一元二次不等式的解法
教学目标
(1)掌握一元二次不等式的解法;
(2)知道一元二次不等式可以转化为一元一次不等式组;
(3)了解简单的分式不等式的解法;
(4)能利用二次函数与一元二次方程来求解一元二次不等式,理解它们三者之间的内在联系;
(5)能够进行较简单的分类讨论,借助于数轴的直观,求解简单的含字母的一元二次不等式;
(6)通过利用二次函数的图象来求解一元二次不等式的解集,培养学生的数形结合的数学思想;
(7)通过研究函数、方程与不等式之间的内在联系,使学生认识到事物是相互联系、相互转化的,树立辨证的世界观.
教学重点:一元二次不等式的解法;
教学难点:弄清一元二次不等式与一元二次方程、二次函数的关系.
教与学过程设计
第一课时
Ⅰ.设置情境
问题:
①解方程
②作函数的图像
③解不等式
【置疑】在解决上述三问题的基础上分析,一元一次函数、一元一次方程、一元一次不等式之间的关系。能通过观察一次函数的图像求得一元一次不等式的解集吗?
【回答】函数图像与x轴的交点横坐标为方程的根,不等式的解集为函数图像落在x轴上方部分对应的横坐标。能。
通过多媒体或其他载体给出下列表格。扼要讲解怎样通过观察一次函数的图像求得一元一次不等式的解集。注意色彩或彩色粉笔的运用
在这里我们发现一元一次方程,一次不等式与一次函数三者之间有着密切的联系。利用这种联系(集中反映在相应一次函数的图像上!)我们可以快速准确地求出一元一次不等式的解集,类似地,我们能不能将现在要求解的一元二次不等式与二次函数联系起来讨论找到其求解方法呢?
Ⅱ.探索与研究
我们现在就结合不等式的求解来试一试。(师生共同活动用“特殊点法”而非课本上的“列表描点”的方法作出的图像,然后请一位程度中下的同学写出相应一元二次方程及一元二次不等式的解集。)
【答】方程的解集为
不等式的解集为
【置疑】哪位同学还能写出的解法?(请一程度差的同学回答)
【答】不等式的解集为
我们通过二次函数的图像,不仅求得了开始上课时我们还不知如何求解的那个第(5)小题的解集,还求出了的解集,可见利用二次函数的图像来解一元二次不等式是个十分有效的方法。
下面我们再对一般的一元二次不等式与来进行讨论。为简便起见,暂只考虑的情形。请同学们思考下列问题:
如果相应的一元二次方程分别有两实根、惟一实根,无实根的话,其对应的二次函数的图像与x轴的位置关系如何?(提问程度较好的学生)
【答】二次函数的图像开口向上且分别与x轴交于两点,一点及无交点。
现在请同学们观察表中的二次函数图,并写出相应一元二次不等式的解集。(通过多媒体或其他载体给出以下表格)
【答】的解集依次是
的解集依次是
它是我们今后求解一元二次不等式的主要工具。应尽快将表中的结果记住。其关键就是抓住相应二次函数的图像。
课本第19页上的例1.例2.例3.它们均是求解二次项系数的一元二次不等式,却都没有给出相应二次函数的图像。其解答过程虽很简练,却不太直观。现在我们在课本预留的位置上分别给它们补上相应二次函数图像。
(教师巡视,重点关注程度稍差的同学。)
Ⅲ.演练反馈
1.解下列不等式:
(1)(2)
(3)(4)
2.若代数式的值恒取非负实数,则实数x的取值范围是。
3.解不等式
(1)(2)
参考答案:
1.(1);(2);(3);(4)R
2.
3.(1)
(2)当或时,,当时,
当或时,。
Ⅳ.总结提炼
这节课我们学习了二次项系数的一元二次不等式的解法,其关键是抓住相应二次函数的图像与x轴的交点,再对照课本第39页上表格中的结论给出所求一元二次不等式的解集。
(五)、课时作业
(P20.练习等3、4两题)
(六)、板书设计
第二课时
Ⅰ.设置情境
(通过讲评上一节课课后作业中出现的问题,复习利用“三个二次”间的关系求解一元二次不等式的主要操作过程。)
上节课我们只讨论了二次项系数的一元二次不等式的求解问题。肯定有同学会问,那么二次项系数的一元二次不等式如何来求解?咱们班上有谁能解答这个疑问呢?
Ⅱ.探索研究
(学生议论纷纷.有的说仍然利用二次函数的图像,有的说将二次项的系数变为正数后再求解,…….教师分别请持上述见解的学生代表进一步说明各自的见解.)
生甲:只要将课本第39页上表中的二次函数图像次依关于x轴翻转变成开口向下的抛物线,再根据可得的图像便可求得二次项系数的一元二次不等式的解集.
生乙:我觉得先在不等式两边同乘以-1将二次项系数变为正数后直接运用上节课所学的方法求解就可以了.
师:首先,这两种见解都是合乎逻辑和可行的.不过按前一见解来操作的话,同学们则需再记住一张类似于第39页上的表格中的各结论.这不但加重了记忆负担,而且两表中的结论容易搞混导致错误.而按后一种见解来操作时则不存在这个问题,请同学们阅读第19页例4.
(待学生阅读完毕,教师再简要讲解一遍.)
[知识运用与解题研究]
由此例可知,对于二次项系数的一元二次不等式是将其通过同解变形化为的一元二次不等式来求解的,因此只要掌握了上一节课所学过的方法。我们就能求
解任意一个一元二次不等式了,请同学们求解以下两不等式.(调两位程度中等的学生演板)
(1)(2)
(分别为课本P21习题1.5中1大题(2)、(4)两小题.教师讲评两位同学的解答,注意纠正表述方面存在的问题.)
训练二可化为一元一次不等式组来求解的不等式.
目前我们熟悉了利用“三个二次”间的关系求解一元二次不等式的方法虽然对任意一元二次不等式都适用,但具体操作起来还是让我们感到有点麻烦.故在求解形如(或)的一元二次不等式时则根据(有理数)乘(除)运算的“符号法则”化为同学们更加熟悉的一元一次不等式组来求解.现在清同学们阅读课本P20上关于不等式求解的内容并思考:原不等式的解集为什么是两个一次不等式组解集的并集?(待学生阅读完毕,请一程度较好,表达能力较强的学生回答该问题.)
【答】因为满足不等式组或的x都能使原不等式成立,且反过来也是对的,故原不等式的解集是两个一元二次不等式组解集的并集.
这个回答说明了原不等式的解集A与两个一次不等式组解集的并集B是互为子集的关系,故它们必相等,现在请同学们求解以下各不等式.(调三位程度各异的学生演板.教师巡视,重点关注程度较差的学生).
(1)[P20练习中第1大题]
(2)[P20练习中第1大题]
(3)[P20练习中第2大题]
(老师扼要讲评三位同学的解答.尤其要注意纠正表述方面存在的问题.然后讲解P21例5).
例5解不等式
因为(有理数)积与商运算的“符号法则”是一致的,故求解此类不等式时,也可像求解(或)之类的不等式一样,将其化为一元一次不等式组来求解。具体解答过程如下。
解:(略)
现在请同学们完成课本P21练习中第3、4两大题。
(等学生完成后教师给出答案,如有学生对不上答案,由其本人追查原因,自行纠正。)
[训练三]用“符号法则”解不等式的复式训练。
(通过多媒体或其他载体给出下列各题)
1.不等式与的解集相同此说法对吗?为什么[补充]
2.解下列不等式:
(1)[课本P22第8大题(2)小题]
(2)[补充]
(3)[课本P43第4大题(1)小题]
(4)[课本P43第5大题(1)小题]
(5)[补充]
(每题均先由学生说出解题思路,教师扼要板书求解过程)
参考答案:
1.不对。同时前者无意义而后者却能成立,所以它们的解集是不同的。
2.(1)
(2)原不等式可化为:,即
解集为。
(3)原不等式可化为
解集为
(4)原不等式可化为或
解集为
(5)原不等式可化为:或解集为
Ⅲ.总结提炼
这节课我们重点讲解了利用(有理数)乘除法的符号法则求解左式为若干一次因式的积或商而右式为0的不等式。值得注意的是,这一方法对符合上述形状的高次不等式也是有效的,同学们应掌握好这一方法。
(五)布置作业
(P22.2(2)、(4);4;5;6。)
(六)板书设计
《一元二次不等式的解法》教学设计
1.创设情景——引入新课。我们常说“兴趣是最好的老师”,长期以来,学生对学习数学缺乏兴趣,甚至失去信心,一个重要的原因,是老师在教学中不重视学生对学习的情感体验,教学应该充分考虑学生的情感和需要,想方设法让学生在学习中树立信心,感受学习的乐趣。根据教材内容的安排,设计了四个层层递进的问题
问题1:解不等式(x-3)(x+2)0-2问题2:解不等式x2-x-60问题3:y=x2-x-6与x轴的交点坐标是多少?
问题4:x2-x-6=0的根是多少?
第一个问题学生能看出用分类讨论的方法,讨论出x的范围,进而给出答案,将第一个问题中的括号去掉就得到了第二个问题,由第二个问题提出两个问题;1.这个不等式的解是什么?2.能否给这个不等式起个名字?学生能直接给出答案,直接让学生给第二个问题中的不等式起个名字,学生立马给出了答案:一元二次不等式,从而引出一元二次不等式的概念。
2.探究交流——发现规律。从特殊到一般是我们发现问题、寻求规律、揭示问题本质最常用的方法之一。这部分我先给出一个一元二次不等式x2-x-60,师生共同研究二次函数的图像,并探究这个一元二次不等式的解集。之后就直接给出例题x2-x-60,并规范解题步骤,
3.启发引导——形成结论。给出3个例题:
解下列关于一元二次不等式
一元二次不等式的解法教学设计
总结二次不等式ax2+bx+c>0或ax2+bx+c<0(a>0)的解的情况应该水到渠成。至此,学生可以感受到,解一元二次不等式只须1.化标准:将不等式化成标准形式(右边为0、最高次的系数为正);
2.计算判别式的值:3.求根:若判别式的值为正或零,则求出相应方程的两根;4.写解集:注意结果要写成集合或者区间的形式4.训练小结——巩固深化。为了巩固和加深二次不等式的两种解法,接下来及时组织学生进行课本练习,本环节请不同层次的学生在黑板上书写解题过程,之后师生共同纠正问题,规范解题过程的书写。
5.小结——巩固深化。
总结一元二次不等式的解法(1)图象法:一般地,当a>0时,解形如ax2+bx+c>0(≥0)或ax2+bx+c<0(≤0)的一元二次不等式,一般可分为三步:①确定对应方程ax2+bx+c=0的解;②画出对应函数y=ax2+bx+c的图象简图;③由图象得出不等式的解集.对于a<0的一元二次不等式,可以直接采取类似a>0时的解题步骤求解;也可以先把它化成二次项系数为正的一元二次不等式,再求解.(2)代数法:将所给不等式化为一般式后借助分解因式或配方求解,当p<q时,若(x-p)(x-q)>0,则x>q或x<p;若(x-p)(x-q)<0,则p<x<q.
有口诀如下“大于取两边,小于取中间”.总结失误防范1.当二次项系数为负数时,一般先化为正数再求解,同时不要忘记不等号改变方向,一元二次不等式的解集要用集合表示.2.含参数的一元二次不等式的求解往往要分类讨论,分类标准要明确,表达要有层次,讨论结束后要进行总结。
高一数学《一元二次不等式的解法》知识点整理
1.整式不等式的解法
根轴法(零点分段法)
①将不等式化为a0(x-x1)(x-x2)…(x-xm)0(0)形式,并将各因式x的系数化“+”;(为了统一方便)
②求根,并在数轴上表示出来;
③由右上方穿线,经过数轴上表示各根的点(为什么?);
④若不等式(x的系数化“+”后)是“0”,则找“线”在x轴上方的区间;若不等式是“0”,则找“线”在x轴下方的区间.
(自右向左正负相间)
则不等式的解可以根据各区间的符号确定.
特例①一元一次不等式axb解的讨论;
②一元二次不等式ax2+box0(a,高中语文;0)解的讨论.
2.分式不等式的解法
(1)标准化:移项通分化为0(或0);≥0(或≤0)的形式,
(2)转化为整式不等式(组)
3.含绝对值不等式的解法
(1)公式法:,与型的不等式的解法.
(2)定义法:用“零点分区间法”分类讨论.
(3)几何法:根据绝对值的几何意义用数形结合思想方法解题.
4.一元二次方程根的分布
一元二次方程ax2+bx+c=0(a≠0)
(1)根的“零分布”:根据判别式和韦达定理分析列式解之.
(2)根的“非零分布”:作二次函数图象,用数形结合思想分析列式解之。
高一数学《一元二次不等式的解法》教案北师大版
一元二次不等式是北师大版高中数学必修五第三章不等式第二节第一课.
一元二次不等式是学习了一元二次方程的解法及二次函数图像与性质后学生新接触的内容。一元二次不等式是重要的数学模型。它与一元二次方程、二次函数有着密切的关系,通过二次函数的图像刻画一元二次不等式表示的区域,能够体现数形结合的思想方法。教材由交通事故分析哪辆车违章,引出一元二次不等式概念,贴合生活实际,体现了数学来源于生活,由生活问题抽象而来,易于学生接受。
教材通过一元二次不等式、一元二次方程、二次函数的关系的分析,把“一元二次不等式的解法第一课时教学设计”转化为“一元二次不等式的解法第一课时教学设计”图像位于一元二次不等式的解法第一课时教学设计轴上方(下方)时,一元二次不等式的解法第一课时教学设计的取值范围;而一元二次方程方程的解就是相应的二次函数图像与一元二次不等式的解法第一课时教学设计轴交点的横坐标(即二次函数的零点)。从而得到解一元二次不等式的解法步骤。
二、教学目标解读
知识与技能:了解一元二次不等式与相应的二次函数、一元二次方程
的区别与联系;能借助二次函数图像解形如
一元二次不等式的解法第一课时教学设计的不等式。
过程与方法:利用由特殊到一般、数形结合的思想方法,探究求解一
元二次不等式的程序步骤。
情感、态度、价值观:认识三个“二次”之间的联系与转化。
三、重点与难点
重点:利用二次函数图像求解一元二次不等式。
难点:一元二次方程、一元二次不等式、二次函数之间的联系。
四、学情分析
学生在初中和必修一已经学习了解一元二次方程、二次函数的图
像与性质,学生对此比较熟悉,而从数到形,再从形到数是一次思想观念的升华。考虑到学生的认识程度,本节课从具体的函数一元二次不等式的解法第一课时教学设计的图像与性质展开学习。
五、教学方法
1、问题导学层层设问,引导学生探究一元二次不等式的求解过程。
2、课堂上根据学案存在问题启发学生动手实践。
六、学法指导
1、课前自主回顾一元二次方程的解法,二次函数的图像与性质;
2、认真阅读课本,结合问题导学,完成学案;
3、用红笔勾画疑惑点,在课堂上合作探究后解决问题.
七、课前准备:
1、备课组集体研究编制导学案;
2、第一次翻阅学生导学案,发现学生存在问题,确定上课方案;
3、制作课件(学案问题、检测题、课堂小结等)。
八、教学过程
教师活动
学生活动
设计意图
一、创设情境引入新课:由交通事故分析哪辆车违章,究竟如何划分责任,今天我们来学习一元二次不等式的解法第一节。(板书:一元二次不等式解法1)
阅读课本75页“问题提出”,认识数学来源于生活又服务于生活。
培养学生用数学“眼光”看生活。
二、回顾一元二次方程、二次函数的图像与性质(利用多媒体展现在课件上)
看课件回答有关问题。
熟悉学过知识,为下面学习做铺垫。
三、学习目标解读:
1、理清一元二次不等式、一元二次方程及二次函数之间的关系;借助二次函数的图象解一元二次不等式;
2、利用由特殊到一般、数形结合的方法探究一元二次不等式的解法;
3、感悟数学知识之间的联系。
看课件
让学生明确本节课的目标。(解决“学什么,如何学”的问题)重点在学法指导.
四、学案反馈:请大家看屏幕上的优秀小组、优秀个人、进步个人、认真个人有你吗?(好,请大家给予优秀小组及个人热烈的掌声)再看不足之处。
看课件
(鼓掌)
利用课件让学生发现自己问题,以便在合作讨论、展示点评环节解决。
调动学生学习积极性。
五、新知探究:
(在引领学生展示问题导学后)感谢这位同学.老师及时纠正学生出现的错误。教师在整个学生引领过程始终关注学生。
文章来源:http://m.jab88.com/j/107712.html
更多