88教案网

高一下册化学《化学反应与能量》期中复习资料

俗话说,居安思危,思则有备,有备无患。高中教师要准备好教案,这是高中教师的任务之一。教案可以更好的帮助学生们打好基础,帮助高中教师更好的完成实现教学目标。关于好的高中教案要怎么样去写呢?以下是小编收集整理的“高一下册化学《化学反应与能量》期中复习资料”,仅供参考,大家一起来看看吧。

高一下册化学《化学反应与能量》期中复习资料

一、化学能与热能

1、化学能转化为热能的形式及原因

当物质发生化学反应时,断开反应物中的化学键要吸收能量,形成生成物中的化学键要放出能量。化学键的断裂和形成是化学反应中能量变化的主要原因。

一个确定的化学反应在发生过程中是吸收能量还是放出能量,决定于反应物的总能量与生成物的总能量的相对大小。

(1)E(反应物总能量)E(生成物总能量),为放热反应,化学能转化为热能。这是人类利用化学能的最为主要的形式。

(2)E反应物总能量

2、常见的放热反应和吸热反应

(1)常见的放热反应:

①所有的燃烧与缓慢氧化;②酸碱中和反应;③金属与酸或水反应;④大多数化合反应(特殊:C+CO2=2CO是吸热反应)。

(2)常见的吸热反应:

①以C、H2、CO为还原剂的氧化还原反应如:C(s)+H2O(g)CO(g)+H2(g);②铵盐和碱的反应如Ba(OH)2·8H2O+NH4Cl=BaCl2+2NH3↑+10H2O;③大多数分解反应如KClO3、KMnO4、CaCO3的分解等。

3、基本概念

⑴能量守恒定律:一种形式的能量转化为另一种形式的能量,转化途径与能量形式可以不同,但体系中包含的总能量是不变的。

⑵中和热:强酸与强碱的稀溶液发生中和反应生成1mol水,所释放出的能量,叫做中和热。

二、化学能与电能

1、化学能转化为电能的方式

火电(火力发电):化学能→热能→机械能→电能

缺点:环境污染、低效

2、原电池原理

⑴概念:把化学能直接转化为电能的装置叫做原电池。

⑵原电池的工作原理:通过氧化还原反应(有电子的转移)把化学能转变为电能。

⑶原电池的组成:①活泼性不同的金属作为电极;②两个相互连接的电极插入电解质溶液构成闭合回路。

⑷电极名称及发生的反应:

①负极:较活泼的金属作负极,负极发生氧化反应;

电极反应式为:较活泼金属-ne-=金属阳离子

负极现象为:负极溶解,负极质量减少。

②正极:较不活泼的金属或石墨作正极,正极发生还原反应;

电极反应式为:溶液中阳离子+ne-=单质

正极的现象:一般有气体放出或正极质量增加。

⑸原电池正负极的判断方法:

①依据原电池两极的材料:较活泼的金属作负极(K、Ca、Na太活泼,不能作电极);较不活泼金属或可导电非金属(石墨)、氧化物(MnO2)等作正极。

②根据电流方向或电子流向:(外电路)的电流由正极流向负极;电子则由负极经外电路流向原电池的正极。

③根据原电池中的反应类型:

负极:失电子,发生氧化反应,现象通常是电极本身消耗,质量减小。

正极:得电子,发生还原反应,现象是常伴随金属的析出或H2的放出。

⑸原电池电极反应的书写方法:

①原电池反应所依托的化学反应原理是氧化还原反应,负极反应是氧化反应,正极反应是还原反应。

②原电池的总反应式一般把正极和负极反应式相加抵消掉电子而得。

⑹原电池的应用:

①加快化学反应速率,如粗锌制氢气速率比纯锌制氢气快。②比较金属活动性强弱。③设计原电池。④金属的腐蚀。

⑺化学电源基本类型:

①干电池:活泼金属作负极,被腐蚀或消耗。如:Cu-Zn原电池、锌锰电池。

②充电电池:两极都参加反应的原电池,可充电循环使用。如铅蓄电池、锂电池和银锌电池等。

③燃料电池:两电极材料均为惰性电极,电极本身不发生反应,而是由引入到两极上的物质发生反应,如H2、CH4燃料电池,其电解质溶液常为碱性试剂(KOH等)。

三、化学反应速率与限度

1、化学反应的速率

⑴概念:化学反应速率通常用单位时间内反应物浓度的减少量或生成物浓度的增加量(均取正值)来表示。计算公式:υ=△C/△t

①单位:mol/(L·s)或mol/(L·min)

②B为溶液或气体,若B为固体或纯液体不计算速率。

③重要规律:以mA+nBpC+qD而言,用A、B浓度的减少或C、D浓度的增加所表示的化学反应速率之间必然存在如下关系:

VA:VB:VC:VD=m:n:c:d。

⑵影响化学反应速率的因素:

内因:由参加反应的物质的结构和性质决定的(主要因素)。

外因:外界条件对化学反应速率有一定影响

①温度:升高温度,增大速率;

②催化剂:一般加快反应速率(正催化剂)。

③浓度:增加反应物的浓度,增大速率(溶液或气体才有浓度可言)。

④压强:增大压强,增大速率(适用于有气体参加的反应)。

⑤其它因素:如光(射线)、固体的表面积(颗粒大小)、反应物的状态(溶剂)、原电池等也会改变化学反应速率。

2、化学反应的限度

⑴化学平衡状态:在一定条件下,当一个可逆反应进行到正向反应速率与逆向反应速率相等时,反应物和生成物的浓度不再改变,达到表面上静止的一种“平衡状态”,这就是这个反应所能达到的限度,即化学平衡状态。

化学反应的限度:一定条件下,达到化学平衡状态时化学反应所进行的程度,就叫做该化学反应的限度。

⑵化学平衡状态的特征:逆、动、定、变。

①逆:化学平衡研究的对象是可逆反应。

②动:动态平衡,达到平衡状态时,正方应速率和逆反应速率相等,反应没有停止。

③定:达到平衡状态时,各组分的浓度保持不变,各组成成分的含量保持一定。

④变:当条件变化时,化学反应进行程度发生变化,反应限度也发生变化。

⑶外界条件对反应限度的影响

①外界条件改变,V正V逆,化学反应限度向着正反应程度增大的方向变化,提高反应物的转化率;

②外界条件改变,V逆V正,化学反应限度向着逆反应程度增大的方向变化,降低反应物的转化率。

3、反应条件的控制

⑴从控制反应速率的角度:有利的反应,加快反应速率,不利的反应,减慢反应速率;

⑵从控制反应进行的程度角度:促进有利的化学反应,抑制不利的化学反应。

相关推荐

高一下册化学《化学反应中的能量变化》期中复习资料


高一下册化学《化学反应中的能量变化》期中复习资料

化学反应的能量变化通常表现为热量的变化。

一、反应热

1、定义:在反应过程中放出或吸收的热量叫反应热。放出热量的反应叫放热反应。吸收热量的反应叫吸热反应(化学反应过程中,不仅有新物质生成,同时还伴随着能量的变化,并可以以热能、电能或光能等的形式表现出来。当能量以热的形式表现时,我们把反应分为放热反应和吸热反应。)

2、符号:⊿H(大吸小放)

3、单位:kJ/mol

4、计算依据:⊿H=生成物的总能量-反应物的总能量=H(生成物)-H(反应物)

⊿H=反应物的总键能–生成物的总键能

5、书写热化学方程式的注意事项:

(1)要标明反应的温度和压强,如不特别注明,即表示在101kPa和298K。

(2)要标明反应物和生成物的聚集状态,因为物质在不同的聚集状态下所具有的能量是不相同的,对同一反应来说,物质聚集状态不同,反应热(⊿H)的数值不同。

(3)热化学方程式中的化学计量数不表示分子个数,而是表示物质的量,所以,它可以是整数,也可以是分数。相同物质发生的同一个化学反应,当化学计量数改变时,其⊿H也同等倍数的改变,但⊿H的单位不变,仍然为kJ/mol。若将化学方程式中反应物和生成物颠倒,则⊿H的数值和单位不变,符号改变。

(4)热化学方程式一般不需要写反应条件,也不用标“↑”和“↓”。因为聚集状态已经表示出来了,固态用“s”液态用“l”,气态用“g”。

(5)⊿H要标注“+”或“-”,放热反应⊿H为“-”,吸热反应⊿H为’+”.

6、盖斯定律:

一定条件下,某化学反应无论是一步完成还是分成几步完成,反应的总热效应相同,这就是盖斯定律。盖斯定律的应用实际上是利用热化学方程式的加减。(化学反应的反应热只与反应体系的始态和终态有关,而与反应的途径无关)

7、(1)常见的放热反应有:可燃物的燃烧,酸碱中和反应,大多数化合反应,金属跟酸的置换反应

(2)常见的吸热反应有:大多数分解反应,以碳、氢气、一氧化碳作还原剂的氧化还原反应,铵盐与碱的反应。

二、燃烧热

定义:在101kPa下,1mol纯物质完全燃烧生成稳定的氧化物所放出的热量,叫做该物质的燃烧热。单位为kJ/mol

三、中和热

定义:在稀溶液中,酸跟碱发生中和反应而生成1molH2O时的反应热。

注意事项:

(1)必须是“稀溶液”,因为浓溶液在稀释过程中会放出热量,影响中和热。

(2)中和热不包括离子在水中的水合热,物质的溶解热,电解质电离所伴随的热效应。

(3)中和反应的实质是氢离子和氢氧根离子起反应生成水,若反应过程中有其他物质生成,这部分不属于中和热。

(4)稀的强酸和稀的强碱反应的中和热为57.3kJ/mol.若是弱酸或弱碱参与反应,则由于他们的电离要吸收热量,其热量的数值会小于57.3kJ/mol.

化学反应与能量


南京外国语学校朱征

教学设想

1、教材分析

案例章节:《普通高中标准实验教科书(人教版)》必修②第二章化学反应与能量第三节化学反应的速率和限度(第一课时)

内容分析

化学反应速率是对教材前两节内容的拓展和完善,化学反应速率的学习也为后面反应限度知识奠定了基础。本节教材从日常生活中学生熟悉的化学现象入手,引出反应速率的概念。在此基础上通过实验探究,总结影响化学反应速率的因素。

教学方法

问题教学、分组协作学习、实验探究

2、教学思路与设计

学生通过一年多的化学学习,了解到不同的化学反应速率有快有慢,同一个化学反应在不同的外界条件影响下也可能速率不同,而且基本上能够用微粒的观点加以解释。本课时选择浓度这一影响因素为载体,教会学生从定性、定量的角度设计实验比较反应快慢的方法,在实验中培养学生的实验设计能力和小组合作意识,掌握从实验数据出发,建立数学图像、数学模型,进而从物质微观结构做出解释的化学问题的研究方法。

在传统的教学中,学生在整章学完之后,仅记住书本上几个具体的实验,而今后遇到新问题,很难独立设计实验进行探究。“授人以鱼,不如授人以渔”。如何在这节课上,调动学生的思维,从已有知识中搜索相关信息,总结、归纳出一些可行的比较反应速率的方法是这节课的关键。因此用“影响反应速率的外部因素有哪些?”“借助哪些实验现象可以帮助我们比较反应的快慢?”“设计实验获取数据,定量的比较反应的快慢?”三个层层深入的讨论题贯穿这节课,促进学生科学探究的方法的习得,而不仅仅是知识本身。

一、教学目标分析

知识与技能:了解影响化学反应速率的主要因素;了解常用的比较反应快慢的简便方法;通过实验认识到浓度对化学反应速率的影响,并能以粒子的观点初步解释。

过程与方法:能够设计简单实验方法测定浓度对化学反应速率的影响,掌握从实验数据出发,建立数学图像、数学模型,进而形成一个由简单到复杂、宏观到微观、定性到定量的科学探究过程。

情感态度与价值观:能体会到实验是化学学习的重要手段,培养科学探究意识和实事求是的科学精神。

二、教学内容分析

设问质疑、呈示目标——笔者通过展示真实的图片(牛奶和咸水鸭的外包装),引出教学任务(化学反应速率),将学生的注意力都吸引到学习任务中来。通过温度条件的不同保存时间不同,使学生对此产生困惑(好奇)并对学习活动产生积极的兴趣和动机。当学生提出可能是温度影响了食品变质这样一个过程的速率时,笔者及时给予肯定,并马上提出“影响反应速率的因素还有哪些?”,激发学生的思考,导入下一个环节。

互动交流——教师是学生学习动机的激发者,是善于归纳问题的指导者,更是教学活动的调节者和组织者。策划好个别研究与集体讨论的步骤、节奏和深广度,在学习过程中培养学生的合作精神和创新精神,学生在问题情境中去“发现”问题,提出解决方案,从探究和讨论中掌握知识,获得发展。教师适时的激发学生的思考,让问题的讨论环环相扣,步步深入。

实验探究——这是引导学生深入学习的关键环节。实践出真知。本节课采用引导-发现教学模式,引导学生通过实验(镁条与不同浓度盐酸的反应),去观察、分析、研究,从而“发现”知识,探究规律;从生活实际中发现问题(牛奶、咸水鸭的外包装),通过设计,用实验去探究,用数据去分析,再用理论去论证,从而使问题获得解决。

得出结论——学生通过亲身经历的科学探究活动,在教师的引导下,得到正确的结论。以此为基础,构建数学图像分析问题(学生根据测得数据,绘制表格)。教师帮助学生将在探究阶段所构建的陈述性知识重新组织成有利于运用的程序性知识形式(师生共同归纳总结,把一般性知识概括成),建立并加强其与其他知识之间的联系,以便于将来的提取和使用。

总结与反思——在这节探究课的最后,教师和学生一起进行总结与反思。总结从两方面进行:一方面是学生在完成一阶段的探究活动后,反思这节课所做实验的严密性,还有哪些方面有待解决,比如,学生在探究实验结束之后,反思实验过程中,手握反应试管,会导致反应温度变化,影响实验结果。另一方面,教师依据整节课的环节,结合教材对全课及探究过程进行总结。

本节课采用模块化的结构,以六个模块构成整体,逐层深入展开问题。

三、--流程(见下表)

模块一影响化学反应速率的外部因素

教师活动

学生活动

设计意图

引入:为什么不同温度,牛奶、盐水鸭等食品的保值期不同?

聚焦问题情景

激发学生兴趣

提问:举例说明影响化学反应速率的外部因素有哪些?

小组讨论、举例

引入正题

师生共同归纳影响因素

1、催化剂(双氧水的分解)

2、浓度(蜡烛在空气和氧气燃烧)

3、表面积(碳酸钙与盐酸反应)

4、温度(金属的氧化)

……

激活学生的认知结构,引导学生

模块二如何定性地比较反应快慢

教师活动

学生活动

设计意图

选择浓度进行探究

提问:在探究浓度对反应速率影响时,借助哪些现象可以比较反应速度的快慢?

小组讨论、举例并总结在日常生活和化学实验过程中观察化学反应进行得快慢的方法

化学反应速率的定性观察

引导学生、拓宽思路

归纳总结:气泡多少,沉淀快慢,固体消失快慢,温度变化,颜色变化……

为后面引出定量实验做铺垫

总结:比较反应的快慢,一般比较反应物消耗的快慢或者生成物增加的快慢。

内化、概括、建立概念体系

模块三如何定量地比较反应快慢

教师活动

学生活动

设计意图

给予及时的评价和启发

小组讨论、交流:

针对镁条与不同浓度盐酸的反应,如何设计实验,通过数据,定量地比较反应的快慢?

思考、讨论、汇报

1、测定单位时间内生成氢气的体积

2、测定镁条消耗所需时间长短

3、测定密闭容器内气压增加的快慢

4、测定敞开体系质量减少的快慢

……

培养学生的思维发散能力与知识迁移运用能力

学生讨论、交流,提出疑问

密闭容器内气压增加的快慢实验演示(利用数据采集技术)

及时巩固

小结学生方案

归纳常用实验方法

①体系质量变化

②生成气体体积

③生成沉淀的量

……

提高知识的可利用性,将陈述性知识组织成程序性知识。

模块四实验探究

教师活动

学生活动

设计意图

给出实验步骤方法

学生分组分工完成实验探究,记录数据,分析数据。

利用所得数据,绘制曲线。

培养学生的实验动手能力、合作意识与数据分析处理能力

适时点评

学生以小组为单位,进行数据汇报

模块五从微观角度解释

教师活动

学生活动

设计意图

提问:如何从微粒的角度解释这一结果?

学生积极思考

由宏观到微观,培养学生认识物质本质的科学探究方法

提问:还有什么因素会影响反应物微粒的碰撞几率?

思考、回答

演示Flash动画

观看、思考

多媒体辅助教学,促进学生对微观粒子的理解

模块六评价与反思

教师活动

学生活动

设计意图

本实验中忽略了什么因素的影响?

学生回答

培养学生思考问题的严密性与实验评价能力

对学生在探究过程中的表现进行评价

集中注意,倾听

适时的评价强化学生参与的主动性

教后反思:

1、小组协作学习,积极参与问题解决过程
引导-发现探究教学模式强调学生的积极参与,学习任务主要是通过学生自主探索和协作学习完成的。本节课采用小组协作的形式,一般由4人组成,各小组按照探究活动进行分工(记录、掐表、搭建仪器、操作),由小组成员共同完成一个研究课题。在探究过程中,小组成员既有分工,又有合作。学生要积极主动地利用各种信息工具获取、分析、处理信息,并在活动中学会与人交流、合作共同完成学习任务。

2、发展学生的思维品质

传统课上,老师的演示实验或是学生实验其实变成了验证性的实验。而笔者在英国进修期间,留意到英国中学在处理这一部分内容时,首先通过计算机辅助手段让学生了解有关化学反应中的微粒碰撞理论,然后在具体研究每一种因素时,都是采用学生实验得出结论,再尝试用碰撞理论解释,最后迁移运用。这样一种方式是一种真正的探究模式,学生从实验中形象的感知,再从理论中抽象的概括,符合学生的认知规律。

教师从学科领域和现实生活中选择主题,创设一种类似科学研究的情境,运用类似科学研究的办法,使学生主动探究问题,获得知识、技能、情感、态度的发展,促进学生创新意识、创新能力的提高。通过实验之后的反思,培养了学生思维的严密性,并对物质探究由定性到定量,由宏观到微观的科学认识方法。

3、充分利用数据采集技术

数据采集技术具有方便、精确、细微化等优势,解决传统实验技术方法无法进行的或无法显示的实验或无法处理数据的实验,充分挖掘化学实验的资源价值,提高实验的探索性,使信息技术从学习对象转变为学习工具。例如,密闭容器内气压增加快慢的实验。利用计算机开发和控制化学演示实验过程,利用数、模转换技术和传感器使数字采集、分析和报告自动化、科学化,提高了演示实验效果和水平,为化学实验提供了一种新的计算机辅助教学模式。

运用数据采集技术不仅是改进教学的手段,而是改变学生的学习方式,开拓了学生的视野,大大扩展了学生思考设计实验方案的空间。进而促使学生自主学习,引发化学教学模式变革,为培养信息时代的接班人开辟了新的途径。

4、现代教学媒体与传统板书有机结合

现代教学媒体(Flash动画、PowerPoint)能把文字、声音、图像、动画等传媒集于一体,具有促思,激趣,高效等功能。吸引学生的注意,在发现学习教学中,充分利用多媒体手段可以收到事半功倍的效果。但传统的教学手段板书,也有着不可替代的作用,在教师提问、学生回答的过程中,教师的板书有助于学生倾听已有意见,在此基础上,发表自己的观点,师生共同完成教学过程。

高一下册化学《元素周期表》期中复习资料


高一下册化学元素周期表期中复习资料

1.1原子半径

(1)除第1周期外,其他周期元素(惰性气体元素除外)的原子半径随原子序数的递增而减小;

(2)同一族的元素从上到下,随电子层数增多,原子半径增大。

1.2元素化合价

(1)除第1周期外,同周期从左到右,元素最高正价由碱金属+1递增到+7,非金属元素负价由碳族-4递增到-1(氟无正价,氧无+6价,除外);

(2)同一主族的元素的最高正价、负价均相同

1.3单质的熔点

(1)同一周期元素随原子序数的递增,元素组成的金属单质的熔点递增,非金属单质的熔点递减;

(2)同一族元素从上到下,元素组成的金属单质的熔点递减,非金属单质的熔点递增

1.4元素的金属性与非金属性

(1)同一周期的元素从左到右金属性递减,非金属性递增;

(2)同一主族元素从上到下金属性递增,非金属性递减。

1.5最高价氧化物和水化物的酸碱性

元素的金属性越强,其最高价氧化物的水化物的碱性越强;元素的非金属性越强,最高价氧化物的水化物的酸性越强。

1.6非金属气态氢化物

元素非金属性越强,气态氢化物越稳定。同周期非金属元素的非金属性越强,其气态氢化物水溶液一般酸性越强;同主族非金属元素的非金属性越强,其气态氢化物水溶液的酸性越弱。

1.7单质的氧化性、还原性

一般元素的金属性越强,其单质的还原性越强,其氧化物的氧离子氧化性越弱;元素的非金属性越强,其单质的氧化性越强,其简单阴离子的还原性越弱。

2.推断元素位置的规律

判断元素在周期表中位置应牢记的规律:

(1)元素周期数等于核外电子层数;

(2)主族元素的序数等于最外层电子数;

(3)确定族数应先确定是主族还是副族,其方法是采用原子序数逐步减去各周期的元素种数,即可由最后的差数来确定。最后的差数就是族序数,差为8、9、10时为VIII族,差数大于10时,则再减去10,最后结果为族序数。

第一章《化学反应与能量》总复习资料


第一章《化学反应与能量》总复习资料

【编者按】化学反应过程中,不仅有物质的变化,同事还伴随有能量的变化,并可以热能、电能或光能等形式表现出来。当能量以热的形式表现是,我们把反应分为放热反应和吸热反应。在化学反应中,能量的释放或吸收是以发生变化的物质为基础的,二者密不可分,但以物质为主。能量的多少则以反应物和产物的质量为基础。这是我们学习化学反应与能量这一张是必须把握的一个基本思想。
一、化学反应与能量的变化
课标要求
1、了解化学反应中能量转化的原因和常见的能量转化形式
2、了解反应热和焓变的含义
3、认识热化学方程式的意义并能正确书写热化学方程式
要点精讲
1、焓变与反应热
(1)化学反应的外观特征
化学反应的实质是旧化学键断裂和新化学键生成,从外观上看,所有的化学反应都伴随着能量的释放或吸收、发光、变色、放出气体、生成沉淀等现象的发生。能量的变化通常表现为热量的变化,但是化学反应的能量变化还可以以其他形式的能量变化体现出来,如光能、电能等。
(2)反应热的定义
当化学反应在一定的温度下进行时,反应所释放或吸收的热量称为反应在此温度下的热效应,简称为反应热。通常用符号Q表示。
反应热产生的原因:由于在化学反应过程中,当反应物分子内的化学键断裂时,需要克服原子间的相互作用,这需要吸收能量;当原子重新结合成生成物分子,即新化学键形成时,又要释放能量。生成物分子形成时所释放的总能量与反应物分子化学键断裂时所吸收的总能量的差即为该反应的反应热。
(3)焓变的定义
对于在等压条件下进行的化学反应,如果反应中物质的能量变化全部转化为热能(同时可能伴随着反应体系体积的改变),而没有转化为电能、光能等其他形式的能,则该反应的反应热就等于反应前后物质的焓的改变,称为焓变,符号ΔΗ。
ΔΗ=Η(反应产物)—Η(反应物)
为反应产物的总焓与反应物总焓之差,称为反应焓变。如果生成物的焓大于反应物的焓,说明反应物具有的总能量小于产物具有的总能量,需要吸收外界的能量才能生成生成物,反应必须吸热才能进行。即当Η(生成物)Η(反应物),ΔΗ0,反应为吸热反应。
如果生成物的焓小于反应物的焓,说明反应物具有的总能量大于产物具有的总能量,需要释放一部分的能量给外界才能生成生成物,反应必须放热才能进行。即当Η(生成物)Η(反应物),ΔΗ0,反应为放热反应。
(4)反应热和焓变的区别与联系
第一章1
2、热化学方程式
(1)定义
把一个化学反应中物质的变和能量的变化同时表示出来的学方程式,叫热化学方程式。
(2)表示意义
不仅表明了化学反应中的物质化,也表明了化学反应中的焓变。
(3)书写热化学方程式须注意的几点
①只能写在标有反应物和生成物状态的化学方程式的右边。
若为放热反应,ΔΗ为“-”;若为吸热反应,ΔΗ为“+”。ΔΗ的单位一般为kJ·mol-1。②焓变ΔΗ与测定条件(温度、压强等)有关。因此书写热化学方程式时应注明ΔΗ的测定条件。
③热化学方程式中各物质化学式前面的化学计量数仅表示该物质的物质的量,并不表示物质的分子数或原子数。因此化学计量数可以是整数,也可以是分数。
④反应物和产物的聚集状态不同,焓变ΔΗ不同。因此,必须注明物质的聚集状态才能完整地体现出热化学方程式的意义。气体用“g”,液体用“l”,固体用“s”,溶液用“aq”。热化学方程式中不用“↑”和“↓”。若涉及同素异形体,要注明同素异形体的名称。
⑤热化学方程式是表示反应已完成的量。
由于ΔΗ与反应完成的物质的量有关,所以方程式中化学式前面的化学计量数必须与ΔΗ相对应,如果化学计量数加倍,则ΔΗ也要加倍。当反应向逆向进行时,其焓变与正反应的焓变数值相等,符号相反。
(4)热化学方程式与化学方程式的比较
第一章2
3、中和反应反应热的测定
(1)实验原理
将两种反应物加入仪器内并使之迅速混合,测量反应前后溶液温度的变化值,即可根据溶液的热容C,利用下式计算出反应释放或吸收的热量Q。
Q=-C(T2-T1)
式中:C表示体系的热容;T1、T2分别表示反应前和反应后体系的温度。
(2)实验注意事项:
①作为量热器的仪器装置,其保温隔热的效果一定要好。
②盐酸和NaOH溶液浓度的配制须准确,且NaOH溶液的浓度须大于盐酸的浓度。为了使测得的中和热更准确,所用盐酸和NaOH的浓度宜小不宜大,如果浓度偏大,则溶液中阴阳离子间相互牵制作用就大,电离度就会减少,这样酸碱中和时产生的热量势必要用去一部分来补偿未电离分子的离解热,造成较大的误差。
③宜用有0.1分度值的温度计,且测量时尽可能读准,并估读到小数点后第二位。温度计的水银球部分要完全浸没在溶液中,而且要稳定一段时间后再读数,以提高所测温度的
精度。
(3)实验结论
所测得的三次中和反应的反应热相同。
(4)实验分析
以上溶液中所发生的反应均为H++OH-=H2O。由于三次实验中所用溶液的体积相同,溶液中H+和OH-的浓度也是相同的,因此三个反应的反应热也是相同的。
4、中和热
(1)定义:在稀溶液中,酸与碱发生中和反应生成1molH2O(l)时所释放的热量为中和热。中和热是反应热的一种形式。
(2)注意:中和热不包括离子在水溶液中的生成热、物质的溶解热、电解质电离的吸收热等。中和反应的实质是H+与OH-化合生成H2O,若反应过程中有其他物质生成,这部分反应热也不在中和热内。
5、放热反应与吸热反应的比较
第一章3第一章4

第一章5
二、燃烧热能源
课标要求
1、掌握燃烧热的概念
2、了解资源、能源是当今社会的重要热点问题
3、常识性了解使用化石燃料的利弊及新能源的开发
要点精讲
1、燃烧热
(1)概念:25℃,101kPa时,1mol纯物质完全燃烧生成稳定的化合物时所放出的热量,叫做该物质的燃烧热,单位为kJ·mol-1。如果是1g物质完全燃烧的反应热,就叫做该物质的热值。
(2)对燃烧热的理解
①燃烧热是反应热的一种,并且燃烧反应一定是放热反应,其ΔΗ为“-”或ΔΗ0。
②25℃,101kPa时,可燃物完全燃烧时,必须生成稳定的化合物。如果该物质在燃烧时能生成多种燃烧产物,则应该生成不能再燃烧的物质。如C完全燃烧应生成CO2(g),而生成CO(g)属于不完全燃烧,所以C的燃烧热应该是生成CO2时的热效应。
(3)表示燃烧热的热化学方程式书写
燃烧热是以员1mol物质完全燃烧所放出的热量来定义的,因此在书写表示燃烧热的热化学方程式时,应以燃烧1mol物质为标准,来配平其余物质的化学计量数,故在其热化学方程
式中常出现分数。
(4)研究物质燃烧热的意义
了解化学反应完成时产生热量的多少,以便更好地控制反应条件,充分利用能源。
2、能源
能提供能量的自然资源,叫做能源。能量之间的相互转化关系如下:
第一章6
(1)能源的分类
①一次能源与二次能源
从自然界直接取得的自然能源叫一次能源,如原煤、原油、流过水坝的水等;一次能源经过加工转换后获得的能源称为二次能源,如各种石油制品、煤气、蒸气、电力、氢能、沼气等。
②常规能源与新能源在一定历史时期和科学技术水平下,已被人们广泛利用的能源称为常规能源,如煤、石油、天然气、水能等。人类采用先进的方法刚开始加以利用的古老能源以及利用先进技术新发展的能源都是新能源,如核聚变能、风能、太阳能、海洋能等。
③可再生能源与非再生能源可连续再生、永远利用的一次能源称为可再生能源,如水力、风能等;经过亿万年形成的、短期内无法恢复的能源,称为非再生能源,如石油、煤、天然气等。
(2)人类对能源利用的三个时代
①柴草能源时代:草木、人力、畜力、大阳、风和水的动力等。
②化石能源时代:煤、石油、天然气。
③多能源时代:核能、太阳能、氢能等。
(3)燃料充分燃烧的条件
①要有足够的空气
②燃料与空气要有足够大的接触面
注意:足够的空气不是越多越好,而是通入量要适当,否则过量的空气会带走部分热量,造成浪费。扩大燃料与空气的接触面,工业上常采用固体燃料粉碎或液体燃料以雾状喷出的方法,从而提高燃料燃烧的效率。
(4)我国目前的能源利用状况
目前主要能源是化石燃料,它们蕴藏有限且不能再生,终将枯竭,且从开采、运输、加工到终端的利用效率都很低。我们目前使用的最多的燃料,仍是化石燃料,它们都是古代动植物遗体埋在地下经过长时间复杂变化形成的,除含有C、H等元素外,还有少量S、N等元素,它们燃烧产生SO2、氮的氧化物,对环境造成污染,形成酸雨。此外,煤的不充分燃烧,还产生CO,既造成浪费,也造成污染。
(5)解决能源危机的方法:节约能源;开发新能源。
3、有关燃烧热的计算
(1)计算公式:Q放=n(可燃物)×ΔΗ
(2)含义:一定量的可燃物完全燃烧放出的热量,等于可燃物的物质的量乘以该物质的燃烧热。
(3)应用:“热量值与热化学方程式中各物质的化学计量数(应相对应)成正比”进行有关计算。
(4)应用:“总过程的反应热值等于各分过程反应热之和”进行有关计算。
4、燃烧热和中和热的比较
第一章7

第一章8
三、化学反应热的计算
课标要求
1、从能量守恒角度理解并掌握盖斯定律
2、能正确运用盖斯定律解决具体问题
3、学会化学反应热的有关计算
要点精讲
1、盖斯定律
(1)盖斯定律的内容
化学反应的焓变只与反应体系的始态(各反应物)和终态(各生成物)有关,而与反应的途径无关。如果一个反应可以分几步进行,则各分步反应的反应焓变之和与该反应一步完成时的焓变是相同的,这就是盖斯定律。
(2)特点
①反应热效应只与始态、终态有关,与过程无关。
②反应热总值一定。
(3)意义
有些反应很慢,有些反应不容易直接发生,有些反应的产品不纯(有副反应发生),给测定反应热造成了困难。应用盖斯定律,可以间接地把它们的反应热计算出来。
2、反应热的计算
(1)依据
①热化学方程式与数学上的方程式相似,可以移项(同时改变正、负号);各项的系数(包括ΔΗ的数值)可以同时扩大或缩小相同的倍数。
②根据盖斯定律,可以将两个或两个以上的热化学方程式(包括其ΔΗ)相加或相减,从而得到一个新的热化学方程式。
③可燃物完全燃烧产生的热量=可燃物的物质的量×燃烧热。
注:计算反应热的关键是设计合理的反应过程,正确进行已知方程式和反应热的加减合并。
(2)计算方法
列出方程或方程组计算求解。
①明确解题模式:审题→分析→求解。
②有关热化学方程式及有关单位书写正确。
③计算准确。
(3)进行反应热计算的注意事项:
①反应热数值与各物质的化学计量数成正比,因此热化学方程式中各物质的化学计量数改变时,其反应热数值需同时做相同倍数的改变。
②热化学方程式中的反应热,是指反应按所给形式完全进行时的反应热。
③正、逆反应的反应热数值相等,符号相反。
④用某种物质的燃烧热计算反应放出的总热量时,注意该物质一定要满足完全燃烧且生成稳定的氧化物这一条件。

第一章9
四、本章知识网络
第一章10第一章11

文章来源:http://m.jab88.com/j/19142.html

更多

最新更新

更多