88教案网

第3节几何概型教学案

一名优秀的教师在教学时都会提前最好准备,高中教师要准备好教案为之后的教学做准备。教案可以让学生能够听懂教师所讲的内容,帮助高中教师掌握上课时的教学节奏。你知道如何去写好一份优秀的高中教案呢?为此,小编从网络上为大家精心整理了《第3节几何概型教学案》,欢迎您参考,希望对您有所助益!


[核心必知]
1.预习教材,问题导入
根据以下提纲,预习教材P135~P136,回答下列问题.
(1)教材问题中甲获胜的概率与什么因素有关?
提示:与两图中标注B的扇形区域的圆弧的长度有关.
(2)教材问题中试验的结果有多少个?其发生的概率相等吗?
提示:试验结果有无穷个,但每个试验结果发生的概率相等.
2.归纳总结,核心必记
(1)几何概型的定义与特点
①定义:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.
②特点:(ⅰ)可能出现的结果有无限多个;(ⅱ)每个结果发生的可能性相等.
(2)几何概型中事件A的概率的计算公式
P(A)=构成事件A的区域长度面积或体积试验的全部结果所构成的区域长度面积或体积.
[问题思考]
(1)几何概型有何特点?
提示:几何概型的特点有:
①试验中所有可能出现的结果(基本事件)有无限多个;
②每个基本事件出现的可能性相等.
(2)古典概型与几何概型有何区别?
提示:几何概型也是一种概率模型,它与古典概型的区别是:古典概型的试验结果是有限的,而几何概型的试验结果是无限的.
[课前反思]
通过以上预习,必须掌握的几个知识点:
(1)几何概型的定义:;
(2)几何概型的特点:;
(3)几何概型的计算公式:.
某班公交车到终点站的时间可能是11∶30-12∶00之间的任何一个时刻.
往方格中投一粒芝麻,芝麻可能落在方格中的任何一点上.
[思考1]这两个试验可能出现的结果是有限个,还是无限个?
提示:无限多个.
[思考2]古典概型和几何概型的异同是什么?
名师指津:古典概型和几何概型的异同
如表所示:
名称古典概型几何概型
相同点基本事件发生的可能性相等
不同点①基本事件有限个①基本事件无限个
②P(A)=0A为不可能事件②P(A)=0A为不可能事件
③P(B)=1B为必然事件③P(B)=1B为必然事件
?讲一讲
1.取一根长为5m的绳子,拉直后在任意位置剪断,那么剪得两段的长都不小于2m的概率有多大?
[尝试解答]如图所示.
记“剪得两段绳长都不小于2m”为事件A.把绳子五等分,当剪断位置处在中间一段上时,事件A发生.由于中间一段的长度等于绳长的15,
所以事件A发生的概率P(A)=15.
求解与长度有关的几何概型的关键点
在求解与长度有关的几何概型时,首先找到试验的全部结果构成的区域D,这时区域D可能是一条线段或几条线段或曲线段,然后找到事件A发生对应的区域d,在找d的过程中,确定边界点是问题的关键,但边界点是否取到不会影响事件A的概率.
?练一练
1.(2016全国乙卷)某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是()
A.13B.12C.23D.34
解析:选B如图,
7:50至8:30之间的时间长度为40分钟,而小明等车时间不超过10分钟是指小明在7:50至8:00之间或8:20至8:30之间到达发车站,此两种情况下的时间长度之和为20分钟,由几何概型概率公式知所求概率为P=2040=12.故选B.
?讲一讲
2.(2014辽宁高考)若将一个质点随机投入如图所示的长方形ABCD中,其中AB=2,BC=1,则质点落在以AB为直径的半圆内的概率是()
A.π2B.π4C.π6D.π8
[尝试解答]由几何概型的概率公式可知,质点落在以AB为直径的半圆内的概率P=半圆的面积长方形的面积=12π121×2=π4,故选B.
答案:B
解与面积相关的几何概型问题的三个关键点
(1)根据题意确认是否是与面积有关的几何概型问题;
(2)找出或构造出随机事件对应的几何图形,利用图形的几何特征计算相关面积;
(3)套用公式,从而求得随机事件的概率.
?练一练
2.如图,在矩形区域ABCD的A,C两点处各有一个通信基站,假设其信号覆盖范围分别是扇形区域ADE和扇形区域CBF(该矩形区域内无其他信号来源,基站工作正常).若在该矩形区域内随机地选一地点,则该地点无信号的概率是()
A.1-π4B.π2-1C.2-π2D.π4
解析:选A由几何概型知所求的概率P=S图形DEBFS矩形ABCD=2×1-14×π×12×22×1=1-π4.
?讲一讲
3.如图,在棱长为2的正方体ABCDA1B1C1D1中,点O为底面ABCD的中心,在正方体ABCDA1B1C1D1内随机取一点P,则点P到点O的距离大于1的概率为________.
[尝试解答]点P到点O的距离大于1的点位于以O为球心,以1为半径的半球外.记点P到点O的距离大于1为事件A,则P(A)=23-12×4π3×1323=1-π12.
答案:1-π12
如果试验的全部结果所构成的区域可用体积来度量,我们要结合问题的背景,选择好观察角度,准确找出基本事件所占的区域体积及事件A所占的区域体积.
?练一练
3.如图所示,有一瓶2升的水,其中含有1个细菌.用一小水杯从这瓶水中取出0.1升水,求小杯水中含有这个细菌的概率.
解:记“小杯水中含有这个细菌”为事件A,则事件A的概率只与取出的水的体积有关,符合几何概型的条件.
∵小水杯中有0.1升水,原瓶中有2升水,
∴由几何概型求概率的公式得P(A)=0.12=0.05.
——————————————[课堂归纳感悟提升]———————————————
1.本节课的重点是了解几何概型的意义,会求几何概型的概率.难点是理解几何概型的特点和计算公式.
2.本节课要掌握以下几类问题:
(1)理解几何概型,注意与长度有关的几何概型的求解关键点,见讲1.
(2)求解与面积相关的几何概型问题的三个关键点,见讲2.
(3)注意与体积有关的几何概型的求解策略,见讲3.
3.本节课的易错点:
不能正确求出相关线段的长度或相关区域的面积或相关空间的体积,如讲1,2,3.
课下能力提升(十九)
[学业水平达标练]
题组1与长度有关的几何概型
1.在区间[-2,3]上随机选取一个数X,则X≤1的概率为()
A.45B.35C.25D.15
解析:选B在区间[-2,3]上随机选取一个数X,则X≤1,即-2≤X≤1的概率为P=35.
2.已知地铁列车每10min一班,在车站停1min,则乘客到达站台立即乘上车的概率是()
A.110B.19C.111D.18
解析:选A试验的所有结果构成的区域长度为10min,而构成事件A的区域长度为1min,故P(A)=110.
3.在区间[-2,4]上随机取一个数x,若x满足|x|≤m的概率为56,则m=________.
解析:由|x|≤m,得-m≤x≤m,当m≤2时,由题意得2m6=56,解得m=2.5,矛盾,舍去.
当2m4时,由题意得m--26=56,解得m=3.
答案:3
4.如图所示,在单位圆O的某一直径上随机地取一点Q,求过点Q且与该直径垂直的弦长长度不超过1的概率.
解:弦长不超过1,即|OQ|≥32,而Q点在直径AB上是随机的,记事件A={弦长超过1}.
由几何概型的概率公式得P(A)=32×22=32.
∴弦长不超过1的概率为1-P(A)=1-32.
题组2与面积、体积有关的几何概型
5.在如图所示的正方形中随机撒入1000粒芝麻,则撒入圆内的芝麻数大约为________(结果保留整数).
解析:设正方形边长为2a,则S正=4a2,S圆=πa2.
因此芝麻落入圆内的概率为P=πa24a2=π4,大约有1000×π4≈785(粒).
答案:785
6.一个球型容器的半径为3cm,里面装有纯净水,因为实验人员不小心混入了一个H7N9病毒,从中任取1mL水,含有H7N9病毒的概率是________.
解析:水的体积为43πR3=43×π×33=36π(cm3)=36π(mL).故含有病毒的概率为P=136π.
答案:136π
7.(2015西安质检)如图,在正方体ABCDA1B1C1D1内随机取点,则该点落在三棱锥A1ABC内的概率是________.
解析:设正方体的棱长为a,则所求概率
P=VA1ABCVABCDA1B1C1D1
=13×12a2aa3=16.
答案:16
8.如图所示,图2中实线围成的部分是长方体(图1)的平面展开图,其中四边形ABCD是边长为1的正方形.若向虚线围成的矩形内任意抛掷一质点,它落在长方体的平面展开图内的概率是14,则此长方体的体积是________.
解析:设长方体的高为h,由几何概型的概率计算公式可知,质点落在长方体的平面展开图内的概率P=2+4h2h+22h+1=14,解得h=3或h=-12(舍去),故长方体的体积为1×1×3=3.
答案:3
9.在街道旁边有一游戏:在铺满边长为9cm的正方形塑料板的宽广地面上,掷一枚半径为1cm的小圆板.规则如下:每掷一次交5角钱,若小圆板压在边上,可重掷一次;若掷在正方形内,需再交5角钱才可玩;若压在正方形塑料板的顶点上,可获得一元钱.试问:
(1)小圆板压在塑料板的边上的概率是多少?
(2)小圆板压在塑料板顶点上的概率是多少?
解:(1)如图(1)所示,因为O落在正方形ABCD内任何位置是等可能的,小圆板与正方形塑料板ABCD的边相交接是在圆板的中心O到与它靠近的边的距离不超过1cm时,所以O落在图中阴影部分时,小圆板就能与塑料板ABCD的边相交接,这个范围的面积等于92-72=32(cm2),因此所求的概率是3292=3281.
(2)小圆板与正方形的顶点相交接是在圆心O与正方形的顶点的距离不超过小圆板的半径1cm时,如图(2)阴影部分,四块合起来面积为πcm2,故所求概率是π81.
[能力提升综合练]
1.下列关于几何概型的说法中,错误的是()
A.几何概型是古典概型的一种,基本事件都具有等可能性
B.几何概型中事件发生的概率与它的位置或形状无关
C.几何概型在一次试验中可能出现的结果有无限多个
D.几何概型中每个结果的发生都具有等可能性
解析:选A几何概型和古典概型是两种不同的概率模型,故选A.
2.已有四个游戏盘,将它们水平放稳后,在上面扔一颗玻璃小球,若小球落在阴影部分,则可中奖,小明要想增加中奖机会,应选择的游戏盘是()
解析:选A利用几何概型的概率公式,得P(A)=38,P(B)=28,P(C)=26,P(D)=13,
∴P(A)>P(C)=P(D)>P(B),故选A.
3.如图,在面积为S的△ABC的边AB上任取一点P,则△PBC的面积大于S4的概率是()
A.14B.12C.34D.23
解析:选C因为△ABC与△PBC是等高的,所以事件“△PBC的面积大于S4”等价于事件“|BP|∶|AB|>14”.即P(△PBC的面积大于S4)=|PA||BA|=34.
4.已知事件“在矩形ABCD的边CD上随机地取一点P,使△APB的最大边是AB”发生的概率为12,则ADAB=()
A.12B.14
C.32D.74
解析:选D依题可知,设E,F是CD上的四等分点,则P只能在线段EF上且BF=AB.不妨设CD=AB=a,BC=b,则有b2+3a42=a2,即b2=716a2,故ba=74.
5.(2016石家庄高一检测)如图,在平面直角坐标系内,射线OT落在60°角的终边上,任作一条射线OA,则射线OA落在∠xOT内的概率为________.
解析:记“射线OA落在∠xOT内”为事件A.构成事件A的区域最大角度是60°,所有基本事件对应的区域最大角度是360°,所以由几何概型的概率公式得P(A)=60°360°=16.
答案:16
6.一个多面体的直观图和三视图如图所示,其中M是AB的中点.
一只苍蝇在几何体ADFBCE内自由飞行,求它飞入几何体FAMCD内的概率.
解:由三视图可得直观图为直三棱柱且底面ADF中AD⊥DF,DF=AD=DC=a.
因为VFAMCD=13S四边形AMCD×DF=13×12(12a+a)aa=14a3,
VADFBCE=12a2a=12a3,
所以苍蝇飞入几何体FAMCD内的概率为14a312a3=12.
7.在长度为10cm的线段AD上任取两点B,C.在B,C处折此线段而得一折线,求此折线能构成三角形的概率.
解:设AB,AC的长度分别为x,y,由于B,C在线段AD上,因而应有0≤x,y≤10,由此可见,点对(B,C)与正方形K={(x,y)|0≤x≤10,0≤y≤10}中的点(x,y)是一一对应的,先设xy,这时,AB,BC,CD能构成三角形的充要条件是AB+BCCD,BC+CDAB,CD+ABBC,注意AB=x,BC=y-x,CD=10-y,代入上面三式,得y5,x5,y-x5,
符合此条件的点(x,y)必落在△GFE中(如图).
同样地,当yx时,当且仅当点(x,y)落在△EHI中,AC,CB,BD能构成三角形,
利用几何概型可知,所求的概率为S△GFE+S△EHIS正方形=14.

相关知识

第2节古典概型教学案



[核心必知]
1.预习教材,问题导入
根据以下提纲,预习教材P125~P130,回答下列问题.
教材中的两个试验:(1)掷一枚质地均匀的硬币的试验;
(2)掷一枚质地均匀的骰子的试验.
(1)试验(1)中的基本事件是什么?试验(2)中的基本事件又是什么?
提示:试验(1)的基本事件有:“正面朝上”、“反面朝上”;试验(2)的基本事件有:“1点”、“2点”、“3点”、“4点”、“5点”、“6点”.
(2)基本事件有什么特点?
提示:①任何两个基本事件是互斥的;
②任何事件(除不可能事件)都可以表示成基本事件的和.
(3)古典概型的概率计算公式是什么?
提示:P(A)=A包含的基本事件的个数基本事件的总数.
2.归纳总结,核心必记
(1)基本事件
①定义:在一次试验中,所有可能出现的基本结果中不能再分的最简单的随机事件称为该次试验的基本事件.
②特点:一是任何两个基本事件是互斥的;二是任何事件(除不可能事件)都可以表示成基本事件的和.
(2)古典概型
①定义:如果一个概率模型满足:
(ⅰ)试验中所有可能出现的基本事件只有有限个;
(ⅱ)每个基本事件出现的可能性相等.
那么这样的概率模型称为古典概率模型,简称古典概型.
②计算公式:对于古典概型,任何事件的概率为P(A)=A包含的基本事件的个数基本事件的总数.
[问题思考]
(1)若一次试验的结果所包含的基本事件的个数是有限个,则该试验是古典概型吗?
提示:不一定是,还要看每个事件发生的可能性是否相同,若相同才是,否则不是.
(2)掷一枚不均匀的骰子,求出现点数为偶数点的概率,这个概率模型还是古典概型吗?
提示:不是.因为骰子不均匀,所以每个基本事件出现的可能性不相等,不满足特点(ⅱ).
(3)“在区间[0,10]上任取一个数,这个数恰为2的概率是多少?”这个概率模型属于古典概型吗?
提示:不是,因为在区间[0,_10]上任取一个数,其试验结果有无限个,故其基本事件有无限个,所以不是古典概型.
[课前反思]
通过以上预习,必须掌握的几个知识点:
(1)基本事件的定义:;
(2)基本事件的特点:;
(3)古典概型的定义:;
(4)古典概型的计算公式:.
掷一枚质地均匀的硬币两次,观察哪一面朝上.
[思考1]这个试验共有哪几种结果?基本事件总数有多少?事件A={恰有一次正面朝上}包含哪些试验结果?
名师指津:共有正正、正反、反正、反反四种结果.基本事件有4个.事件A包含的结果有:正反、反正.
[思考2]基本事件有什么特点?
名师指津:基本事件具有以下特点:(1)不可能再分为更小的随机事件;(2)两个基本事件不可能同时发生.
?讲一讲
1.先后抛掷3枚均匀的壹分,贰分,伍分硬币.
(1)求试验的基本事件数;
(2)求出现“2枚正面,1枚反面”的基本事件数.
[尝试解答](1)因为抛掷壹分,贰分,伍分硬币时,各自都会出现正面和反面2种情况,所以一共可能出现的结果有8种.可列表为:
硬币种类试验结果(共8种)
壹分正面正面正面正面反面反面反面反面
贰分正面反面正面反面正面反面正面反面
伍分正面反面反面正面正面反面反面正面
所以试验基本事件数为8.
(2)从(1)中表格知,出现“2枚正面,1枚反面”的结果有3种,即(正,正,反),(正,反,正),(反,正,正).所以“2枚正面,1枚反面”的基本事件数为3.
基本事件的两个探求方法
(1)列表法:将基本事件用表格的形式表示出来,通过表格可以清楚地弄清基本事件的总数,以及要求的事件所包含的基本事件数,列表法适合于较简单的试验的题目,基本事件较多的试验不适合用列表法.
(2)树状图法:树状图法是用树状的图形把基本事件列举出来的一种方法,树状图法便于分析基本事件间的结构关系,对于较复杂的问题,可以作为一种分析问题的主要手段.树状图法适合于较复杂的试验的题目.
?练一练
1.从字母a,b,c,d中任意取出两个不同字母的试验中,有哪些基本事件?
解:所求的基本事件共有6个:
即A={a,b},B={a,c},C={a,d},D={b,c},
E={b,d},F={c,d}.
观察图形,思考下列问题
[思考1]某射击运动员随机地向一靶心进行射击,试验的结果有:命中10环,命中9环,…,命中1环和命中0环(即不命中),你认为这是古典概型吗?
名师指津:试验的所有结果只有11个,但是命中10环,命中9环,…,命中1环和命中0环(即不命中)的出现不是等可能的,这个试验不是古典概型.
[思考2]若一个试验是古典概型,它需要具备什么条件?
名师指津:若一个试验是古典概型,需具备以下两点:
(1)有限性:首先判断试验的基本事件是否是有限个,若基本事件无限个,即不可数,则试验不是古典概型.
(2)等可能性:其次考查基本事件的发生是不是等可能的,若基本事件发生的可能性不一样,则试验不是古典概型.
?讲一讲
2.某校夏令营有3名男同学A,B,C和3名女同学X,Y,Z,其年级情况如下表:
一年级二年级三年级
男同学ABC
女同学XYZ
现从这6名同学中随机选出2人参加知识竞赛(每人被选到的可能性相同).
(1)用表中字母列举出所有可能的结果;
(2)设M为事件“选出的2人来自不同年级且恰有1名男同学和1名女同学”,求事件M发生的概率.
[尝试解答](1)从6名同学中随机选出2人参加知识竞赛的所有可能结果为{A,B},{A,C},{A,X},{A,Y},{A,Z},{B,C},{B,X},{B,Y},{B,Z},{C,X},{C,Y},{C,Z},{X,Y},{X,Z},{Y,Z},共15种.
(2)选出的2人来自不同年级且恰有1名男同学和1名女同学的所有可能结果为{A,Y},{A,Z},{B,X},{B,Z},{C,X},{C,Y},共6种.
因此,事件M发生的概率P(M)=615=25.
(1)古典概型求法步骤
①确定等可能基本事件总数n;
②确定所求事件包含基本事件数m;
③P(A)=mn.
(2)使用古典概型概率公式应注意
①首先确定是否为古典概型;
②所求事件是什么,包含的基本事件有哪些.
?练一练
2.一个口袋内装有大小相等的1个白球和已编有不同号码的3个黑球,从中摸出2个球.求:
(1)基本事件总数;
(2)事件“摸出2个黑球”包含多少个基本事件?
(3)摸出2个黑球的概率是多少?
解:由于4个球的大小相等,摸出每个球的可能性是均等的,所以是古典概型.
(1)将黑球编号为黑1,黑2,黑3,从装有4个球的口袋内摸出2个球,所有基本事件构成集合Ω={(黑1,黑2),(黑1,黑3),(黑1,白),(黑2,黑3),(黑2,白),(黑3,白)},其中共有6个基本事件.
(2)事件“摸出2个黑球”={(黑1,黑2),(黑2,黑3),(黑1,黑3)},共3个基本事件.
(3)基本事件总数n=6,事件“摸出两个黑球”包含的基本事件数m=3,故P=12.
?讲一讲
3.袋子中装有除颜色外其他均相同的编号为a,b的2个黑球和编号为c,d,e的3个红球,从中任意摸出2个球.
(1)写出所有不同的结果;
(2)求恰好摸出1个黑球和1个红球的概率;
(3)求至少摸出1个黑球的概率.
[思路点拨](1)可以利用初中学过的树状图写出;(2)找出恰好摸出1个黑球和1个红球的基本事件,利用古典概型的概率计算公式求出;(3)找出至少摸出1个黑球的基本事件,利用古典概型的概率计算公式求出.
[尝试解答](1)用树状图表示所有的结果为
所以所有不同的结果是
ab,ac,ad,ae,bc,bd,be,cd,ce,de.
(2)记“恰好摸出1个黑球和1个红球”为事件A,
则事件A包含的基本事件为ac,ad,ae,bc,bd,be,共6个基本事件,
所以P(A)=610=0.6,
即恰好摸出1个黑球和1个红球的概率为0.6.
(3)记“至少摸出1个黑球”为事件B,
则事件B包含的基本事件为ab,ac,ad,ae,bc,bd,be,共7个基本事件,
所以P(B)=710=0.7,
即至少摸出1个黑球的概率为0.7.
利用事件间的关系求概率
在求解较复杂事件的概率时,可将其分解为几个互斥的简单事件的和事件,由公式P(A1∪A2∪A3∪…∪An)=P(A1)+P(A2)+…+P(An)求得,或采用正难则反的原则,转化为求其对立事件,再用公式P(A)=1-P(A)(A为A的对立事件)求得.
?练一练
3.先后掷两枚大小相同的骰子.
(1)求点数之和出现7点的概率;
(2)求出现两个4点的概率;
(3)求点数之和能被3整除的概率.
解:如图所示,从图中容易看出基本事件与所描点一一对应,共36个.
(1)记“点数之和出现7点”为事件A,从图中可以看出,事件A包含的基本事件共6个:(6,1),(5,2),(4,3),(3,4),(2,5),(1,6).故P(A)=636=16.
(2)记“出现两个4点”为事件B,从图中可以看出,事件B包含的基本事件只有1个,即(4,4).故P(B)=136.
(3)记“点数之和能被3整除”为事件C,则事件C包含的基本事件共12个:(1,2),(2,1),(1,5),(5,1),(2,4),(4,2),(3,3),(3,6),(6,3),(4,5),(5,4),(6,6).
故P(C)=1236=13.
——————————————[课堂归纳感悟提升]———————————————
1.本节课的重点是了解基本事件的特点,能写出一次试验所出现的基本事件,会用列举法求古典概型的概率.难点是理解古典概型及其概率计算公式,会判断古典概型.
2.本节课要掌握以下几类问题:
(1)基本事件的两种探求方法,见讲1.
(2)求古典概型的步骤及使用古典概型概率公式的注意点,见讲2.
(3)利用事件的关系结合古典概型求概率,见讲3.
3.本节课的易错点有两个:
(1)列举基本事件时易漏掉或重复,如讲1;
(2)判断一个事件是否是古典概型易出错.
课下能力提升(十八)
[学业水平达标练]
题组1基本事件的列举问题
1.同时投掷两颗大小完全相同的骰子,用(x,y)表示结果,记A为“所得点数之和小于5”,则事件A包含的基本事件数是()
A.3B.4C.5D.6
解析:选D事件A包含的基本事件有6个:(1,1),(1,2),(1,3),(2,1),(2,2),(3,1).故选D.
2.做试验“从0,1,2这3个数字中,不放回地取两次,每次取一个,构成有序数对(x,y),x为第1次取到的数字,y为第2次取到的数字”.
①写出这个试验的基本事件;
②求出这个试验的基本事件的总数;
③写出“第1次取出的数字是2”这一事件包含的基本事件.
解:①这个试验的基本事件为(0,1),(0,2),(1,0),(1,2),(2,0),(2,1).
②基本事件的总数为6.
③“第1次取出的数字是2”包含以下2个基本事件:(2,0),(2,1).
题组2简单古典概型的计算
3.下列关于古典概型的说法中正确的是()
①试验中所有可能出现的基本事件只有有限个;②每个事件出现的可能性相等;③每个基本事件出现的可能性相等;④基本事件的总数为n,随机事件A若包含k个基本事件,则P(A)=kn.
A.②④B.①③④C.①④D.③④
解析:选B根据古典概型的特征与公式进行判断,①③④正确,②不正确,故选B.
4.下列试验中,属于古典概型的是()
A.种下一粒种子,观察它是否发芽
B.从规格直径为250mm±0.6mm的一批合格产品中任意抽一根,测量其直径d
C.抛掷一枚硬币,观察其出现正面或反面
D.某人射击中靶或不中靶
解析:选C依据古典概型的特点判断,只有C项满足:①试验中所有可能出现的基本事件只有有限个;②每个基本事件出现的可能性相同.
5.设a是掷一枚骰子得到的点数,则方程x2+ax+2=0有两个不相等的实根的概率为()
A.23B.13C.12D.512
解析:选A基本事件总数为6,若方程有两个不相等的实根则a2-8>0,满足上述条件的a为3,4,5,6,故P=46=23.
6.一枚硬币连掷3次,有且仅有2次出现正面向上的概率为()
A.38B.23C.13D.14
解析:选A所有的基本事件是(正,正,正),(正,正,反),(正,反,正),(正,反,反),(反,正,正),(反,正,反),(反,反,正),(反,反,反),共有8个,仅有2次出现正面向上的有:(正,正,反),(正,反,正),(反,正,正),共3个.则所求概率为38.
7.袋中有6个球,其中4个白球,2个红球,从袋中任意取出两球,求下列事件的概率:
(1)A:取出的两球都是白球;
(2)B:取出的两球1个是白球,另1个是红球.
解:设4个白球的编号为1,2,3,4;2个红球的编号为5,6.从袋中的6个小球中任取2个球的取法有(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6),共15种.
(1)从袋中的6个球中任取两个,所取的两球全是白球的取法共有6种,为(1,2),(1,3),(1,4),(2,3),(2,4),(3,4).
∴取出的两个球全是白球的概率为P(A)=615=25.
(2)从袋中的6个球中任取两个,其中一个是红球,而另一个是白球,其取法包括(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)共8种.
∴取出的两个球一个是白球,一个是红球的概率为P(B)=815.
题组3较复杂的古典概型的计算
8.某停车场临时停车按时段收费,收费标准如下:每辆汽车一次停车不超过1小时收费6元,超过1小时的部分每小时收费8元(不足1小时按1小时计算).现有甲、乙两人在该地停车,两人停车都不超过4小时.
(1)若甲停车1小时以上且不超过2小时的概率为13,停车费多于14元的概率为512,求甲的停车费为6元的概率;
(2)若甲、乙两人每人停车的时长在每个时段的可能性相同,求甲、乙两人停车费之和为28元的概率.
解:(1)记“一次停车不超过1小时”为事件A,“一次停车1到2小时”为事件B,“一次停车2到3小时”为事件C,“一次停车3到4小时”为事件D.
由已知得P(B)=13,P(C+D)=512.
又事件A,B,C,D互斥,所以P(A)=1-13-512=14.
所以甲的停车费为6元的概率为14.
(2)易知甲、乙停车时间的基本事件有(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共16个;
而“停车费之和为28元”的事件有(1,3),(2,2),(3,1),共3个,
所以所求概率为316.
[能力提升综合练]
1.下列是古典概型的是()
A.任意掷两枚骰子,所得点数之和作为基本事件时
B.求任意的一个正整数平方的个位数字是1的概率,将取出的正整数作为基本事件时
C.从甲地到乙地共n条路线,求某人正好选中最短路线的概率
D.抛掷一枚均匀硬币首次出现正面为止
解析:选CA项中由于点数的和出现的可能性不相等,故A不是;B项中的基本事件是无限的,故B不是;C项满足古典概型的有限性和等可能性,故C是;D项中基本事件可能会是无限个,故D不是.
2.(2015广东高考)已知5件产品中有2件次品,其余为合格品.现从这5件产品中任取2件,恰有一件次品的概率为()
A.0.4B.0.6
C.0.8D.1
解析:选B5件产品中有2件次品,记为a,b,有3件合格品,记为c,d,e,从这5件产品中任取2件,有10种结果,分别是(a,b),(a,c),(a,d),(a,e),(b,c),(b,d),(b,e),(c,d),(c,e),(d,e),恰有一件次品,有6种结果,分别是(a,c),(a,d),(a,e),(b,c),(b,d),(b,e),设事件A={恰有一件次品},则P(A)=610=0.6,故选B.
3.(2015新课标全国卷Ⅰ)如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数.从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为()
A.310B.15C.110D.120
解析:选C从1,2,3,4,5中任取3个不同的数共有如下10个不同的结果:(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5),其中勾股数只有(3,4,5),所以概率为110.故选C.
4.从个位数与十位数之和为奇数的两位数中任取一个,其个位数为0的概率是()
A.49B.13C.29D.19
解析:选D分类讨论法求解.
个位数与十位数之和为奇数,则个位数与十位数中必一个奇数一个偶数,所以可以分两类.
(1)当个位为奇数时,有5×4=20个符合条件的两位数.
(2)当个位为偶数时,有5×5=25个符合条件的两位数.
因此共有20+25=45个符合条件的两位数,其中个位数为0的两位数有5个,所以所求概率为P=545=19.
5.(2016石家庄高一检测)一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都会随机地选择一条路径,则它能获得食物的概率为________.
解析:该树枝的树梢有6处,有2处能找到食物,所以获得食物的概率为26=13.
答案:13
6.从三男三女共6名学生中任选2名(每名同学被选中的概率均相等),则2名都是女同学的概率等于________.
解析:用A,B,C表示三名男同学,用a,b,c表示三名女同学,则从6名同学中选出2人的所有选法为:AB,AC,Aa,Ab,Ac,BC,Ba,Bb,Bc,Ca,Cb,Cc,ab,ac,bc,2名都是女同学的选法为:ab,ac,bc,故所求的概率为315=15.
答案:15
7.(2015天津高考)设甲、乙、丙三个乒乓球协会的运动员人数分别为27,9,18.现采用分层抽样的方法从这三个协会中抽取6名运动员组队参加比赛.
(1)求应从这三个协会中分别抽取的运动员的人数.
(2)将抽取的6名运动员进行编号,编号分别为A1,A2,A3,A4,A5,A6.现从这6名运动员中随机抽取2人参加双打比赛.
①用所给编号列出所有可能的结果;
②设A为事件“编号为A5和A6的两名运动员中至少有1人被抽到”,求事件A发生的概率.
解:(1)应从甲、乙、丙三个协会中抽取的运动员人数分别为3,1,2.
(2)①从6名运动员中随机抽取2人参加双打比赛的所有可能结果为{A1,A2},{A1,A3},{A1,A4},{A1,A5},{A1,A6},{A2,A3},{A2,A4},{A2,A5},{A2,A6},{A3,A4},{A3,A5},{A3,A6},{A4,A5},{A4,A6},{A5,A6},共15种.
②编号为A5和A6的两名运动员中至少有1人被抽到的所有可能结果为{A1,A5},{A1,A6},{A2,A5},{A2,A6},{A3,A5},{A3,A6},{A4,A5},{A4,A6},{A5,A6},共9种.
因此,事件A发生的概率P(A)=915=35.
8.(2014山东高考)海关对同时从A,B,C三个不同地区进口的某种商品进行抽样检测,从各地区进口此种商品的数量(单位:件)如下表所示.工作人员用分层抽样的方法从这些商品中共抽取6件样品进行检测.
地区ABC
数量50150100
(1)求这6件样品中来自A,B,C各地区商品的数量;
(2)若在这6件样品中随机抽取2件送往甲机构进行进一步检测,求这2件商品来自相同地区的概率.
解:(1)因为样本容量与总体中的个体数的比是650+150+100=150,
所以样本中包含三个地区的个体数量分别是:
50×150=1,150×150=3,100×150=2.
所以A,B,C三个地区的商品被选取的件数分别为1,3,2.
(2)设6件来自A,B,C三个地区的样品分别为:A;B1,B2,B3;C1,C2.
则从6件样品中抽取的这2件商品构成的所有基本事件为:
{A,B1},{A,B2},{A,B3},{A,C1},{A,C2},{B1,B2},{B1,B3},{B1,C1},{B1,C2},{B2,B3},{B2,C1},{B2,C2},{B3,C1},{B3,C2},{C1,C2},共15个.
每个样品被抽到的机会均等,因此这些基本事件的出现是等可能的.
记事件D:“抽取的这2件商品来自相同地区”,则事件D包含的基本事件有:
{B1,B2},{B1,B3},{B2,B3},{C1,C2},共4个.
所以P(D)=415,即这2件商品来自相同地区的概率为415.

高中数学必修三3.3几何概型导学案


3.3几何概型
【学习目标】
1.理解几何概型的定义,会用公式计算概率.
2.掌握几何概型的概率公式:P(A)=
【知识梳理】
知识回顾:
1.基本事件的两个特点:一是任何两个基本事件是的;二是任何事件(除不可能事件)都可以表示为.
2.古典概型的两个重要特征:一是一次试验可能出现的结果只有;二是每种结果出现的可能性.
3.在古典概型中,=.
新知梳理:
1.几何概型的定义
如果每个事件发生的概率只与构成该事件区域的()成比例,则称这样的概型为几何概型.
2.几何概型的特点
(1)试验中所有可能出现的结果(基本事件)有.
(2)每个基本事件出现的可能性.
3.几何概型的概率公式
=.
对点练习:
1.在500ml的水中有一个草履虫,现从中随机取出2ml水样放到显微镜下观察,则发现草履虫的概率是().
(A)0.5(B)0.4(C)0.004
(D)不能确定
2.从一批羽毛球产品中任取一个,其质量小于4.8g的概率为0.3,质量小于4.85g的概率为0.32,那么质量在(g)范围内的概率是()
(A)0.62(B)0.38
(C)0.02(D)0.68
3.在长为10cm的线段AB上任取一点P,并以线段AP为边作正方形,这个正方形的面积介于25cm2与49cm2之间的概率为()
(A)(B)
(C)(D)
4.已知地铁列车每10min一班,在车站停1min.则乘客到达站台立即乘上车的概率为.
【合作探究】
典例精析
例题1.取一根长3米的绳子,拉直后再任意位置剪断,那么剪得的两段的长都不少于1米的概率有多大?

变式训练1.在半径为1的圆周上任取两点,连接两点成一条弦,求弦长超过此圆内接正三角形边长的概率.

例题2.在圆内随机投点,求点与圆心间的距离

变式训练2.在以为中心,边长为1的正方形内投点,求点与正方形的中心的距离小于的概率.

例题3.在棱长为3的正方体内任意取一点,求这个点到各面的距离均大于棱长的的概率.

变式训练3.在棱长为3的正方体内任意取一点,求这个点到各面的距离小于棱长的的概率.

【课堂小结】

【当堂达标】
1.一个红绿灯路口,红灯亮的时间为30秒,黄灯亮的时间是5秒,绿灯亮的时间是45秒.当你走到路口时,恰好看到黄灯亮的概率是()
A.B.C.D.
2.面积为的中,是的中点,向内部投一点,那么点落在内的概率是()
A.B.C.D.
3.在400毫升自来水中有一个大肠杆菌,今从中随机取出2毫升水样放到显微镜下观察,则发现大肠杆菌的概率为()
A.0.002B.0.004C.0.005D.0.008

【课时作业】
1.同时转动如图所示的两个转盘,记转盘甲得到的数为x,转盘乙得到的数为y,构成数对(x,y),则所有数对(x,y)中满足xy=4的概率为().
(A)(B)(C)(D)

2.如图,是由一个圆、一个三角形和一个长方形构成的组合体,现用红、蓝两种颜色为其涂色,每个图形只能涂一种颜色,则三个形状颜色不全相同的概率为().
(A)(B)
(C)(D)
3.两人相约7点到8点在某地会面,先到者等候另一人20分钟,过时离去.则求两人会面的概率为
(A)(B)(C)(D)

4.如图,某人向圆内投镖,如果他每次都投入圆内,那么他投中正方形
区域的概率为().
(A)(B)
(C)(D)
5.如图,有一圆盘其中的阴影部分的圆心角为,若向圆内投镖,如果某人每次都投入圆内,那么他投中阴影部分的概率为().
(A)(B)
(C)(D)
6.现有的蒸馏水,假定有一个细菌,现从中抽取,则抽到细菌的概率为().
(A)(B)(C)(D)
7.一艘轮船只有在涨潮的时候才能驶入港口,已知该港口每天涨潮的时间为早晨至和下午至,则该船在一昼夜内可以进港的概率是().
(A)(B)(C)(D)
8.在区间中任意取一个数,则它与之和大于的概率是().
(A)(B)(C)(D)
9.若过正三角形的顶点任作一条直线,则与线段相交的概率为().
(A)(B)(C)(D)
10.平面上画了一些彼此相距2a的平行线,把一枚半径ra的硬币任意掷在这个平面上,求硬币不与任何一条平行线相碰的概率().
(A)(B)
(C)(D)
11.向面积为9的内任投一点,那么的面积小于3的概率为.

12.在区间(0,1)中随机地取出两个数,则两数之和小于的概率是.

13.在1升高产小麦种子中混入了一种带麦诱病的种子,从中随机取出10毫升,则取出的种子中含有麦诱病的种子的概率是多少?

14.飞镖随机地掷在下面的靶子上.
(1)在靶子1中,飞镖投到区域A、B、C的概率是多少?
(2)在靶子1中,飞镖投在区域A或B中的概率是多少?在靶子2中,飞镖没有投在区
域C中的概率是多少?
15.一只海豚在水池中游弋,水池为长,宽的长方形,求此刻海豚嘴尖离岸边不超过的概率.

苏教版高二数学几何概型知识点


苏教版高二数学几何概型知识点

1.几何概型的定义:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型。

2.几何概型的概率公式:P(A)=构成事件A的区域长度(面积或体积);

试验的全部结果所构成的区域长度(面积或体积)

3.几何概型的特点:1)试验中所有可能出现的结果(基本事件)有无限多个;2)每个基本事件出现的可能性相等.

4.几何概型与古典概型的比较:一方面,古典概型具有有限性,即试验结果是可数的;而几何概型则是在试验中出现无限多个结果,且与事件的区域长度(或面积、体积等)有关,即试验结果具有无限性,是不可数的。这是二者的不同之处;另一方面,古典概型与几何概型的试验结果都具有等可能性,这是二者的共性。

通过以上对于几何概型的基本知识点的梳理,我们不难看出其要核是:要抓住几何概型具有无限性和等可能性两个特点,无限性是指在一次试验中,基本事件的个数可以是无限的,这是区分几何概型与古典概型的关键所在;等可能性是指每一个基本事件发生的可能性是均等的,这是解题的基本前提。因此,用几何概型求解的概率问题和古典概型的基本思路是相同的,同属于“比例法”,即随机事件A的概率可以用“事件A包含的基本事件所占的图形的长度、面积(体积)和角度等”与“试验的基本事件所占总长度、面积(体积)和角度等”之比来表示。下面就几何概型常见类型题作一归纳梳理。

几何概型及均匀随机数的产生


3.3.2几何概型及均匀随机数的产生

一、教材分析
1.几何概型是不同于古典概型的又一个最基本、最常见的概率模型,其概率计算原理通俗、简单,对应随机事件及试验结果的几何量可以是长度、面积或体积.
2.如果一个随机试验可能出现的结果有无限多个,并且每个结果发生的可能性相等,那么该试验可以看作是几何概型.通过适当设置,将随机事件转化为几何问题,即可利用几何概型的概率公式求事件发生的概率.
二、教学目标
(1)正确理解几何概型的概念;
(2)掌握几何概型的概率公式;
(3)会根据古典概型与几何概型的区别与联系来判别某种概型是古典概型还是几何概型;
(4)了解均匀随机数的概念;
(5)掌握利用计算器(计算机)产生均匀随机数的方法;
(6)会利用均匀随机数解决具体的有关概率的问题.
三、教学重点难点
1、几何概型的概念、公式及应用;
2、利用计算器或计算机产生均匀随机数并运用到概率的实际应用中.
四、学情分析
五、教学方法
1.自主探究,互动学习
2.学案导学:见后面的学案。
3.新授课教学基本环节:预习检查、总结疑惑→情境导入、展示目标→合作探究、精讲点拨→反思总结、当堂检测→发导学案、布置预习
六、课前准备
1、通过对本节知识的探究与学习,感知用图形解决概率问题的方法,掌握数学思想与逻辑推理的数学方法;2、教学用具:投灯片,计算机及多媒体教学.七、课时安排:1课时
七、教学过程
1、创设情境:在概率论发展的早期,人们就已经注意到只考虑那种仅有有限个等可能结果的随机试验是不够的,还必须考虑有无限多个试验结果的情况。例如一个人到单位的时间可能是8:00至9:00之间的任何一个时刻;往一个方格中投一个石子,石子可能落在方格中的任何一点……这些试验可能出现的结果都是无限多个。
2、基本概念:(1)几何概率模型:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型;
(2)几何概型的概率公式:
P(A)=;
(3)几何概型的特点:1)试验中所有可能出现的结果(基本事件)有无限多个;2)每个基本事件出现的可能性相等.
3、例题分析:
课本例题略
例1判下列试验中事件A发生的概度是古典概型,还是几何概型。
(1)抛掷两颗骰子,求出现两个“4点”的概率;
(2)如课本P132图3.3-1中的(2)所示,图中有一个转盘,甲乙两人玩转盘游戏,规定当指针指向B区域时,甲获胜,否则乙获胜,求甲获胜的概率。
分析:本题考查的几何概型与古典概型的特点,古典概型具有有限性和等可能性。而几何概型则是在试验中出现无限多个结果,且与事件的区域长度有关。
解:(1)抛掷两颗骰子,出现的可能结果有6×6=36种,且它们都是等可能的,因此属于古典概型;
(2)游戏中指针指向B区域时有无限多个结果,而且不难发现“指针落在阴影部分”,概率可以用阴影部分的面积与总面积的比来衡量,即与区域长度有关,因此属于几何概型.
例2某人欲从某车站乘车出差,已知该站发往各站的客车均每小时一班,求此人等车时间不多于10分钟的概率.
分析:假设他在0~60分钟之间任何一个时刻到车站等车是等可能的,但在0到60分钟之间有无穷多个时刻,不能用古典概型公式计算随机事件发生的概率.可以通过几何概型的求概率公式得到事件发生的概率.因为客车每小时一班,他在0到60分钟之间任何一个时刻到站等车是等可能的,所以他在哪个时间段到站等车的概率只与该时间段的长度有关,而与该时间段的位置无关,这符合几何概型的条件.
解:设A={等待的时间不多于10分钟},我们所关心的事件A恰好是到站等车的时刻位于[50,60]这一时间段内,因此由几何概型的概率公式,得P(A)==,即此人等车时间不多于10分钟的概率为.
小结:在本例中,到站等车的时刻X是随机的,可以是0到60之间的任何一刻,并且是等可能的,我们称X服从[0,60]上的均匀分布,X为[0,60]上的均匀随机数.
练习:1.已知地铁列车每10min一班,在车站停1min,求乘客到达站台立即乘上车的概率。
2.两根相距6m的木杆上系一根绳子,并在绳子上挂一盏灯,求灯与两端距离都大于2m的概率.
解:1.由几何概型知,所求事件A的概率为P(A)=;
2.记“灯与两端距离都大于2m”为事件A,则P(A)==.
例3在1万平方千米的海域中有40平方千米的大陆架储藏着石油,假设在海域中任意一点钻探,钻到油层面的概率是多少?
分析:石油在1万平方千米的海域大陆架的分布可以看作是随机的而40平方千米可看作构成事件的区域面积,有几何概型公式可以求得概率。
解:记“钻到油层面”为事件A,则P(A)===0.004.
答:钻到油层面的概率是0.004.
例4在1升高产小麦种子中混入了一种带麦诱病的种子,从中随机取出10毫升,则取出的种子中含有麦诱病的种子的概率是多少?
分析:病种子在这1升中的分布可以看作是随机的,取得的10毫克种子可视作构成事件的区域,1升种子可视作试验的所有结果构成的区域,可用“体积比”公式计算其概率。
解:取出10毫升种子,其中“含有病种子”这一事件记为A,则
P(A)===0.01.
答:取出的种子中含有麦诱病的种子的概率是0.01.
例5取一根长度为3m的绳子,拉直后在任意位置剪断,那么剪得两段的长都不小于1m的概率有多大?
分析:在任意位置剪断绳子,则剪断位置到一端点的距离取遍[0,3]内的任意数,并且每一个实数被取到都是等可能的。因此在任意位置剪断绳子的所有结果(基本事件)对应[0,3]上的均匀随机数,其中取得的[1,2]内的随机数就表示剪断位置与端点距离在[1,2]内,也就是剪得两段长都不小于1m。这样取得的[1,2]内的随机数个数与[0,3]内个数之比就是事件A发生的概率。
解法1:(1)利用计算器或计算机产生一组0到1区间的均匀随机数a1=RAND.
(2)经过伸缩变换,a=a1*3.
(3)统计出[1,2]内随机数的个数N1和[0,3]内随机数的个数N.
(4)计算频率fn(A)=即为概率P(A)的近似值.
解法2:做一个带有指针的圆盘,把圆周三等分,标上刻度[0,3](这里3和0重合).转动圆盘记下指针在[1,2](表示剪断绳子位置在[1,2]范围内)的次数N1及试验总次数N,则fn(A)=即为概率P(A)的近似值.
小结:用随机数模拟的关键是把实际问题中事件A及基本事件总体对应的区域转化为随机数的范围。解法2用转盘产生随机数,这种方法可以亲自动手操作,但费时费力,试验次数不可能很大;解法1用计算机产生随机数,可以产生大量的随机数,又可以自动统计试验的结果,同时可以在短时间内多次重复试验,可以对试验结果的随机性和规律性有更深刻的认识.
例6在长为12cm的线段AB上任取一点M,并以线段AM为边作正方形,求这个正方形的面积介于36cm2与81cm2之间的概率.
分析:正方形的面积只与边长有关,此题可以转化为在12cm长的线段AB上任取一点M,求使得AM的长度介于6cm与9cm之间的概率.
解:(1)用计算机产生一组[0,1]内均匀随机数a1=RAND.
(2)经过伸缩变换,a=a1*12得到[0,12]内的均匀随机数.
(3)统计试验总次数N和[6,9]内随机数个数N1
(4)计算频率.
记事件A={面积介于36cm2与81cm2之间}={长度介于6cm与9cm之间},则P(A)的近似值为fn(A)=.

八、反思总结,当堂检测。

九、发导学案、布置预习。
完成本节的课后练习及课后延伸拓展作业。
设计意图:布置下节课的预习作业,并对本节课巩固提高。教师课后及时批阅本节的延伸拓展训练。
十、板书设计

十一、教学反思
本课的设计采用了课前下发预习学案,学生预习本节内容,找出自己迷惑的地方。课堂上师生主要解决重点、难点、疑点、考点、探究点以及学生学习过程中易忘、易混点等,最后进行当堂检测,课后进行延伸拓展,以达到提高课堂效率的目的。
1、几何概型是区别于古典概型的又一概率模型,使用几何概型的概率计算公式时,一定要注意其适用条件:每个事件发生的概率只与构成该事件区域的长度成比例;
2、均匀随机数在日常生活中,有着广泛的应用,我们可以利用计算器或计算机来产生均匀随机数,从而来模拟随机试验,其具体方法是:建立一个概率模型,它与某些我们感兴趣的量(如概率值、常数)有关,然后设计适当的试验,并通过这个试验的结果来确定这些量。
在后面的教学过程中会继续研究本节课,争取设计的更科学,更有利于学生的学习,也希望大家提出宝贵意见,共同完善,共同进步!
十二、学案设计(见下页)
中数学组编写人:孙文森审稿人:庞红玲李怀奎
3.3.2几何概型及均匀随机数的产生

课前预习学案
一、预习目标
1.了解几何概型的概念及基本特点;
2.掌握几何概型中概率的计算公式;
3.会进行简单的几何概率计算.
二、预习内容
1.基本事件的概念:一个事件如果事件,就称作基本事件.
基本事件的两个特点:
10.任何两个基本事件是的;
20.任何一个事件(除不可能事件)都可以.
2.古典概型的定义:古典概型有两个特征:
10.试验中所有可能出现的基本事件;
20.各基本事件的出现是,即它们发生的概率相同.
具有这两个特征的概率称为古典概率模型.简称古典概型.
3.古典概型的概率公式,设一试验有n个等可能的基本事件,而事件A恰包含其中的m个基本事件,则事件A的概率P(A)定义为:

问题情境:
试验1.取一根长度为的绳子,拉直后在任意位置剪断.
试验2.射箭比赛的箭靶涂有五个彩色得分环.从外向内为白色,黑色,蓝色,红色,靶心是金色.
奥运会的比赛靶面直径为,靶心直径为.运动员在外射箭.假设射箭都能射中靶面内任何一点都是等可能的.

问题:对于试验1:剪得两段的长都不小于的概率有多大?
试验2:射中黄心的概率为多少?
新知生成:
1.几何概型的概念:

2.几何概型的基本特点:

3.几何概型的概率公式:
三、提出疑惑
同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中
疑惑点疑惑内容

课内探究学案
一、学习目标
1.了解几何概型的概念及基本特点;
2.掌握几何概型中概率的计算公式;
3.会进行简单的几何概率计算.
学习重难点:
重点:概率的正确理解
难点:用概率知识解决现实生活中的具体问题。
二、学习过程
例题学习:
例1判下列试验中事件A发生的概度是古典概型,还是几何概型。
(1)抛掷两颗骰子,求出现两个“4点”的概率;
(2)如课本P135图中的(2)所示,图中有一个转盘,甲乙两人玩转盘游戏,规定当指针指向B区域时,甲获胜,否则乙获胜,求甲获胜的概率。
例2某人欲从某车站乘车出差,已知该站发往各站的客车均每小时一班,
求此人等车时间不多于10分钟的概率.

例3在1万平方千米的海域中有40平方千米的大陆架储藏着石油,
假设在海域中任意一点钻探,钻到油层面的概率是多少?

例4在1升高产小麦种子中混入了一种带麦诱病的种子,从中随机取出10毫升,
则取出的种子中含有麦诱病的种子的概率是多少?

例题参考答案:
例1分析:本题考查的几何概型与古典概型的特点,古典概型具有有限性和等可能性。而几何概型则是在试验中出现无限多个结果,且与事件的区域长度有关。
解:(1)抛掷两颗骰子,出现的可能结果有6×6=36种,且它们都是等可能的,因此属于古典概型;
(2)游戏中指针指向B区域时有无限多个结果,而且不难发现“指针落在阴影部分”,概率可以用阴影部分的面积与总面积的比来衡量,即与区域长度有关,因此属于几何概型.
例2分析:假设他在0~60分钟之间任何一个时刻到车站等车是等可能的,但在0到60分钟之间有无穷多个时刻,不能用古典概型公式计算随机事件发生的概率.可以通过几何概型的求概率公式得到事件发生的概率.因为客车每小时一班,他在0到60分钟之间任何一个时刻到站等车是等可能的,所以他在哪个时间段到站等车的概率只与该时间段的长度有关,而与该时间段的位置无关,这符合几何概型的条件.
解:设A={等待的时间不多于10分钟},我们所关心的事件A恰好是到站等车的时刻位于[50,60]这一时间段内,因此由几何概型的概率公式,得P(A)==,即此人等车时间不多于10分钟的概率为.
小结:在本例中,到站等车的时刻X是随机的,可以是0到60之间的任何一刻,并且是等可能的,我们称X服从[0,60]上的均匀分布,X为[0,60]上的均匀随机数.
例3分析:石油在1万平方千米的海域大陆架的分布可以看作是随机的,而40平方千米可看作构成事件的区域面积,由几何概型公式可以求得概率。
解:记“钻到油层面”为事件A,则P(A)===0.004.
答:钻到油层面的概率是0.004.
例4
分析:病种子在这1升中的分布可以看作是随机的,取得的10毫克种子可视作构成事件的区域,1升种子可视作试验的所有结果构成的区域,可用“体积比”公式计算其概率。
解:取出10毫升种子,其中“含有病种子”这一事件记为A,则
P(A)===0.01.
答:取出的种子中含有麦诱病的种子的概率是0.01.

(三)反思总结

(四)当堂检测
1.在500ml的水中有一个草履虫,现从中随机取出2ml水样放到显微镜下观察,则发现草履虫的概率是()
A.0.5B.0.4C.0.004D.不能确定
2.平面上画了一些彼此相距2a的平行线,把一枚半径ra的硬币任意掷在这个平面上,求硬币不与任何一条平行线相碰的概率.
3.某班有45个,现要选出1人去检查其他班的卫生,若每个人被选到的机会均等,则恰好选中学生甲主机会有多大?
4.如图3-18所示,曲线y=-x2+1与x轴、y轴围成一个区域A,直线x=1、直线y=1、x轴围成一个正方形,向正方形中随机地撒一把芝麻,利用计算机来模拟这个试验,并统计出落在区域A内的芝麻数与落在正方形中的芝麻数。

参考答案:
1.C(提示:由于取水样的随机性,所求事件A:“在取出2ml的水样中有草履虫”的概率等于水样的体积与总体积之比=0.004)
2.解:把“硬币不与任一条平行线相碰”的事件记为事件A,为了确定硬币的位置,由硬币中心O向靠得最近的平行线引垂线OM,垂足为M,如图所示,这样线段OM长度(记作OM)的取值范围就是[o,a],只有当r<OM≤a时硬币不与平行线相碰,所以所求事件A的概率就是P(A)==
3.提示:本题应用计算器产生随机数进行模拟试验,请按照下面的步骤独立完成。
(1)用1~45的45个数来替代45个人;
(2)用计算器产生1~45之间的随机数,并记录;
(3)整理数据并填入下表
试验
次数5010015020025030035040045050060065070075080085090010001050
1出现
的频数
1出现
的频率
(4)利用稳定后1出现的频率估计恰好选中学生甲的机会。

4.解:如下表,由计算机产生两例0~1之间的随机数,它们分别表示随机点(x,y)的坐标。如果一个点(x,y)满足y≤-x2+1,就表示这个点落在区域A内,在下表中最后一列相应地就填上1,否则填0。
xy计数
0.5988950.9407940
0.5122840.1189611
0.4968410.7844170
0.1127960.6906341
0.3596000.3714411
0.1012600.6505121
………
0.9473860.9021270
0.1176180.3056731
0.5164650.2229071
0.5963930.9696950

课后练习与提高
1.已知地铁列车每10min一班,在车站停1min,求乘客到达站台立即乘上车的概率
2.两根相距6m的木杆上系一根绳子,并在绳子上挂一盏灯,求灯与两端距离都大于2m的概率。

3.在1万平方千米的海域中有40平方千米的大陆架储藏着石油,假设在海域中任意一点钻探,钻到油层面的概率是多少?

4.某人午觉醒来,发现表停了,他打开收音机,想听电台报时,求他等待的时间不多于10分钟的概率。

5.取一根长为3米的绳子,拉直后在任意位置剪断,那么剪得两段的长都不少于1米的概率有多大?

参考答案:1.由几何概型知,所求事件A的概率为P(A)=;
2.解:记“灯与两端距离都大于2m”为事件A,则P(A)==.
3.解:记“钻到油层面”为事件A,则P(A)===0.004.
答:钻到油层面的概率是0.004.
4.解:设A={等待的时间不多于10分钟},事件A恰好是打开收音机的时刻位于[50,60]时间段内,因此由几何概型的求概率公式得
P(A)=(60-50)/60=1/6
“等待报时的时间不超过10分钟”的概率为1/6
5.解:如上图,记“剪得两段绳子长都不小于1m”为事件A,把绳子三等分,于是当剪断位置处在中间一段上时,事件A发生。由于中间一段的长度等于绳子长的三分之一,所以事件A发生的概率P(A)=1/3。

文章来源:http://m.jab88.com/j/28519.html

更多

最新更新

更多