高中数学必修三《简单随机抽样》教学设计
教学目标
一、知识与技能
1.通过生活中的实例,体会不同的抽样方法会得到不同的调查结果;2.了解简单随机抽样的意义;二、过程与方法
1.通过实验与探究的方法,让学生进一步感受在随机抽样中,结果的随机性和只有样本容量足够便可推断总体;
2.通过探究进一步了解、掌握简单随机抽样的特点;三、情感态度和价值观
1.使学生认识到数学和日常生活息息相关,从而增进学习数学的乐趣,在活动中培养学生的合作竞争意识和解决问题的能力;
2.通过分组讨论学习,体会合作学习的兴趣;
教学重点
简单随机抽样的意义;
教学难点
获取数据时,会判断调查方式是否合适;
教学方法
引导发现法、启发猜想、讲练结合法
课前准备
教师准备课件、多媒体;学生准备三角板,练习本;
课时安排
1课时
教学过程
一、导入新课
为了了解本校学生暑假期间参加体育活动的情况,学校准备抽取一部分学生进行调查,你认为
按下面的调查方法取得的结果能反映全校学生的一般情况吗?如果不能反映,应当如何改进调查方法?
二、新课学习
方法1:调查学校田径队的30名同学
选取的样本是田径队的同学,他们暑假中体育活动多
方法2:调查每个班的男同学
只调查男同学,没调查女同学
方法3:从每班抽取1名学生进行调查
选取的样本容量太小,不能客观的反映全校学生
方法4:选取每个班级中的一半学生进行调查
选取的容量太大,需要花费较多的时间和人力
对于上面所提出的问题,我们只要得到一部分样本数据就可以对于总体情况进行估计。如果得到的样本能够客观地反映问题,那么对总体的估计就会准确一些,否则估计就会差一些,为此,我们总是希望寻找一个抽取样本的好方法。
简单随机抽样的含义:
为了获取能够客观反映问题的结果,通常按照总体中每个个体都有相同的被抽取机会的原则抽取样本,这种抽取样本的方法叫做简单随机抽样。
注:随机抽样并不是随意或随便抽取,因为随意或随便抽取都会带有主观或客观的影响因素。在学校门口随机询问,或者利用学号,抽取一定数量的学生进行调查。如果学校人数较多,为了保证一定的样本容量,被调查的学生数一般不少于20人,取40至50人比较合适。
(1)班主任老师要求统计班里今天骑自行车上学的同学人数占全班到校上课同学的百分比。怎样得到班里骑自行车上学的同学呢?
用普查的方法,请骑车子的同学举手,数一数就行了。
(2)如果用普查的话,统计骑自行车上学的同学的人数,不计算出骑自行车上学的同学人数所占全班到校上课同学人数的百分比。
(3)哪个是总体,哪个是个体?
(4)如果采取抽样调查方式,为了保证每个个体被抽取的可能性都相同,可采用随机抽取学号的方法:将全班到校上课的学生的学号分别写在大小相同的纸条上,做成纸签,放入一个大袋子里,并把纸签摇匀。然后从袋中随机抽取5名同学的学号,统计这5人中骑自行车上学的人数,并算出这些人数占5名上学人数的百分比,并把它作为全班骑自行车上学的同学的人数所占的百分比。你感觉这种估计的精确度如何?
(5)将4中随机抽取的样本容量改为20,重复实验。
(6)将4、5中所得到的百分比与普查所得到的百分比加以比较,你发现哪此调查结果更接近总体的真实情况?
7、你还能想出其他抽样调查的方法吗?
不同的抽样方法,所得到的样本可能不同,即使对于同样的抽样方法,每次抽样得到的数据也可能是不同的,这说明抽样调查的结果具有随机性,即不确定性。一般地,在简单随机抽样中,可以有多种不同的抽样方法,但只要有足够的样本容量,就可以根据结果对总体做出估计。
想一想,用上面(5)中调查所得到的数据估计今天骑自行车上学的人数占全校同学人数的百分比合适吗?
由于不同年级骑自行车上学的同学人数可能差别较大,因此,采用分层抽样的方法比较合适。也就是先按年级进行分层,每个年级作为一层,然后按照各年级在校学生人数占全校同学人数的比值大小分配样本数。而在各个层内则采用随机抽样。
例1、李大伯为了估计一袋种子中打动的粒数,先从袋中取出50粒,做上记号,然后放回袋中。将豆粒搅匀,再从袋中取出100粒,从这100粒中,找出带记号的打动。如果带记号的打动有2粒,便可估计出袋中所有打动的粒数。你知道他是怎么估计的吗?
解:第二次取出的大豆中,带记号的大豆占100粒的2%。由于经过搅匀,带记号的大豆在袋中是均匀分布的。所以,估计袋中约有大豆
50????????(粒)
三、结论总结
通过本节课的内容,你有哪些收获?
(1)生活中要对某一问题进行抽样调查,可根据简单的随机抽样,分层随机抽样,整群随机抽样,等距随机调查等抽样方法进行设计调查方案。(2)抽样调查的样本要有代表性,没有偏向。四、课堂练习
1、你认为下列的调查和判断正确吗?为什么?
(1)某校的黑板报上刊登了一篇题为《我校大部分学生不吃早餐》的报道。文章说:“本报小记者通过对课间到学校商品部买小食品的20名同学的调查,发现有16人是因为没有吃早餐而去买零食。由此推断,我校80%的学生在家不吃早餐。”
(2)在一场篮球比赛的实况转播中,解说员介绍了参加美国职业篮球比赛(NBA)的3名中国籍选手的身高。有位观众把这三个人的平均身高与美国球员的平均身高进行比较,得出了一个结论:“中国人的平均身高比美国人高。”
2、某商场8月份随机抽查七天的营业额,数据分别如下(单位:万元):3.6,3.2,3.4,3.9,3.0,3.1,3.6试估计该商店8月份的营业而大约是多少万元。五、作业布置课本P.90第1、2题六、板书设计
高中数学必修三《简单随机抽样》教学设计
(一)教学目标:
知识与技能:
理解统计学需要解决的问题、抽样的必要性,简单随机抽样的概念,掌握简单随机抽样的两种方法;
过程与方法:
通过对生活中的实例分析、解决,体验简单随机抽样的科学性及其方法的可靠性,培养分析问题,解决问题的能力;
情感、态度、价值观:
通过身边事例研究,体会抽样调查在生活中的应用,培养抽样思考问题意识,养成良好的个性品质。
(二)教学重点、难点
重点:掌握简单随机抽样常见的两种方法(抽签法、随机数表法)
难点:理解简单随机抽样的科学性,以及由此推断结论的可靠性
(三)教学基本思路
一、设置情境
引入:
师:从这节课开始我们来学习新的一章——统计,当我们把这两个字键入“百度”或“google”的搜索栏内,呈现给我们的第一个词条就是“中华人民共和国国家统计局”(如右图)看来国家专门设置了一个统计部门,在主页上我们看到:3月份全国居民消费价格同比上涨8.3%城市上涨8.0%(如右下图),这当然是统计出的结论,关于统计你还知道那些例子吗?
生:学生回答。
师:统计的例子有很多,如:产品的合格率、农作物的产量、产品的销售量、某地的气温、就业状况、电视台的收视率、我国是世界上的第13个贫水国,人均淡水占有量排世界第109位、我国土地沙漠化问题非常严重,全国沙漠化土地面积已超过174000平方公里,并以每年3400平方公里的速度扩张。这些都是统计出来的。可见统计是大量存在的,是与我们的日常生活息息相关,而且它反映了某种规律,而这种规律对我们来说是非常重要的,可以通过它来更好的指导我们去生活。
设计意图:让学生充分理解到统计的重要性,与现实生活联系在一起,数学来源于生活,激发学生的求知欲望。
师:统计前提得有数据,你知道这些数据是怎么来的吗?通过调查获得的。怎么调查?是对考
察对象进行全面调查还是抽样调查?带着这个问题咱们看下面的笑话:
妈妈:“儿子,帮妈妈买盒火柴去。”
妈妈:“这次注意点,上次你买的火柴好多划不着。”………儿子高兴地跑回来。
孩子:“妈妈,这次的火柴全划得着,我每根都试过了。”
孩子:“妈妈,这次的火柴全划得着,我每根都试过了。”
笑过之后,我们能得到什么样的结论呢?
生:这个调查具有破坏性,不可能每根试过,不能展开全面调查。
设计意图:这个笑话要绘声绘色的讲出来,避免用幻灯片,减少人机对话。从身边的笑话看出数学问题,提高学生学习数学的兴趣,且要关注生活中的数学。
再比如:要了解全国高中生的视力情况:请你设计调查方法。
参考:(1)对全国所有的高中生进行视力测试;属于普查,工作量太大,不方便,没有必要。
(2)对某一所著名中学的高中生进行视力测试;这种方法缺乏普遍性,不合适。
(3)在全国按东、南、西、北、中分片,每个区域各抽3所中学,对这15所中学的全部高中生进行视力测试。
设计意图:用学生身边的事去举例,能达到了提升学生兴趣的目的,让学生举例,让学生参与课堂。感受解决身边问题的满足感。让学生体验抽样的科学性。这是突破教学难点的重要环节之一。到此,例子铺垫已经达到了很好的效果,学生已了解统计的重要性。
师:人们在研究某个自然现象或社会现象时,会遇到不方便、不可能或不必要对所有对象作调查的情况,往往采用抽样调查的方法。
同学们觉得在什么时候用普查方式较好?什么时候用抽样调查方式较好呢?
生:(1)当调查的对象个数较少,调查容易进行时,我们一般采用普查的方式进行。
(2)当调查的结果对调查对象具有破坏性时,或者会产生一定的危害性时,或不大经济可行我们通常采用抽样调查的方式进行调查。
(3)当调查对象的个数较多,调查不易进行时,我们常采用抽样调查的方式进行调查。
提出问题
例如:为了了解一批计算器的寿命,我们能将它们逐一测试吗?很明显,这既不可能也没必要。实践中,由于所考察的总体中的个体数往往很多,而且许多考察带有破坏性,因此,我们通常只考察总体中的一个样本,通过样本来了解总体的情况。
这就是统计学要解决的问题:用样本来估计总体
于是,如何设计抽样方法,使抽取的样本能够真正代表总体,就成为我们要关注的一个关键问题。否则,如果样本的代表性不好,那么对总体的判断就会出现错误。
下面的故事是一次著名的失败的统计调查,被称为抽样中的泰坦尼克事件。它可以帮助我们理解为什么一个好的样本如此重要。
在1936年美国总统选举前,一份颇有名气的杂志的工作人员做了一次民意调查。调查兰顿(当时任堪萨斯州州长)和罗斯福(当时的总统)中谁将当选下一届总统。为了了解公众意向,调查者通过电话簿和车辆登记簿上的名单给一大批人发了调查表(注意在1936年电话和汽车只有少数富人拥有)。通过分析收回的调查表,显示兰顿非常受欢迎,于是杂志预测兰顿将在选举中获胜。
实际上选举结果正好相反,最后罗斯福在选举中获胜,其数据如下:
候选人
预测结果
选举结果
罗斯福
43
62
兰顿
57
38
你认为预期结果出错的原因是什么?
生:原因是:用于统计推断的样本来自少数富人,只能代表富人的观点,不能代表全体选民的观点(样本不具有代表性)。
师:像本例中这样容易得到的样本称为方便样本。如果使用“方便样本”,那么得出与事实不符的结论的可能性就会大大增加。
设计意图:让学生了解到:合理抽样的重要性。
因此科学合理地采集样本才能作出客观的统计推断。那么,怎样从总体中抽取样本呢?如何表示样本数据?如何从样本数据中提取基本信息(样本分布、样本数字特征等),来推断总体的情况呢?这些正是本章要解决的问题。
本节课我们来解决如何抽取样本,如何表示数据。(给出标题)
请大家翻开教材P54阅读相关的概念名词。之后找同学回答下面的问题:
要了解全国高中生的视力情况,第三种调查方法:在全国
①按东、西、南、北、中分片,
②每个区域各抽3所中学,
③对这15所中学的全部高中生15000人进行视力测试。
总体是什么?个体是什么?样本是什么?样本的容量是什么?
生:回答。
设计意图:简单易懂的概念让学生自学效果比较好。
师:为了了解学生对学校伙食的满意程度,小红访问了50名女生;小聪访问了50名男生;小明访问了24名男生和24名女生,其中高一、高二和高三的男生和女生各8名。你认为小红、小聪、小明三人的不同抽样方法那一种最好?为什么?
答:小明的方法最好。小明抽得样本既有男生,又有女生,而均匀分布在各年级,这样的抽样较具有代表性,反映的情况具有普遍意义。结论:在抽样时不能只图方便。如果只从一些容易得到的个体中抽取样本,那么所得到的样本只是一个“方便样本”,“方便样本”的代表性差,基本这种方便样本得出的结论就会与事实相左。
生活中的“数学”:品尝一勺汤,就可以知道一锅汤的味道,你知道其中蕴涵的道理吗?
高质量的样本数据来自“搅拌均匀”的总体。如果我们能够设法将总体“搅拌均匀”,那么从中任意抽取一部分个体的样本,它们含有与总体基本相同的信息。
设计意图:生活中蕴含着丰富的数学知识,让学生去体悟生活。
如何抽取样本,直接关系到对总体估计的准确程度,因此在抽样时要保证每一个个体都可能被抽到,每一个个体被抽到的机会是均等的,满足这样的条件的抽样叫随机抽样。如何才能实现上述要求呢,统计工作者设计了许多方法,本章会介绍几种常用的随机抽样方法。
一般地,从元素个数为N的总体中不放回地抽取容量为n的样本,如果每一次抽取时总体中的各个个体有相同的可能性被抽到,这样的抽样方法为简单随机抽样,这样抽取的样本,叫做简单随机样本。
注意以下点:(1)它要求被抽取样本的总体的个体数有限;(2)它是从总体中逐个进行抽取;
(3)它是一种不放回抽样;(4)它是一种等概率抽样。
简单随机抽样是在特定总体中抽取样本,总体中每一个体被抽取的可能性是等同的,而且任何个体之间彼此被抽取的机会是独立的。如果用从个体数为N的总体中抽取一个容量为n的样本,那么每个个体被抽取的概卒等于n/N(举书上的例子加以说明)
经常采用的方法(满足公平性)?
1、抽签法(抓阄法)
先将总体中的所有个体(共N个)编号(号码可以从1到N),并把号码写在形状、大小相同的号签上(号签可以用小球、卡片、纸条等制作),然后将这些号签放在同一个箱子里,进行均匀搅拌。抽签时,每次从中抽出1个号签,连续抽取n次,就得到一个容量为n的样本。对个体编号时,也可以利用已有的编号。例如学生的学号,座位号等。
抽签法的步骤:
1、把总体中的N个个体编号;
2、把号码写在号签上,将号签放在一个容器中搅拌均匀;
3、每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本。
例子:选修课抽签、福利彩票等。
例:要从班级46人中选5人为幸运同学去参加沈阳火炬手的选拔活动,请你用抽签法完成这一工作。
学生答完后,老师已经设计了46张签,请同学们现场实践抽取一下。
设计意图:让学生充分理解抽签的过程。在自主探究,合作交流中构建新知,体验“抽签法”的公平性,从而突破难点,突出重点。
优缺点?(学生回答)引入随机数表法
2、用随机数表法进行抽取
随机数表是由0、1、2……9这10个数字组成的数表,并且表中的每一位置出现各个数字的可能性相同。有scilab命令生成随机数表。
(1)随机数表是统计工作者用计算机生成的随机数,并保证表中的每个位置上的数字是等可能出现的。
(2)用随机数表进行抽样的步骤:将总体中个体编号;选定开始的数字;获取样本号码。
(3)用随机数表抽取样本,可以任选一个数作为开始,读数的方向可以向左,也可以向右、向上、向下等等。因此并不是唯一的。
(4)由于随机数表是等概率的,因此利用随机数表抽取样本保证了被抽取个体的概率是相等的。
例:还是上一道题目,请同学们用随机数表编写。
规则1:从第3行第11列的两位数开始,依次向下读数,到头后再转向它左面的两位数号码,并向上读数,以此下去,直到取足样本。
规则2:从第12行第11列的两位数开始,每五列取头两位,依次向左读数,到头后再转向它下面的两位数号码,并向右读数,以此下去,直到取足样本。
练习:
1.下列抽取样本的方式是属于简单随机抽样的是(C)
①从无限多个个体中抽取100个个体作样本;②盒子里有80个零件,从中选出5个零件进行质量检验,在抽样操作时,从中任意拿出一个零件进行质量检验后,再把它放回盒子里;③从8台电脑中不放回的随机抽取2台进行质量检验(假设8台电脑已编好号,对编号随机抽取)
A.①B.②C.③D.以上都不对
四个特点:①总体个数有限;②逐个抽取;③不放回;④每个个体机会均等,与先后无关。
2.下列问题中,最合适用简单随机抽样的是()
A.某电影院有32排座位,每排有40个座位,座位号是1—40,有一次报告会坐满了听众,报告会结束以后为听取意见,要留下32名听众进行座谈。
B.从10台冰箱中抽出3台进行质量检查。
C.某学校有在编人员160人,其中行政人员16人,教师112人,后勤人员32人,教育部门为了了解学校机构改革意见,要从中抽取一个容量为20的样本。
D.某乡农田有山地8000亩,丘陵12000亩,平地24000亩,洼地4000亩,现抽取农田480亩估计全乡农田平均产量。
选B,对于A,C,D又该怎么办呢,咱们下节课处理。
设计意图:1)加深对概念的理解2)为下节课打下伏笔
小结
1.简单随机抽样的概念
一般地,设一个总体的个体数为N,如果通过逐个抽取的方法从中抽取一个样本,且每次抽取时各个个体被抽到的概率相等,就称这样的抽样为简单随机抽样。
2.简单随机抽样的方法:抽签法、随机数表法
3.争取理解抽样理念,对等概率要求
4.注意统计思想在现实生活中的应用
注:随机抽样并不是随意或随便抽取,因为随意或随便抽取都会带有主观或客观的影响因素。
高中数学必修三《简单随机抽样》教案
一、教学目标
【知识与技能】
能够准确叙述出随机抽样的概念,可以利用抽签法解决简单的实际问题。
【过程与方法】
在解决统计问题的过程中,学会用简单随机抽样的方法从总体中抽取样本。
【情感态度与价值观】
通过对现实生活统计问题的提出,体会数学知识与现实世界及各学科知识之间的联系,认识数学的重要性。
二、教学重、难点
【重点】
掌握简单随机抽样常见的抽签法.
【难点】
理解简单随机抽样的科学性,以及由此推断结论的可靠性.
三、教学过程
(一)创设情境,导入新课
请问下列调查是“普查”还是“抽样”调查?
(1)一锅水饺的味道(2)旅客上飞机前的安全检查
(3)一批炮弹的杀伤半径(4)一批彩电的质量情况(5)美国总统的民意支持率
学生经过讨论后得出答案。引出课题。
(二)师生互动,探索新知
在学生明确了抽样与普查的区别之后,为了加深对抽样概念的理解设计如下例题。
例1:语文老师为了了解某班同学对某首诗的背诵情况,应采用下列哪种抽查方式?为什么?
A.在班级12名班委名单中逐个抽查5位同学进行背诵
B.在班级45名同学中逐一抽查10位同学进行背诵
先让学生分析、选择B后,师生一起归纳其特征,让学生体验B种抽样的科学性,然后教师指出这就是简单随机抽样,最后板书课题——简单随机抽样及其定义。
简单随机抽样的含义:一般地,设一个总体有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,则这种抽样方法叫做简单随机抽样。
教师总结简单随机抽样的特点:(1)总体的个数有限;(2)样本的抽取式逐个进行的,每次只抽取一个个体;(3)抽取的样本不放回,样本中无重复个体(4)每个个体被抽到的机会都相等,抽样具有公平性
例2.在班级45名同学中逐一抽查10位同学进行背诵的抽签步骤是什么呢?
先让学生独立思考,然后分小组合作学习,各小组推荐一位同学发言,最后师生一起归纳“抽签法”步骤,教师板书上面步骤。
抽签法的一般步骤:
(1)将总体的个体编号。
(2)连续抽签获取样本号码。
(三)知识剖析,深化新知
例3.假设我们要考察某公司生产的500克袋装牛奶的质量是否达标,现从800袋牛奶中抽取60袋进行检验.
提问:这道题适合用抽签法吗?
学生小组讨论总结。
抽签法的优点是简单易行,缺点是当总体的容量非常大时,费时、费力,又不方便,如果标号的签搅拌得不均匀,会导致抽样不公平.
(四)生生合作,巩固提高
1.判断下列抽取样本的方式是属于是否是简单随机抽样()
A.从自然数集中抽取100个数做样本
B.盒子里有80个零件,从中选出5个零件进行质量检验,在抽样操作时,从中任意拿出一个零件进行质量检验后,再把它放回盒子里
C.校运会进行高一年纪男子400米接力赛,用抽签的形式决定每个班级的赛道
D.为了了解九年级一班全班同学的学习负担情况,班主任只在本班的班委中进行调查
2.抽签法中确保样本代表性的关键是()
A.制签B.搅拌均匀C.逐一抽取D.抽取不放回
(五)总结归纳,布置作业
采用问答的形式回顾本堂课的知识内容
1.简单随机抽样及抽签法
2.抽签法的操作步骤
作业:学校需要抽查某班学生的身体健康状况,请设计两个不同的方案帮学校对学生进行抽样检测。
四、板书设计
简单随机抽样
1.定义:
特点:
2.基本方法
抽签法
第二章统计
2.1.1简单随机抽样
【学习目标】
1.理解并掌握简单随机抽样的概念、特点和步骤.
2.掌握简单随机抽样的两种方法.
【新知自学】
阅读教材第54-57页内容,然后回答问题
1.课本第55页的《一个著名的案例》中,你认为结果出错的原因是什么?
2.假设你作为一名食品卫生工作人员,要对某食品店内的一批小包装饼干进行卫生达标检验,你准备怎样做?
显然,你只能从中抽取一定数量的饼干作为检验的样本。(为什么?)那么,应当怎样获取样本呢?
3.同学们平时在确定某人参加某项活动时,往往采用抓阄来确定,抓阄对每位同学公平吗?
知识回顾:
1.总体:我们所要考查对象的叫做总体,其中每一个考查对象叫做.总体中个体的数量叫做.
2.样本:从总体中抽出的若干个个体组成的集合叫做总体的一个,样本中个体的数量叫做.
新知梳理:
一、简单随机抽样的概念
1、定义:
2、特点:
(1)简单随机抽样要求被抽取的样本的总体个数N是的(有限或无限)。
(2)简单随机样本数n样本总体的个数N(小于等于或大于)。
(3)简单随机样本是从总体中抽取的(逐个或一起)。
(4)简单随机抽样是一种的抽样(放回或不放回)。
(5)简单随机抽样的每个个体入样的可能性均为(用比值表示)。
二、抽签法和随机数法
1、抽签法
(1)定义:
(2)步骤:
2、随机数法:
(1)定义:
(2)步骤(随机数表法的步骤):
对点练习:
1.下列的抽样方法是简单随机抽样吗,为什么?
①火箭队共有15名球员,指定个子最高的两名球员参加球迷见面会.
②从20个零件中一次性抽出3个进行质量检验.
③一儿童从玩具箱中的20个玩具中随意拿出一件来玩,完后放回再拿出一件,连续玩了5件.
2.抽签法中确保样本具有代表性的关键是()
A.制签B.搅拌均匀
C.逐一抽取D.抽取不放回
3.从总数为的一批零件中抽取一个容量为30的样本,若每个零件被抽取的可能性为25%,则
为()
A.150B.200C.100D.120
【合作探究】
典例精析
例1.下列抽样的方式是否属于简单随机抽样?为什么?
(1)从无限多个个体中抽取50个个体作为样本。
(2)箱子里共有100个零件,从中选出10个零件进行质量检验,在抽样操作中,从中任意取出一个零件进行质量检验后,再把它放回箱子。
变式训练1.下面的抽样方法是简单随机抽样的是:______
(1)某班有60名同学,指定个子最高的5名同学参加校篮球赛;
(2)从实数集中逐个抽取10个数分析能否被2整除;
(3)从200个灯泡中逐个抽取10个进行质量检查.
例2.某车间工人加工一种轴100件,为了了解这种轴的直径,要从中抽取10件轴在同一条件下测量,如何采用简单随机抽样的方法抽取样本?写出抽样过程.
变式训练2.某校有200名教师,现要从中随机抽出10名教师组成讲师团,请写出利用随机数法抽取该样本的步骤.
例3.要从本班第5学习小组中随机抽取2人参加某项活动,请选择合适的抽样方法,写出抽样过程.
【课堂小结】
1、简单随机抽样是一种最简单、最基本的抽样方法,简单随机抽样是一种抽样,常用的简单随机抽样方法有和
2、抽签法的优点是简单易行,缺点是当时,费时、费力,又不方便,如果标号的签搅拌得,会导致抽样不公平,随机数表法的优点与抽签法相同,缺点是当时,仍然不是很方便,因此这两种方法只适合的抽样类型。
3、简单随机抽样每个个体入样的可能性都,均为.
【当堂达标】
1.为了了解全校240名学生的身高情况,从中抽取40名学生进行测量,下列说法正确的是()
A.总体是240
B.个体是每一个学生
C.样本是40名学生
D.样本容量是40
2.为了正确所加工一批零件的长度,抽测了其中200个零件的长度,在这个问题中,200个零件的长度是()
A.总体B.个体是每一个学生
C.总体的一个样本D.样本容量
3.一个总体中共有200个个体,用简单随机抽样的方法从中抽取一个容量为20的样本,则某一特定个体被抽到的可能性是。
4.为了解学校240名学生的身高情况,从中抽取40名学生进行测量,则样本容量是。
【课时作业】
1.在简单随机抽样中,某一个个体被抽到的可能性()
A、与每次抽样有关,第一次抽中的可能性大些
B、与每次抽样无关,每次抽中的可能性相等
C、与每次抽样有关,最后一次抽中的可能性较大
D、与每次抽样无关,每次都是等可能的抽取,但各次抽取的可能性不一样
2.为了分析该校1000名学生的期末成绩,从中抽取100名学生的成绩单,则100名学生的成绩单是()
A.总体B.个体
C.总体的一个样本D.样本容量
3.从总数为N的一批零件中抽取一个容量为30的样本,若每个零件被抽取的可能性为25%,则N为()
A.150B.200
C.100D.120
4.下列抽样方法是简单随机抽样的是()
A.某工厂从老年、中年、青年职工中按2:5:3
的比例抽取职工代表
B.从实数集中抽取10个数分析能否被2整除
C.福利彩票用摇奖机摇奖
D.规定凡买到明信片的最后几位号码是“6637”的人获三等奖
5.从某批零件中抽取50个,然后再从这50个中抽取40个进行合格检查,发现合格产品有36个,则该产品的合格率为()
A.36%B.72%C.90%D.25%
6.某总体容量为M,其中带有标记的有N个,现用简单随机抽样方法从中抽取一个容量为的样本,则抽取的个个体中带有标记的个数估计为()
A.B.C.D.
7.下列调查的样本不合理的是
①在校内发出一千张印有全校各班级的选票,要求被调查学生在其中一个班级旁画“√”,以了解最受欢迎的教师是谁;
②从一万多名工人中,经选举确定100名代表,然后投票表决,了解工人们对厂长的信任情况;
③到老年公寓进行调查,了解全市老年人的健康情况;
④为了了解全班同学每天的睡眠时间,在每个小组中各选取3名学生进行调查.
8.一个总体的60个个体编号为00,01,…,59,现需从中抽取一容量为8的样本,请从随机数表的倒数第5行(下表为随机数表的最后5行)第11列开始,向右读取,直到取足样本,则抽取样本的号码是________.
953395220018747200183879586932817680269282808425399084607980
243659873882075389359635237918059890073546406298805497205695
157480083216467050806772164279
203189034338468268723214829970806047189763493021307159730550
0822237177910193204982965926946639679860
9.某工厂共有名工人,为了调查工人的健康情况,从中随机抽取20名工人作为调查对象,若每位工人被抽到的可能性为,则=
10.现在从20名学生中抽取5名进行问卷调查,试写出抽取样本的过程.
文章来源:http://m.jab88.com/j/28071.html
更多