一、基础过关
1.下列结论中正确的个数为()
①y=ln2,则y′=12;②y=1x2,则y′|x=3=-227;
③y=2x,则y′=2xln2;④y=log2x,则y′=1xln2.
A.0B.1
C.2D.3
2.过曲线y=1x上一点P的切线的斜率为-4,则点P的坐标为()
A.12,2B.12,2或-12,-2
C.-12,-2D.12,-2
3.已知f(x)=xa,若f′(-1)=-4,则a的值等于()
A.4B.-4
C.5D.-5
4.函数f(x)=x3的斜率等于1的切线有()
A.1条B.2条
C.3条D.不确定
5.若曲线y=x-12在点(a,a-12)处的切线与两个坐标轴围成的三角形的面积为18,则a等于()
A.64B.32C.16D.8
6.若y=10x,则y′|x=1=________.
7.曲线y=14x3在x=1处的切线的倾斜角的正切值为______.
二、能力提升
8.已知直线y=kx是曲线y=ex的切线,则实数k的值为()
A.1eB.-1e
C.-eD.e
9.直线y=12x+b是曲线y=lnx(x0)的一条切线,则实数b=________.
10.求下列函数的导数:
(1)y=xx;(2)y=1x4;(3)y=5x3;
(4)y=log2x2-log2x;(5)y=-2sinx21-2cos2x4.
11.求与曲线y=3x2在点P(8,4)处的切线垂直于点P的直线方程.
12.已知抛物线y=x2,直线x-y-2=0,求抛物线上的点到直线的最短距离.
一、基础过关
1.命题甲:对任意x∈(a,b),有f′(x)0;命题乙:f(x)在(a,b)内是单调递增的.则甲是乙的()
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
2.函数f(x)=(x-3)ex的单调递增区间是()
A.(-∞,2)B.(0,3)
C.(1,4)D.(2,+∞)
3.函数f(x)=x3+ax2+bx+c,其中a,b,c为实数,当a2-3b0时,f(x)是()
A.增函数
B.减函数
C.常数
D.既不是增函数也不是减函数
4.下列函数中,在(0,+∞)内为增函数的是()
A.y=sinxB.y=xe2
C.y=x3-xD.y=lnx-x
5.函数y=f(x)在其定义域-32,3内可导,其图象如图所示,记y=f(x)的导函数为y=f′(x),则不等式f′(x)≤0的解集为________.
6.函数y=x-2sinx在(0,2π)内的单调递增区间为______.
7.已知函数y=f(x)的导函数f′(x)的图象如图所示,试画出函数y=
f(x)的大致图象.
二、能力提升
8.如果函数f(x)的图象如图,那么导函数y=f′(x)的图象可能是()
9.设f(x),g(x)在[a,b]上可导,且f′(x)g′(x),则当axb时,有()
A.f(x)g(x)
B.f(x)g(x)
C.f(x)+g(a)g(x)+f(a)
D.f(x)+g(b)g(x)+f(b)
10.函数y=ax3-x在R上是减函数,则a的取值范围为________.
11.求下列函数的单调区间:
(1)y=x-lnx;(2)y=12x.
12.已知函数f(x)=x3+bx2+cx+d的图象经过点P(0,2),且在点M(-1,f(-1))处的切线方程为6x-y+7=0.
(1)求函数y=f(x)的解析式;(2)求函数y=f(x)的单调区间.
3.1.1函数的平均变化率3.1.2瞬时速度与导数
【学习要求】1.了解导数概念的实际背景.2.会求函数在某一点附近的平均变化率.
3.会利用导数的定义求函数在某点处的导数.
【学法指导】导数是研究函数的有力工具,要认真理解平均变化率、瞬时变化率的概念,可以从物理和几何两种角度理解导数的意义,深刻体会无限逼近的思想.
1.函数的变化率
定义实例
平均变化率函数y=f(x)从x1到x2的平均变化率为,简记作:ΔyΔx
①平均速度;②曲线割线的斜率
瞬时变化率函数y=f(x)在x=x0处的瞬时变化率是函数f(x)从x0到x0+Δx的平均变化率在Δx→0时的极限,即
=limΔx→0ΔyΔx
①瞬时速度:物体在某一时刻的速度;②切线斜率
2.函数f(x)在x=x0处的导数
函数y=f(x)在x=x0处的称为函数y=f(x)在x=x0处的导数,
记作,即f′(x0)=limΔx→0ΔyΔx=.
引言那么在数学中怎样来刻画变量变化得快与慢呢?
探究点一平均变化率的概念
问题1气球膨胀率我们都吹过气球,回忆一下吹气球的过程,可以发现,随着气球内空气容量的增加,气球的半径增加得越来越慢.从数学的角度,如何描述这种现象呢?
问题2高台跳水在高台跳水运动中,运动员相对于水面的高度h(单位:m)与起跳后的时间t(单位:s)存在函数关系h(t)=-4.9t2+6.5t+10.计算运动员在下列时间段内的平均速度v,并思考平均速度有什么作用?(1)0≤t≤0.5,(2)1≤t≤2.
问题3什么是平均变化率,平均变化率有何作用?
问题4平均变化率也可以用式子ΔyΔx表示,其中Δy、Δx的意义是什么?ΔyΔx有什么几何意义?
例1已知函数f(x)=2x2+3x-5.
(1)求当x1=4,且Δx=1时,函数增量Δy和平均变化率ΔyΔx;
(2)求当x1=4,且Δx=0.1时,函数增量Δy和平均变化率ΔyΔx;
(3)若设x2=x1+Δx.分析(1)(2)题中的平均变化率的几何意义.
跟踪1(1)计算函数f(x)=x2从x=1到x=1+Δx的平均变化率,其中Δx的值为
①2;②1;③0.1;④0.01.
(2)思考:当|Δx|越来越小时,函数f(x)在区间[1,1+Δx]上的平均变化率有怎样的变化趋势?
探究点二函数在某点处的导数
问题1物体的平均速度能否精确反映它的运动状态?
问题2如何描述物体在某一时刻的运动状态?
问题3导数和瞬时变化率是什么关系?导数有什么作用?
例2利用导数的定义求函数f(x)=-x2+3x在x=2处的导数.
跟踪2求函数f(x)=3x2-2x在x=1处的导数.
例3将原油精炼为汽油、柴油、塑胶等各种不同产品,需要对原油进行冷却和加热.如果第xh时,原油的温度(单位:℃)为y=f(x)=x2-7x+15(0≤x≤8).计算第2h和第6h时,原油温度的瞬时变化率,并说明它们的意义.
跟踪3高台跳水运动中,运动员相对于水面的高度h(单位:m)与起跳后的时间t(单位:s)之间的关系式为h(t)=-4.9t2+6.5t+10,求运动员在t=6598s时的瞬时速度,并解释此时的运动状况.
【达标检测】
1.在导数的定义中,自变量的增量Δx满足()
A.Δx0B.Δx0C.Δx=0D.Δx≠0
2.函数f(x)在x0处可导,则limh→0fx0+h-fx0h()
A.与x0、h都有关B.仅与x0有关,而与h无关
C.仅与h有关,而与x0无关D.与x0、h均无关
3.已知函数f(x)=2x2-1的图象上一点(1,1)及邻近一点(1+Δx,1+Δy),则ΔyΔx等于()
A.4B.4xC.4+2ΔxD.4+2(Δx)2
一名优秀负责的教师就要对每一位学生尽职尽责,作为教师准备好教案是必不可少的一步。教案可以让学生能够听懂教师所讲的内容,使教师有一个简单易懂的教学思路。关于好的教案要怎么样去写呢?小编为此仔细地整理了以下内容《师说导学案及练习题》,供大家参考,希望能帮助到有需要的朋友。
文章来源:http://m.jab88.com/j/28605.html
更多