—2)×;2)11+(—22)—3×(—11);

【总结反思】:
课题:1.5.1有理数的乘方(1)
【学习目标】:
1、理解有理数乘方的意义;
2、掌握有理数乘方运算;
3、经历探索有理数乘方的运算,获得解决问题经验;
【重点难点】:有理数乘方的运算。

【导学指导】
一、知识链接
1、看下面的故事:从前,有个“聪明的乞丐”他要到了一块面包。他想,天天要饭太辛苦,如果我第一天吃这块面包的一半,第二天再吃剩余面包的一半,……依次每天都吃前一天剩余面包的一半,这样下去,我就永远不要去要饭了!
请你们交流讨论,再算一算,如果把整块面包看成整体“1”,那第十天他将吃到面包。
2、拉面馆的师傅用一根很粗的面条,把两头捏合在一起拉伸,再捏合,再拉伸,反复多次,就能把这根很粗的面条,拉成许多很细的面条.想想看,捏合次后,就可以拉出32根面条.
二、合作探究
1、分小组合作学习P41页内容,然后再完成好下面的问题
1)叫乘方,叫做幂,在式子an中,a叫做,n叫做
2)式子an表示的意义是
3)从运算上看式子an,可以读作,从结果上看式子an,可以读作;
2、新知应用
1、将下列各式写成乘方(即幂)的形式:
(1)(-2)×(-2)×(-2)×(-2)=.
(2)、(—)×(—)×(—)×(—)=;
(3)……(2010个)=
2、例题,P41例1师生共同完成
从例题1可以得出:
负数的奇次幂是数,负数的偶次幂是数,
正数的任何次幂都是数,0的任何正整次幂都是;
3、思考:(—2)4和—24意义一样吗?为什么?
4、自学例2(教师指导)

【课堂练习】完成P42页1,2.

【要点归纳】:

【拓展训练】
1、我们已经学习了五种运算,请把下表补充完整:
运算加减乘除乘方
运算结果和

课题:1.5.1有理数的乘方(2)
【学习目标】:
1、能确定有理数加、减、乘、除、乘方混合运算的顺序;
2、会进行有理数的混合运算;
3、培养并提高正确迅速的运算能力;
【学习重点】:运算顺序的确定和性质符号的处理;
【学习难点】:有理数的混合运算;

【导学指导】
一、知识链接
1、在2+错误!不能通过编辑域代码创建对象。×(-6)这个式子中,存在着种运算。
2、请你们以4人一个小组讨论、交流,上面这个式子应该先算、再算
、最后算。
二、合作探究
1、由上可以知道,在有理数的混合运算中,运算顺序是:

扩展阅读

人教版七年级数学上册全册导学案


七年级数学第一章导学案
第1学时
内容:正数和负数(1)
学习目标:
1、整理前两个学段学过的整数、分数(小数)知识,掌握正数和负数概念.
2、会区分两种不同意义的量,会用符号表示正数和负数.
3、体验数学发展是生活实际的需要,激发学生学习数学的兴趣.
学习重点:两种意义相反的量
学习难点:正确会区分两种不同意义的量
教学方法:引导、探究、归纳与练习相结合
教学过程
一、学前准备
1、小学里学过哪些数请写出来:、、.
2、在生活中,仅有整数和分数够用了吗?有没有比0小的数?如果有,那叫做什么数?
3、阅读课本P1和P2三幅图(重点是三个例子,边阅读边思考)
回答上面提出的问题:.
二、探究新知
1、正数与负数的产生
1)、生活中具有相反意义的量
如:运进5吨与运出3吨;上升7米与下降8米;向东50米与向西47米等都是生活中遇到的具有相反意义的量.
请你也举一个具有相反意义量的例子:.
2)负数的产生同样是生活和生产的需要
2、正数和负数的表示方法
1)一般地,我们把上升、运进、零上、收入、前进、高出等规定为正的,而与它相反的量,如:下降、运出、零下、支出、后退、低于等规定为负的。正的量就用小学里学过的数表示,有时也在它前面放上一个“+”(读作正)号,如前面的5、7、50;负的量用小学学过的数前面放上“—”(读作负)号来表示,如上面的—3、—8、—47。
2)活动两个同学为一组,一同学任意说意义相反的两个量,另一个同学用正负数表示.
3)阅读P3练习前的内容
3、正数、负数的概念
1)大于0的数叫做,小于0的数叫做。
2)正数是大于0的数,负数是的数,0既不是正数也不是负数。
3)练习P3第一题到第四题(直接做在课本上)
三、练习
1、读出下列各数,指出其中哪些是正数,哪些是负数?
—2,0.6,+,0,—3.1415,200,—754200,
2、举出几对(至少两对)具有相反意义的量,并分别用正、负数表示
四、应用迁移,巩固提高(A组为必做题)
A组1.任意写出5个正数:________________;任意写出5个负数:_______________.
2.小明的姐姐在银行工作,她把存入3万元记作+3万元,那么支取2万元应记作_______,-4万元表示________________.
3.已知下列各数:,,3.14,+3065,0,-239.
则正数有_____________________;负数有____________________.
4.如果向东为正,那么-50m表示的意义是………………………()
A.向东行进50mC.向北行进50m
B.向南行进50mD.向西行进50m
5.下列结论中正确的是…………………………………………()
A.0既是正数,又是负数B.O是最小的正数
C.0是最大的负数D.0既不是正数,也不是负数
6.给出下列各数:-3,0,+5,,+3.1,,2004,+2008.
其中是负数的有……………………………………………………()
A.2个B.3个C.4个D.5个

B组
1.零下15℃,表示为_________,比O℃低4℃的温度是_________.
2.地图上标有甲地海拔高度30米,乙地海拔高度为20米,丙地海拔高度为-5米,其中最高处为_______地,最低处为_______地.
3.“甲比乙大-3岁”表示的意义是______________________.

C组
1.写出比O小4的数,比4小2的数,比-4小2的数.

2.如果海平面的高度为0米,一潜水艇在海水下40米处航行,一条鲨鱼在潜水艇上方10米处游动,试用正负数分别表示潜水艇和鲨鱼的高度.

第2学时
内容:正数和负数(2)
学习目标:
1、会用正、负数表示具有相反意义的量.
2、通过正、负数学习,培养学生应用数学知识的意识.
3、通过探究,渗透对立统一的辨证思想
学习重点:用正、负数表示具有相反意义的量
学习难点:实际问题中的数量关系
教学方法:讲练相结合
教学过程
一、.学前准备
通过上节课的学习,我们知道在实际生产和生活中存在着两种不同意义的量,为了区分它们,我们用正数和负数来分别表示它们.
问题1:“零”为什么即不是正数也不是负数呢?
引导学生思考讨论,借助举例说明.
参考例子:温度表示中的零上,零下和零度.
二.探究理解解决问题
问题2:(教科书第4页例题)
先引导学生分析,再让学生独立完成
例(1)一个月内,小明体重增加2kg,小华体重减少1kg,小强体重无变化,写出他们这个月的体重增长值;
(2)2009年下列国家的商品进出口总额比上一年的变化情况是:
美国减少6.4%,德国增长1.3%,
法国减少2.4%,英国减少3.5%,
意大利增长0.2%,中国增长7.5%.
写出这些国家2009年商品进出口总额的增长率.

解:(1)这个月小明体重增长2kg,小华体重增长-1kg,小强体重增长0kg.

(2)六个国家2009年商品进出口总额的增长率:
美国-6.4%,德国1.3%,
法国-2.4%,英国-3.5%,
意大利0.2%,中国7.5%.
三、巩固练习
从0表示一个也没有,是正数和负数的分界的角度引导学生理解.
在学生的讨论中简单介绍分类的数学思想先不要给出有理数的概念.
在例题中,让学生通过阅读题中的含义,找出具有相反意义的量,决定哪个用正数表示,哪个用负数表示.
通过问题(2)提醒学生审题时要注意要求,题中求的是增长率,不是增长值.
四、阅读思考
(教科书第8页)用正负数表示加工允许误差.
问题:1.直径为30.032mm和直径为29.97的零件是否合格?
2.你知道还有那些事件可以用正负数表示允许误差吗?请举例.
五、小结
1、本节课你有那些收获?
2、还有没解决的问题吗?

六、应用与拓展
必做题:
教科书5页习题4、5、:6、7、8题
选做题
1、甲冷库的温度是-12°C,乙冷库的温度比甲冷酷低5°C,则乙冷库的温度是.

2、一种零件的内径尺寸在图纸上是9±0.05(单位:mm),表示这种零件的标准尺寸是9mm,加工要求最大不超过标准尺寸多少?最小不小于标准尺寸多少?

3、吐鲁番的海拔是-155m,珠穆朗玛峰的海拔是8848m,它们之间相差多少米?
4、如果规定向东为正,那么从起点先走+40米,再走-60米到达终点,问终点在起点什么方向多少米?应怎样表示?一共走过的路程是多少米?
5、10筐橘子,以每筐15㎏为标准,超过的千克数记作正数,不足的千克数记作负数。标重的记录情况如下:+1,-0.5,-0.5,-1,+0.5,-0.5,+0.5,+0.5,+0.5,-0.5。问这10筐橘子各重多少千克?总重多少千克?

【解】-17°
6.一种零件的内径尺寸在图纸上是9±0.05(单位:mm),表示这种零件的标准尺寸是9mm,加工要求最大不超过标准尺寸多少?最小不小于标准尺寸多少?【解】9.05mm,8.95mm

正数和负数巩固提高练习
第3学时
1.具有相反意思的量
某市某一天的最高温度是零上5℃,最低温度是零下5℃现实生活中,像这样的相反意义的量还有很多.
例如,珠穆朗玛峰高于海平面8848米,吐鲁番盆地低于海平面155米,“高于”和“低于”其意义是相反的.
“运入”和“运出”,其意义是相反的.同学们能举例子吗?________________________________________
2.正数和负数
数学中采用符号来区分,规定零上5℃记作+5℃(读作正5℃)或5℃,把零下5℃记作-5℃(读作负5℃).
①高于海平面8848米,记作+8848米;低于海平面155米,记作________米。
②如果80m表示向东走80m,那么-60m表示_________。
③如果水位升高3m时水位变化记作+3m,那么水位下降3m时水位变化记作_________m。
④月球表面的白天平均温度是零上126℃,记作________℃,夜间平均温度是零下150℃,记作________℃。
问题1读下列各数,并指出其中哪些是正数,哪些是负数。
正数:__________________________________________________
负数:__________________________________________________
3.有理数
正整数、0、负整数、正分数、负分数都可以写成分数的形式,这样的数称为有理数。(整数和分数统称为有理数)
有理数的分类:
问题2:有理数:,其中:
正数:正分数:
负数:负分数:
负整数:正整数:
巩固A:
1.如果收入100元记作+100元,那么支出180元记作___________;如果电梯上升了两层记作+2,那么-3表示电梯__________________。
2.某校初一年级举行乒乓球比赛,一班获胜2局记作+2,二班失败3局记作_________,三班不胜不败记作_______.
3.下列各数中既不是正数又不是负数的是()
A.-1B.-3C.-0.13D.0
4.-206不是()
A.有理数B.负数C.整数D.自然数
5.既是分数,又是正数的是()
A.+5B.-5C.0D.8
6.下列说法正确的是()
A.有理数是指整数、分数、正有理数、零、负有理数这五类数
B.有理数不是正数就是负数
C.有理数不是整数就是分数;D.以上说法都正确
7.一潜水艇所在的高度为-100米,如果它再下潜20米,则高度是_______,如果在原来的位置上再上升20米,则高度是________.
巩固B:
1.判断:①所有整数都是正数;()②所有正数都是整数:()
③奇数都是正数;()④分数是有理数:()
2.把下列各数填入相应的大括号内:-13.5,2,0,0.128,-2.236,3.14,+27,-,-15%,-1,,26.
正数集合{…},负数集合{…},
整数集合{…},分数集合{…},
非负整数集合{…}.
3.北京某一天记录的温度是:早晨-1℃,中午4℃,晚上-3℃,(0℃以上温度记为正数),其中温度最高是______(写度数),最低是________(写度数).
4.某班在班际篮球赛中,第一场赢4分,第二场输3分,第三场赢2分,第四场输2分,结果这个班是赢了还是输了?请用有理数表示各场的得分和最后的总分。
巩固C:
如果用m表示一个有理数,那么-m是()
A.负数B.正数C.零D.以上答案都有可能对

第4学时
内容:1.2有理数
[教学目标]
1.正我有理数的概念,会对有理数按照一定的标准进行分类,培养分类能力;
2.了解分类的标准与分类结果的相关性,初步了解“集合”的含义;
3.体验分类是数学上的常用的处理问题的方法.
[教学重点与难点]
重点:正确理解有理数的概念.
难点:正确理解分类的标准和按照定的标准进行分类.
一.知识回顾和理解
通过两节课的学习,我们已经将数的范围扩大了,那么你能写出3个不同类的数吗?.(3名学生板书)
[问题1]:我们将这三为同学所写的数做一下分类.
(如果不全,可以补充).
[问题2]:我们是否可以把上述数分为两类?如果可以,应分为哪两类?
二.明确概念探究分类
正整数、0、负整数统称整数,正分数和负分数统称分数.
整数和分数统称有理数
[问题3]:上面的分类标准是什么?我们还可以按其它标准分类吗?
三.练一练熟能生巧
1.任意写出三个数,标出每个数的所属类型,同桌互相验证.
2.把下列各数填入它所属于的集合的圈内:
15,-,-5,,,0.1,-5.32,-80,123,2.333.
正整数集合负整数集合
正分数集合负分数集合
[小结]
到现在为止我们学过的数是有理数(圆周率π除),有理数可以按不同的标准进行分类,标准不同时,分类的结果也不同.
[作业]
必做题:教科书第8页练习.P14T1、2
作业2.把下列给数填在相应的大括号里:
-4,0.001,0,-1.7,15,.
正数集合{…},负数集合{…},
正整数集合{…},分数集合{…}
[备选题]
1.下列各数,哪些是整数?哪些是分数?哪些是正数?哪些是负数?
+7,-5,,,79,0,0.67,,+5.1
2.0是整数吗?自然数一定是整数吗?0一定是正整数吗?整数一定是自然数吗?
3.图中两个圆圈分别表示正整数集合和整数集合,请写并填入两个圆圈的重叠部分.你能说出这个重叠部分表示什么数的集合吗?

人教版七年级数学上册全册教案


每个老师上课需要准备的东西是教案课件,规划教案课件的时刻悄悄来临了。是时候对自己教案课件工作做个新的规划了,接下来的工作才会更顺利!你们了解多少教案课件范文呢?考虑到您的需要,小编特地编辑了“人教版七年级数学上册全册教案”,希望对您的工作和生活有所帮助。

第一章有理数
单元教学内容
1.本单元结合学生的生活经验,列举了学生熟悉的用正、负数表示的实例,从扩充运算的角度引入负数,然后再指出可以用正、负数表示现实生活中具有相反意义的量,使学生感受到负数的引入是来自实际生活的需要,体会数学知识与现实世界的联系.
引入正、负数概念之后,接着给出正整数、负整数、正分数、负分数集合及整数、分数和有理数的概念.
2.通过怎样用数简明地表示一条东西走向的马路旁的树、电线杆与汽车站的相对位置关系引入数轴.数轴是非常重要的数学工具,它可以把所有的有理数用数轴上的点形象地表示出来,使数与形结合为一体,揭示了数形之间的内在联系,从而体现出以下4个方面的作用:
(1)数轴能反映出数形之间的对应关系.
(2)数轴能反映数的性质.
(3)数轴能解释数的某些概念,如相反数、绝对值、近似数.
(4)数轴可使有理数大小的比较形象化.
3.对于相反数的概念,从“数轴上表示互为相反数的两点分别在原点的两旁,且离开原点的距离相等”来说明相反数的几何意义,同时补充“零的相反数是零”作为相反数意义的一部分.
4.正确理解绝对值的概念是难点.
根据有理数的绝对值的两种意义,可以归纳出有理数的绝对值有如下性质:
(1)任何有理数都有唯一的绝对值.
(2)有理数的绝对值是一个非负数,即最小的绝对值是零.
(3)两个互为相反数的绝对值相等,即│a│=│-a│.
(4)任何有理数都不大于它的绝对值,即│a│≥a,│a│≥-a.
(5)若│a│=│b│,则a=b,或a=-b或a=b=0.
三维目标
1.知识与技能
(1)了解正数、负数的实际意义,会判断一个数是正数还是负数.
(2)掌握数轴的画法,能将已知数在数轴上表示出来,能说出数轴上已知点所表示的解.
(3)理解相反数、绝对值的几何意义和代数意义,会求一个数的相反数和绝对值.
(4)会利用数轴和绝对值比较有理数的大小.
2.过程与方法
经过探索有理数运算法则和运算律的过程,体会“类比”、“转化”、“数形结合”等数学方法.
3.情感态度与价值观
使学生感受数学知识与现实世界的联系,鼓励学生探索规律,并在合作交流中完善规范语言.
重、难点与关键
1.重点:正确理解有理数、相反数、绝对值等概念;会用正、负数表示具有相反意义的量,会求一个数的相反数和绝对值.
2.难点:准确理解负数、绝对值等概念.
3.关键:正确理解负数的意义和绝对值的意义.
课时划分
1.1正数和负数2课时
1.2有理数5课时
1.3有理数的加减法4课时
1.4有理数的乘除法5课时
1.5有理数的乘方4课时
第一章有理数(复习)2课时
1.1正数和负数
第一课时
三维目标
一.知识与技能
能判断一个数是正数还是负数,能用正数或负数表示生活中具有相反意义的量.
二.过程与方法
借助生活中的实例理解有理数的意义,体会负数引入的必要性和有理数应用的广泛性.
三.情感态度与价值观
培养学生积极思考,合作交流的意识和能力.
教学重、难点与关键
1.重点:正确理解负数的意义,掌握判断一个数是正数还是负数的方法.
2.难点:正确理解负数的概念.
3.关键:创设情境,充分利用学生身边熟悉的事物,加深对负数意义的理解.
教具准备
投影仪.
教学过程
四、课堂引入
我们知道,数是人们在实际生活和生活需要中产生,并不断扩充的.人们由记数、排序、产生数1,2,3,…;为了表示“没有物体”、“空位”引进了数“0”,测量和分配有时不能得到整数的结果,为此产生了分数和小数.
在生活、生产、科研中经常遇到数的表示与数的运算的问题,例如课本第2页至第3页中提到的四个问题,这里出现的新数:-3,-2,-2.7%在前面的实际问题中它们分别表示:零下3摄氏度,净输2球,减少2.7%.
五、讲授新课
(1)、像-3,-2,-2.7%这样的数(即在以前学过的0以外的数前面加上负号“-”的数)叫做负数.而3,2,+2.7%在问题中分别表示零上3摄氏度,净胜2球,增长2.7%,它们与负数具有相反的意义,我们把这样的数(即以前学过的0以外的数)叫做正数,有时在正数前面也加上“+”(正)号,例如,+3,+2,+0.5,+,…就是3,2,0.5,,…一个数前面的“+”、“-”号叫做它的符号,这种符号叫做性质符号.
(2)、中国古代用算筹(表示数的工具)进行计算,红色算筹表示正数,黑色算筹表示负数.
(3)、数0既不是正数,也不是负数,但0是正数与负数的分界数.
(4)、0可以表示没有,还可以表示一个确定的量,如今天气温是0℃,是指一个确定的温度;海拔0表示海平面的平均高度.
用正负数表示具有相反意义的量
(5)、把0以外的数分为正数和负数,起源于表示两种相反意义的量.正数和负数在许多方面被广泛地应用.在地形图上表示某地高度时,需要以海平面为基准,通常用正数表示高于海平面的某地的海拔高度,负数表示低于海平面的某地的海拔高度.例如:珠穆朗玛峰的海拔高度为8844m,吐鲁番盆地的海拔高度为-155m.记录账目时,通常用正数表示收入款额,负数表示支出款额.
(6)、请学生解释课本中图1.1-2,图1.1-3中的正数和负数的含义.
(7)、你能再举一些用正负数表示数量的实际例子吗?
(8)、例如,通常用正数表示汽车向东行驶的路程,用负数表示汽车向西行驶的路程;用正数表示水位升高的高度,用负数表示水位下降的高度;用正数表示买进东西的数量,用负数表示卖出东西的数量.
六、巩固练习
课本第3页,练习1、2、3、4题.

七年级数学上册全册教案(新课标人教版)


课题:1.1正数和负数(1)授课时间:____________
学习目标
1、整理前两个学段学过的整数、分数(包括小数)的知识,掌握正数和负数的概念;
2、能区分两种不同意义的量,会用符号表示正数和负数;
3、体验数学发展的一个重要原因是生活实际的需要,激发学生学习数学的兴趣。
教学难点正确区分两种不同意义的量。
知识重点两种相反意义的量
教学过程(师生活动)
引入课题
上课开始时,教师应通过具体的例子,简要说明在前两个学段我们已经学过的数,并由此请学生思考:生活中仅有这些“以前学过的数”够用了吗?下面的例子仅供参考.
师:今天我们已经是七年级的学生了,我是你们的数学老师.下面我先向你们做一下自我介绍,我的名字是XXX,身高1.69米,体重74.5千克,今年43岁.我们的班级是七(2)班,有50个同学,其中男同学有27个,占全班总人数的54%…
问题1:老师刚才的介绍中出现了几个数?分别是什么?你能将这些数按以前学过的数的分类方法进行分类吗?
学生活动:思考,交流
师:以前学过的数,实际上主要有两大类,分别是整数和分数(包括小数).
问题2:在生活中,仅有整数和分数够用了吗?
请同学们看书(观察本节前面的几幅图中用到了什么数,让学生感受引入负数的必要性)并思考讨论,然后进行交流。
(也可以出示气象预报中的气温图,地图中表示地形高低地形图,工资卡中存取钱的记录页面等)
学生交流后,教师归纳:以前学过的数已经不够用了,有时候需要一种前面带有“-”的新数。先回顾小学里学过的数的类型,归纳出我们已经学了整数和分数,然后,举一些实际生活中共有相反意义的量,说明为了表示相反意义的量,我们需要引入负数,这样做强调了数学的严密性,但对于学生来说,更多地感到了数学的枯燥乏味为了既复习小学里学过的数,又能激发学生的学习兴趣,所以创设如下的问题情境,以尽量贴近学生的实际.
这个问题能激发学生探究的欲望,学生自己看书学习是培养学生自主学习的重要途径,都应予以重视。
以上的情境和实例使学生体会生活中处处有数学,通过实例,使学生获取大量的感性材料,为正确建立相反意义的量奠定基础。
探究新知
问题3:前面带有“一”号的新数我们应怎样命名它呢?为什么要引人负数呢?通常在日常生活中我们用正数和负数分别表示怎样的量呢?
这些问题都必须要求学生理解.
教师可以用多媒体出示这些问题,让学生带着这些问题看书自学,然后师生交流.
这阶段主要是让学生学会正数和负数的表示.
强调:用正,负数表示实际问题中具有相反意义的量,而相反意义的量包含两个要素:一是它们的意义相反,如向东与向西,收人与支出;二是它们都是数量,而且是同类的量.
这些问题是这节课的主要知识,教师要清楚地向学生说明,并且要注意语言的准确与规范,要舍得花时间让学充分发表想法。
举一反三思维拓展
经过上面的讨论交流,学生对为什么要引人负数,对怎样用正数和负数表示两种相反意义的量有了初步的理解,教师可以要求学生举出实际生活中类似的例子,以加深对正数和负数概念的理解,并开拓思维.
问题4:请同学们举出用正数和负数表示的例子.
问题5:你是怎样理解“正整数”“负整数,,’’正分数”和“负分数”的呢?请举例说明.能否举出例子是学生对知识掌握程度的体现,也能进一步帮助学生理解引负数的必要性
课堂练习教科书第3页练习
小结与作业
课堂小结围绕下面两点,以师生共同交流的方式进行:
1、0由于实际问题中存在着相反意义的量,所以要引人负数,这样数的范围就扩大了;
2、正数就是以前学过的0以外的数(或在其前面加“+”),负数就是在以前学过的0以外的数前面加“-”。3、教科书第5页习题1.1第1,2,4(第3题作为下节课的思考题)。
板书设计:
课题:正数与负数(1)
正数的意义
负数的意义
负数的特点
相反意义的量例1

例2学生举例

文章来源:http://m.jab88.com/j/31438.html

更多

最新更新

更多