88教案网

全等三角形教案

全等三角形教案精华15篇。

通常老师在上课之前会带上教案课件,大家可以开始写自己课堂教案课件了。要知道教案课件写的越是充分,老师的教学质量相对也会提高。你是否在为不会写教案课件而烦恼呢?以下为小编为你收集整理的全等三角形教案精华15篇,请收藏好,以便下次再读!

全等三角形教案 篇1

一、教学目标

【知识与技能】

理解并掌握三角形全等的边边边判定定理,并会运用该方法判定两个三角形全等。

【过程与方法】

经历动手实践探究的活动,提升动手能力、分析问题与解决问题的能力。

【情感、态度与价值观】

感受图形的魅力,激发对图形与几何领域的学习兴趣。

二、教学重难点

【重点】三角形全等的边边边判定定理。

【难点】边边边判定定理的探究过程。

三、教学过程

(一)导入新课

回顾全等三角形的定义及性质,由此过渡到如何判断两个三角形全等。引出课题。

(二)讲解新知

提问:一定要满足三条边分别相等,三个角也分别相等,才能保证两个三角形全等吗?六个条件中,只满足一个条件或者两个条件可以吗?

组织学生动手画图探究,发现满足六个条件中的一个或两个不足以保证三角形全等。

说明接下来探究三个条件是否足够,先从三条边分别相等的情况入手。

学生活动:任意画一个三角形,再画一个与之三条边相等的三角形,剪下来重叠,看两个三角形是否全等。(适当讨论作图方法,教师演示规范作法。)先同桌合作完成,然后前后四人交流讨论。

在多组学生汇报肯定结果的基础上,师生共同总结:三边分别相等的两个三角形全等。

教师说明上述方法可以简写成边边边或SSS,该判定方法为基本事实。

(三)课堂练习

全等三角形教案 篇2

一、说教材

全等三角形是八年级上册人教版数学教材第十一章的教学内容。本章是在学过了线段、角、相交线、平行线以及三角形的有关知识以及在七年级教材中的一些简单的说理内容之后来学习的,通过本章的学习,可以丰富和加深学生对已学图形的认识,同时为学习其它图形知识打好基础。

根据课程标准,确定本节课的目标为:

1、知道什么是全等形,全等三角形以及全等三角形对应的元素;

2、能用符号正确地表示两个三角形全等;

3、能熟练地找出两个全等三角形的对应顶点、对应边、对应角;

4、知道全等三角形的性质和判定,并能用其解决简单的问题要求学生会确定全等三角形的对应元素及对全等三角形性质的理解;

5、通过感受全等三角形的对应美,激发热爱科学勇于探索的精神。通过文字阅读与图形阅读,构建数学知识,体验获取数学知识的过程,培养学生勇于创新,多方位审视问题的创造技巧。

二、说教法

本节课以学生练习为主,教室归纳总结为辅的教学方法。教师一边用幻灯片演示讲解,一边让学生动手、动脑,充分调动学生的积极性和主动性,有机融合各种教法于一体,做到步步有序,环环相扣,不断引导学生动手、动口、动脑。积极参与教学过程,才能圆满完成教学任务,收到良好的教学效果。

1、教学生观察、归纳的方法

为了适应学生的认识思维发展水平,有序的引导学生观察、分析,得出结论,让学生通过观察——认识——实践——再认识,完成认识上的飞跃。

2、通过设疑,启发学生思考

根据练习情况设疑引导,重在让学生理解全等三角形的概念,展开学生的思维。

三、说学法

学生在学习过程中可能难于理解全等三角形的对应顶点、对应边、对应角。教师要做到教法与指导学习的学法有机统一。通过幻灯片演示,学生用学具操作体会,最终完成学习过程,达到教学目标。

1、看听结合,形成表象。看教师演示,听教师讲解,形成表象。

2、手脑结合,自主探究,学生为主体,充分使用学具,动手操作体会全等三角形。

四、说教学流程

本节课的教学过程是:首先,展示教师制作的一些图案,引导学生读图,激发学生兴趣,从图中去发现有形状与大小完全相同的图形。然后教师安排学生自己动手随意去做两个形状与大小相同的图形,通过动手实践,合作交流,直观感知全等形和全等三角形的概念。其次,通过阅读法让学生找出全等形和全等三角形的概念。然后,教师随即演示一个三角形经平移,翻折,旋转后构成的两个三角形全等。通过教具演示让学生体会对应顶点、对应边、对应角的概念,并以找朋友的形式练习指出对应顶点、对应边、对应角,加强对对应元素的熟练程度。此时给出全等三角形的表示方法,提示对应顶点,写在对应的位置,然后再给出用全等符号表示全等三角形练习,加强对知识的巩固,再给出练习判断哪一种表示全等三角形的方法正确,通过对图形及文字语言的综合阅读,由此去理解“对应顶点写在对应的位置上”的含义。再次,让学生阐述全等三角形的性质和判定。并通过练习来理解全等三角形的性质和判定,并渗透符号语言推理。最后教师小结,这节课我们知道了什么是全等形、全等三角形,学会了用全等符号表示全等三角形,会用全等三角形的性质和判定解决一些简单的实际问题。

一、教材分析

1.教材的地位和作用

本节课内容为全等三角形,是人教版数学八年级上册第十一章《全等三角形》的内容。它是继线段、角、相交线与平行线及三角形有关知识之后出现的,通过对本节的学习,可以丰富、加深学生对已知图形的认识,同时为后面学习全等三角形的条件、等腰三角形与轴对称作好铺垫,起着承上启下的作用。

2.教学的目标和要求

根据大纲要求及所教学生的实际情况,本节课制定了知识、能力、情感三方面的目标。

(一)知识目标:

(1)了解全等三角形的概念,会用平移、旋转、翻折等方法判定两个图形是否全等;

(2)知道全等三角形的有关概念,能在全等三角形中正确地找出对应顶点、对应边、对应角;

(3)能熟练地说出全等三角形的性质和判定,并会运用。

(二)能力目标:

(1)通过全等三角形有关概念的学习,提高学生数学概念的辨析能力;

(2)通过找出全等三角形的对应元素,培养学生的识图能力。

(3)通过学生练习,提高学生几何证题能力。

(三)情感目标:

通过各种真实、贴近生活的素材和问题情景,激发学生学习数学的热情和兴趣,培养学生勇于创新,多方位审视问题的创造技巧。

3.教学重点:

全等三角形的性质、判定及其应用。

4.教学难点:

(1)能在全等三角形的变换中准确找到对应边、对应角。

解决方法:利用动画的形式让学生直观的识别具体的图形和知识点从而突出和掌握重点。在对应边、对应角的识别查找中运用动画的展示,使学生能直观认识该知识点,化难为易,从而突破该难点。

(2)判定条件的对应性及顺序性。

二、教学方法

本节课以学生练习,老师点拨归纳等教学方法。教师一边用多媒体演示讲解,一边让学生在观察的基础上动手、动脑,充分调动学生的积极性和主动性。只有学生积极参与教学过程,才能圆满完成教学任务,收到良好的教学效果。同时引导学生寻找题目的隐含条件,启发学生发现问题,思考问题,培养学生的逻辑思维能力,推理论证能力,分析问题解决问题的能力,逐步设疑,创设问题情景,搭建参与平台,让学生积极参与讨论,肯定成绩,及时表扬,使学生感受成功的喜悦,提高他们学习的兴趣和学习的积极性。

全等三角形教案 篇3

教学目标:

1、知识目标:

(1)熟记边角边公理的内容;

(2)能应用边角边公理证明两个三角形全等.

2、能力目标:

(1) 通过“边角边”公理的运用,提高学生的逻辑思维能力;

(2) 通过观察几何图形,培养学生的识图能力.

3、情感目标:

(1) 通过几何证明的教学,使学生养成尊重客观事实和形成质疑的习惯;

(2) 通过自主学习的发展体验获取数学知识的感受,培养学生勇于创新,多方位审视问题的创造技巧.

教学重点:学会运用公理证明两个三角形全等.

教学难点:在较复杂的图形中,找出证明两个三角形全等的条件.

教学用具:直尺、微机

教学方法:自学辅导式

教学过程:

1、公理的发现

(1)画图:(投影显示)

教师点拨,学生边学边画图.

(2)实验

让学生把所画的 剪下,放在原三角形上,发现什么情况?(两个三角形重合)

这里一定要让学生动手操作.

(3)公理

启发学生发现、总结边角边公理:有两边和它们的夹角对应相等的两个三角形全等(简写成“边角边”或“SAS”)

作用:是证明两个三角形全等的依据之一.

应用格式:

强调:

1、格式要求:先指出在哪两个三角形中证全等;再按公理顺序列出三个条件,并用括号把它们括在一起;写出结论.

2、在应用时,怎样寻找已知条件:已知条件包含两部分,一是已知中给出的,二时图形中隐含的(如公共边,公共角、对顶角、邻补角、外角、平角等)所以找条件归结成两句话:已知中找,图形中看.

3、平面几何中常要证明角相等和线段相等,其证明常用方法:

证角相等――对顶角相等;同角(或等角)的余角(或补角)相等;两直线平行,同位角相等,内错角相等;角平分线定义;等式性质;全等三角形的对应角相等地.

证线段相等的方法――中点定义;全等三角形的对应边相等;等式性质.

2、公理的应用

(1)讲解例1.学生分析完成,教师注重完成后的总结.

分析:(设问程序)

“SAS”的三个条件是什么?

已知条件给出了几个?

由图形可以得到几个条件?

解:(略)

(2)讲解例2

投影例2:

例2如图2,AE=CF,AD∥BC,AD=CB,

求证:

学生思考、分析,适当点拨,找学生代表口述证明思路

让学生在练习本上定出证明,一名学生板书.教师强调

证明格式:用大括号写出公理的三个条件,最后写出

结论.(3)讲解例3(投影)

证明:(略)

学生分析思路,写出证明过程.

(投影展示学生的作业,教师点评)

(4)讲解例4(投影)

证明:(略)

学生口述过程.投影展示证明过程.

教师强调证明线段相等的几种常见方法.

(5)讲解例5(投影)

证明:(略)

学生思考、分析、讨论,教师巡视,适当参与讨论.

师生共同讨论后,让学生口述证明思路.

教师强调解题格式:在“证明”二字的后面,先将所作的辅助线写出,再证明.

3、课堂小结:

(1)判定三角形全等的方法:SAS

(2)公理应用的书写格式

(3)证明线段、角相等常见的方法有哪些?

让学生自由表述,其它学生补充,自己将知识系统化,以自己的方式进行建构.

6、布置作业

a书面作业P56#6、7

b上交作业P57B组1

全等三角形教案 篇4

知识与技能:理解三角形全等的“边角边”的条件.掌握三角形全等的“SAS”条件,了解三角形的稳定性.能运用“SAS”证明简单的三角形全等问题.

过程与方法:经历探究全等三角形条件的过程,体会利用操作、归纳获得数学规律的过程.掌握三角形全等的“边角边”条件.在探索全等三角形条件及其运用过程中,培养有条理分析、推理,并进行简单的证明.

情感态度与价值观:通过画图、思考、探究来激发学生学习的积极性和主动性,并使学生了解一些研究问题的经验和方法,开拓实践能力与创新精神.

教学方法:采用启发诱导,实例探究,讲练结合,小组合作等方法。

学情分析:这节课是学了全等三角形的边边边后的一节课、將中间的边变为角探讨、学生一定能理解,根据之前的学情、学好这一节课有把握。

课前准备 全等三角形纸片、三角板、 【教学过程】:

[师]在上节课的讨论中,我们发现三角形中只给一个条件或两个条件时,都不能保证所画出的三角形一定全等.给出三个条件时,有四种可能,能说出是哪四种吗?

[生]三内角、三条边、两边一内角、两内角一边.

[师]很好,这四种情况中我们已经研究了两种,三内角对应相等不能保证两三角形一定全等;三条边对应相等的两三角形全等.今天我们接着研究第三种情况:“两边一内角”.

(一)问题:如果已知一个三角形的两边及一内角,那么它有几种可能情况?

[生]两种.

1.两边及其夹角.

2.两边及一边的对角.

[师]按照上节方法,我们有两个问题需要探究.

(二)探究1:先画一个任意△ABC,再画出一个△A/B/C/,使AB= A/B/、AC=A/C/、∠A=∠A/(即保证两边和它们的夹角对应相等).把画好的三角形A/B/C/剪下,放到△ABC上,它们全等吗?

探究2:先画一个任意△ABC,再画出△A/B/C/,使AB= A/B/、AC= A/C/、∠B=∠B/(即保证两边和其中一边的对角对应相等).把画好的△A/B/C/剪下,放到△ABC上,它们全等吗?

学生活动:

1.学生自己动手,利用直尺、三角尺、量角器等工具画出△ABC与△A/B/C/,将△A/B/C/剪下,与△ABC重叠,比较结果.

2.作好图后,与同伴交流作图心得,讨论发现什么样的规律.

教师活动:

教师可学生作完图后,由一个学生口述作图方法,教师进行多媒体播放画图过程,再次体会探究全等三角形条件的过程.

画一个△A/B/C/,使A/B/=AB,A/C/=AC,∠A/=∠A.

1.画∠DA/E=∠A;

2.在射线A/D上截取A/B/=AB.在射线A/E上截取A/C/=AC;

3.连结B/C/.

将△A/B/C/剪下,发现△ABC与△A/B/C/全等.这就是说:两边和它们的夹角对应相等的两个三角形全等(可以简写为“边角边”或“SAS”).

小结 : 两边和它们的夹角对应角相等的两个三角形全等.简称“边角边”和“SAS”.

如图,在△ABC和△DEF中,

对于探究2:

学生画出的图形各式各样,有的说全等,有的说不全等.教师在此可引导学生总结画图方法:

1.画∠DB/E=∠B;

2.在射线B/D上截取B/A/=BA;

3.以A/为圆心,以AC长为半径画弧,此时只要∠C≠90°,弧线一定和射线B/E交于两点C/、F,也就是说可以得到两个三角形满足条件,而两个三角形是不可能同时和△ABC全等的.

也就是说:两边及其中一边的对角对应相等的两个三角形不一定全等.所以它不能作为判定两三角形全等的条件.

归纳总结:

“两边及一内角”中的两种情况只有一种情况能判定三角形全等.即:

两边及其夹角对应相等的两个三角形全等.(简记为“边角边”或“SAS”)

[例]如图,有一池塘,要测池塘两端A、B的距离,可先在平地上取一个可以直接到达A和B的点C,连结AC并延长到D,使CD=CA.连结BC并延长到E,使CE=CB.连结DE,那么量出DE的长就是A、B的距离.为什么?

[师生共析]如果能证明△ABC≌△DEC,就可以得出AB=DE.

在△ABC和△DEC中,AC=DC、BC=EC.要是再有∠1=∠2,那么△ABC与△DEC就全等了.而∠1和∠2是对顶角,所以它们相等.

所以AB=DE.

1.填空:

(1)如图3,已知AD∥BC,AD=CB,要用边角边公理证明△ABC≌△CDA,需要三个条件,这三个条件中,已具有两个条件,一是AD=CB(已知),二是___________;还需要一个条件_____________(这个条件可以证得吗?).

(2)如图4,已知AB=AC,AD=AE,∠1=∠2,要用边角边公理证明△ABD≌ACE,需要满足的三个条件中,已具有两个条件:_________________________(这个条件可以证得吗?).

2.已知:AB=AC、AD=AE、∠1=∠2(图4).

1.根据边角边公理判定两个三角形全等,要找出两边及夹角对应相等的三个条件.

2.找使结论成立所需条件,要充分利用已知条件(包括给出图形中的隐含条件,如公共边、公共角等),并要善于运用学过的定义、公理、定理.

必做题:课本P43——44页习题12.2中的第3,选做题:第4题题

全等三角形教案 篇5

教材分析

新课程标准对于方程这部分内容在本学段有以下几个具体目标:

1、在具体情境中会用字母表示数。

2、结合简单的实际情境,了解等量关系。

3、了解方程的作用,能用方程表示简单情境中的等量关系。

4、能解简单的方程。

在这一节前,学生已经认识了字母表示数的意义和作用,并初步了解了方程的意义和等式的基本性质,并能运用它解简易方程。

这一课时是对前期知识进一步深化,担负着教学列方程和教学解方程的双重任务,是本单元的学习重点,也是教学难点。

“稍复杂的方程”这块内容分三个例题,例题1:ax-b=c及其应用;例题2:ax+bx=c及其应用;例题3:ax+bx=c及其应用。这节课要思考的主要是探究学习例题1:形如ax-b=c的方程及其应用,本节课作为学生初次接触“稍复杂的方程”的第一课时。

学情分析

学生已经认识了字母表示数的意义作用,初步了解了方程的意义和等式的基本性质,并能运用它解简易方程。这一课时是对前期知识的进一步深化,是本单元的学习重点,也是教学难点。学生学习的困难之处是根据题目里的已知信息列出等量关系。

教学目标

1、使学生能根据等式的基本性质解稍复杂的方程。初步学会列方程解决一些简单的实际问题。

2、培养学生抽象的概括能力,发展学生思维的灵活性。培养学生根据具体情况,灵活选择算法的意识和能力。

3、使学生感受数学与现实生活的联系,培养学生的数学应用意识与规范书写和自觉检验的习惯。

教学重点和难点

教学重点:学生自主探索列方程解决较复杂应用题的方法。

教学难点:正确寻找等量关系列方程。

全等三角形教案 篇6

一、教学目标

1.知识目标:

(1)理解全等三角形的概念。

(2)知道全等三角形的性质,能用符号正确地表示两个三角形全等。

(3)能熟练找出两个全等三角形的对应角、对应边。

2.能力目标:

(1)通过全等三角形有关概念的学习,提高学生数学概念的辨析能力。

(2)通过找出全等三角形的对应元素,培养学生的识图能力。

3.情感目标:

(1)通过感受全等三角形的对应美激发热爱科学勇于探索的精神。

(2)通过自主学习的发展体验获取数学知识的感受,培养勇于创新,多方位审视问题的创造技巧。

二、教学重、难点

教学重点:探究全等三角形的性质

教学难点:正确判断两个全等三角形的对应边,对应角

三、教学过程

(一)新课导入

同学们,在小学,我们已经学过了钝角三角形、锐角三角形和直角三角形,今天我们还要来学习一种三角形,叫做全等三角形。首先,请同学们翻到课本第2页,看看这3个图形,然后回答“思考”方框中的问题。

(二)新课教学

1.归纳全等三角形的定义

2.动手操作:每个同学在练习本上撕一张纸,在纸板上任意画一个三角形ABC,并剪下,说出三角形的三个角、三条边和每个角的对边、每个边的.对角。如何再剪一个△DEF,使△ABC≌△DEF?

(三)探究与巩固

问题:你手中的两个三角形是全等的,但是如果任意摆放能重合吗?该怎样做它们才能重合呢?

2.学生讨论、交流、归纳得出:不能,并说明原因。

3.观察与思考:寻找甲图中两三角形的对应元素,它们的对应边有什么关系?对应角呢?(全等三角形的性质:全等三角形的对应边相等。全等三角形的对应角相等。)

∵ABC≌DEF

∴AB=DE,AC=DF,BC=EF(全等三角形对应边相等)

∠A=∠D,∠B=∠E,∠C=∠F(全等三角形对应角相等)

4.探求全等三角形对应元素的找法

常用方法有两种:

(1)从运动角度看:

a.翻折法:一个三角形沿某条直线翻折与另一个三角形重合,从而发现对应元素。

b.旋转法:三角形绕某一点旋转一定角度能与另一三角形重合,从而发现对应元素。

c.平移法:沿某一方向推移使两三角形重合来找对应元素。

(2)根据位置元素来推理:

a.有公共边的,公共边是对应边;

b.有公共角的,公共角是对应角;

c.有对顶角的,对顶角是对应角;

d.两个全等三角形最大的边是对应边,最小的边也是对应边;

e.两个全等三角形最大的角是对应角,最小的角也是对应角;

(四)小结与练习

1.总结本课所学

2.练习:

1.△ABD≌△ACE,若∠B=25°,BD=6㎝,AD=4㎝,你能得出△ACE中哪些角的大小,哪些边的长度吗?为什么?

2.△ABC≌△FED

⑴写出图中相等的线段,相等的角;

⑵图中线段除相等外,还有什么关系吗?请与同伴交流并写出来。

四、板书设计

全等三角形

1.全等三角形的性质

2.找对应元素的方法

运动法:翻折、旋转、平移

位置法:对应角→对应边,对应边→对应角

经验:大边→大边,大角→大角.公共边是对应边,公共角是对应角。

五、教学反思

(略)

全等三角形教案 篇7

(一) 本节内容在教材中的地位与作用。

对于全等三角形的研究,实际是平面几何中对封闭的两个图形关系研究的第一步。它是两三角形间最简单、最常见的关系。本节《探索三角形全等的条件》是学生在认识三角形的基础上,在了解全等图形与全等三角形以后进行学习的,它既是前面所学知识的延伸与拓展,又是后继学习探索相似形的条件的基础,并且是用以说明线段相等、两角相等的重要依据。因此,本节课的知识具有承上启下的作用。同时,苏科版教材将“边角边”这一识别方法作为五个基本事实之一,说明本节的内容对学生学习几何说理来说具有举足轻重的作用。

在本课的教学中,不仅要让学生学会“边角边”这一全等三角形的识别方法,更主要地是要让学生掌握研究问题的方法,初步领悟分类讨论的数学思想。同时,还要让学生感受到数学来源于生活,又服务于生活的基本事实,从而激发学生学习数学的兴趣。为此,我确立如下教学目标:

(1)经历探索三角形全等条件的过程,体会分析问题的方法,积累数学活动的经验。

(2)掌握“边角边”这一三角形全等的识别方法,并能利用这些条件判别两个三角形是否全等,解决一些简单的实际问题。

(3)培养学生勇于探索、团结协作的`精神。

由于本节课是第一次探索三角形全等的条件,故我确立了以“探究全等三角形的必要条件的个数及探究边角边这一识别方法作为教学的重点,而将其发现过程以及边边角的辨析作为教学的难点。同时,我将采用让学生动手操作、合作探究、媒体演示的方式以及渗透分类讨论的数学思想方法教学来突出重点、突破难点。

(四)教学具准备,教具:相关多媒体课件;学具:剪刀、纸片、直尺。画有相关图片的作业纸。

本节课主要是“边角边”这一基本事实的发现,故我在课堂教学中将尽量为学生提供“做中学”的时空,让学生进行小组合作学习,在“做”的过程中潜移默化地渗透分类讨论的数学思想方法,遵循“教是为了不教”的原则,让学生自得知识、自寻方法、自觅规律、自悟原理。

首先,我出示一个实际问题:

问题:皮皮公司接到一批三角形架的加工任务,客户的要求是所有的三角形必须全等。质检部门为了使产品顺利过关,提出了明确的要求:要逐一检查三角形的三条边、三个角是不是都相等。技术科的毛毛提出了质疑:分别检查三条边、三个角这6个数据固然可以。但为了提高我们的效率,是不是可以找到一个更优化的方法,只量一个数据可以吗?两个呢?……

然后,教师提出问题:毛毛已提出了这么一个设想,同学们是否可以与毛毛一起来攻克这个难题呢?

这样设计的目的是既交代了本节课要研究与学习的主要问题,又能较好地激发学生求知与探索的欲望,同时也为本节课的教学做好了铺垫。

数学教学的本质就是数学活动的教学,为此,本节课我设计了下列活动,旨在让学生通过动手操作、合作探究来揭示“边角边”判定三角形全等这一知识的产生过程。

活动一:让学生通过画图或者举例说明,只量一个数据,即一条边或一个角不能判断两个三角形全等。

活动二:让学生就测量两个数据展开讨论。先让学生分析有几种情况:即边边、边角、角角。再由各小组自行探索。同样可以让学生举反例说明,也可以通过画图说明。

活动三:在两个条件不能判定的基础上,只能再添加一个条件。先让学生讨论分几种情况,教师在启发学生有序思考,避免漏解。

教师提出3个角不能判定两三角形全等,实质我们已经讨论过了。明确今天的任务:讨论两条边一个角是否可以判定两三角形全等。师生再共同探讨两边一角又分为两边一夹角与两边一对角两种情况。

活动四:讨论第一种情况:各小组每人用一张长方形纸剪一个直角三角形(只用直尺与剪刀),怎样才能使各小组内部剪下的直角三角形都全等呢?主要是让学生体验研究问题通常可以先从特殊情况考虑,再延伸到一般情况。

活动五:出示课本上的3幅图,让学生通过观察、进行猜想,再测量或剪下来验证。并说说全等的图形之间有什么共同点。

活动六:小组竞赛:每人画一个三角形,其中一个角是30°,有两条边分别是7cm、5cm,看哪组先完成,并且小组内是全等的。这样既调动了学生的积极性,又便于发现边角边的识别方法。

最后教师再用几何画板演示,学生进行观察、比较后,师生共同分析、归纳出“边角边”这一识别方法。

若有小组画成边边角的形式,则顺势引出下面的探究活动。否则提出:若两个三角形有两条边及其中一边的对角对应相等,则这两个三角形一定全等吗?

活动七:在给出的画有的图上,让学生自主探究(其中另一条边为5cm),看画出的三角形是否一定全等。让学生在给出的图上研究是为了减小探索的麻木性。

教师用几何画板演示,让学生在辨析中再次认识边角边。同时完成课后练习第一题。

例题教学是课堂教学的一个重要环节,因此,怎样充分地发挥好例题的教学功能是十分重要的。为此,我将充分利用好这道例题,培养学生有条理的说理能力,同时,通过对例题的变式与引伸培养学生发散思维能力。

首先,我将出示课本例1,并设计下列系列问题,让学生一步一步地走向“知识获得与应用”的理想彼岸。

问题1: 请说说本例已知了哪些条件,还差一个什么条件,怎么办?(让学生学会找隐含条件)。

问题2: 你能用“因为……根据……所以……”的表达形式说说本题的说理过程吗?

这样设计的目的在于体现“数学教学不仅仅是数学知识的教学,更重要的发展学生数学思维的教学”这一思想。

在例题教学的基础上,为了及时的反馈教学效果,也为提高学生知识应用的水平,达到及时巩固的目的,我设计了如下两个练习:

(1) 基础知识应用。完成教材P139练一练2。

(四)课堂小结,建立知识体系。

(1) 本节课你有哪些收获:重点是将研究问题的方法进行一次梳理,对边角边的识别方法进行一次回顾。

(2) 你还有哪些疑问?

全等三角形教案 篇8

教学目标

一、知识与技能

1、了解全等形和全等三角形的概念,掌握全等三角形的性质。

2、能正确表示两个全等三角形,能找出全等三角形的对应元素。

二、过程与方法

通过观察、拼图以及三角形的平移、旋转和翻折等活动,来感知两个三角形全等,以及全等三角形的性质。

三、情感态度与价值观

通过全等形和全等三角形的学习,认识和熟悉生活中的全等图形,认识生活和数学的关系,激发学生学习数学的兴趣。

教学重点

1、全等三角形的性质。

2、在通过观察、实际操作来感知全等形和全等三角形的基础上,形成理性认识,理解并掌握全等三角形的对应边相等,对应角相等。 教学难点 正确寻找全等三角形的对应元素。

教学关键

通过拼图、对三角形进行平移、旋转、翻折等活动,让学生在动手操作的过程中,感知全等三角形图形变换中的对应元素的变化规律,以寻找全等三角形的对应点、对应边、对应角。

课前准备: 教师——————课件、三角板、一对全等三角形硬纸版学生——————白纸一张、硬纸三角形一个

教学过程设计

一、全等形和全等三角形的概念

(一)导课:

教师————(演示课件)庐山风景,以诗“横看成岭侧成峰,远近高低各不同,不识庐山真面目,只缘身在此山中”指出大自然中庐山的唯一性,但是我们可以通过摄影把庐山的美景拍下来,可以洗出千万张一模一样的庐山相片。

(二)全等形的定义

象这样的图片,形状和大小都相同。你还能说一说自己身边还有哪些形状和大小都相同的图形吗?[学生举例,集体评析]

动手操作1———在白纸上任意撕一个图形,观察这个图形和纸上的空心部分的图形有什么关系?你怎么知道的? [板书:能够完全重合]

命名:给这样的图形起个名称————全等形。[板书:全等形]

刚才大家所举的各种各样的形状大小都相同的图形,放在一起也能够完全重合,这样的图形也都是全等形。

(三)全等三角形的定义

动手操作2———制作一个和自己手里的三角形能够完全重合的三角形。 定义全等三角形:能够完全重合的两个三角形,叫全等三角形。

(四)出示学习目标

1、 知道什么是全等形,什么是全等三角形。

2、 能够找出全等三角形的对应元素。

3、会正确表示两个全等三角形。

4、掌握全等三角形的性质。

二、全等三角形的对应元素及表示

(一)自学课本:第1节内容(时间5分钟)可以在小组内交流。

(二)检测:

1、动手操作

以课本P91页的思考的操作步骤,抽三个学生上黑板完成(即把三角形平移、翻折、旋转后得到新的三角形)

思考:把三角形平移、翻折、旋转后,什么发生了变化,什么没有变?

归纳:旋转前后的两个三角形,位置变化了,但形状大小都没有变,它们依然全等。

2、全等三角形中的对应元素

(以黑板上的图形为例,图一、图二、三学生独立找,集体交流)

(1)对应的顶点(三个)———重合的顶点

(2)对应边(三条)———重合的边

(3)对应角(三个)——— 重合的角

归纳:

方法一:全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;

方法二:全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角。 另外:有公共边的,公共边一定是对应边;有对顶角的,对顶角一定是对应角。

3、用符号表示全等三角形

抽学生表示图一、图二、三的全等三角形。

4、全等三角形的性质

思考:全等三角形的对应边、对应角有什么关系?为什么?

归纳:全等三角形的对应边相等、对应角相等。

请写出平移、翻折后两个全等三角形中相等的角,相等的边。

全等三角形教案 篇9

[教学目标]

1。会说出怎样的两个图形是全等形,并会用符号语言表示两个三角形全等。

2。知道全等三角形的有关概念,会在全等三角形中正确地找出对应顶点、对应边、对应角。

3。会说出全等三角形的对应边、对应角相等的性质。

此外,通过把两个重合的三角形变换其中一个的位置,使它们呈现各种不同位置的活动,让学生从中了解并体会图形变换的思想,逐步培养学生动态的研究几何图形的意思。

[引导性材料]

我们身边经常看到一模一样的图形,比如同一版面的记念邮票,同一版面的人民币、用两张纸叠在一起剪出的两张窗花等,请大家举出这类图形的'例子。

说明:让学生在举出实际例子以及对所举例子的辨析中获得对全等图形尽可能多的精确的感知。

[教学设计]

问题1:几何中,我们把上述所例举的一模一样的图形叫做全等形,以下是描述全等形的三种不同的说法,你认为哪种说法是恰当的?

(l)形状相同的两个图形叫全等形。

(2)大小相等的两个图形叫全等形。

(3)能够完全重合的两个图形叫全等形。

(学生阅读课本第21页,全等三角形的有关概念、全等三解形的表示方法。)

操作和观察(学生用两块透明塑料片叠合在一起,任意剪两个全等的三角形,教师制作两个全等三角形的复合投影片演示。)

(1)将重合的两块全等三角形塑料片中的一个沿着一边所在的直线移动,观察移动过程中这两个三角形有哪几种不同位置?画出这两个全等三角形不同位置的组合图形。

(2)图3。4—1是上述移动过程中的两个全等三角形组合的图形,说出它们的对应顶点、对应边、对应角。

(3)将重合的两块三角形塑料片,以一边所在的直线为轴,把其中一个三角形翻折180,请你画出翻折后的两个全等三角形组合的图形。

(4)将两块全等的三角形塑料片拼合成如图3。4—2中的图形,并指出它们的对应顶点、对应边、对应角。

[小结]

1。识别全等三角形的对应边、对应角的关键是正确识别它们的对应顶点。

2。用全等三变换的方法观察图形,有助于正确、迅速的从复杂图形中识别出全等三角形。

[作业]

课本3。2A组第2、3、4题。

全等三角形教案 篇10

1、知道什么是全等形,全等三角形以及全等三角形对应的元素;

2、能用符号正确地表示两个三角形全等;

3、能熟练地找出两个全等三角形的对应顶点、对应边、对应角;

4、知道全等三角形的性质,并能用其解决简单的问题要求学生会确定全等三角形的对应元素及对全等三角形性质的理解;

5、通过感受全等三角形的对应美,激发热爱科学勇于探索的精神。通过文字阅读与图形阅读,构建数学知识,体验获取数学知识的过程,培养学生勇于创新,多方位审视问题的创造技巧。

[难点]

能用全等三角形的性质解决简单的问题,要求学生会确定全等三角形的对应元素及对全等三角形性质的理解。

活动4观察两个平移的三角形所做的变化(课件演示)及动手剪两个全等的三角形。

观察、发现生活中图形的形状和大小相同的图形获得全等形的体验。

利用两个形状和大小相同的图形通过平移、翻折、旋转的实验,得出全等形的概念。

及自己动手作比较得出全等形三角形的概念。

通过图形的变换,形成对应的概念,获得全等形三角形的性质。

(1)观察下列图案(电脑显示不同的图案及教科书的图案),学生指出这些图案的形状和大小是否相同?

(2)你能再举出生活中的一些实际例子吗?

(3)按照教科书的要求,将一块三角形样板在纸板上,画下图形,照图形裁下纸板。观察裁下的纸板的形状、大小是否完全一样,能否完全重合?

教师演示课件,提出问题,学生思考、交流。

学生思考发表见解。

学生举出生活中的实例,教师对有创意的例子给予表扬及鼓励。

教师给出全等形的概念。

教师提出要求,学生动手操作,并做观察、回答问题。

学生观察、发现全等形的能力,举出的离子是否是局限于某一范围,是否有新意;

(2)学生是否能够按要求裁下纸板,准确地重合纸板,并认真地进行观察。

运用贴近学生生活的图案激发学生探究的兴趣。

通过问题(1),引导学生从图形的形状与大小的角度去观察图形。

图形全等形、在生活中大量存在,创设这样的问题情境,引导学生有意注意,激发学生主动思考和联想;引导学生进一步联系生活,激发探究欲望。

通过动手实践,获得全等形的体验。

[活动2]

观察下列图形经过平移、翻折、旋转前后的形状和大小是否有所改变?

教师提出要求。

学生体会到图形的位置变化了,但经过平移、翻折、旋转依然全等。

培养学生对图形的识别能力。

[活动3]

对全等形知识的练习。

教师提问。

学生思考回答问题。

ABC的位子上,试一试:

观察△ABC在平移、翻折、旋转是否发生了改变?在图中的两个三角形全等吗?

教师用课件展示。

学生猜测,发表意见得出全等三角形的概念。

是否能体会三角形的位置变化了,但经过平移、翻折、旋转后两个图形依然全等。

学生动手实践、分析,总结出图形变换的本质,加深对图形变换的理解。

将两个三角形完全重合,观察并指出重合的顶点、边和角。

观察两个三角形找出对应边、对应角。

(4)观察重合的两个三角形对应边、对应角的关系。

教师课件演示提出问题。

学生实践交流得出结论。

教师给出对应顶点、对应边、对应角的概念并板书。

学生观察并回答问题。教师引导学生归纳总结得出三角形的性质并板书。

全等三角形性质的理解。

在教师演示课件的过程中,学生建立对应的概念。

学生学会掌握全等三角形的'表达方式,会使用全等符号。

练一练:

如图,已知ΔOCA≌ΔOBD,

(3)拓广探索:

如下图,矩形ABCD沿AM折叠,使D点落在BC上的N点处,如果AD=7cm,DM=5cm, ∠DAM=39°,则AN=___cm, NM=___cm, ∠NAB=___.

教师提出问题。

学生分组探究。

观察学生能否快速找出对应的边与角。

教师利用课件演示提问。

学生再一次对对应边与角的掌握。

教师提问。

学生独立思考回答并说出解题过程。

教师给出解题答案。

同学之间的交流与活动参与程度。

进一步培养学生对图形的识别能力,加深学生对全等三角形性质的理解与掌握。

运用全等三角形的性质对较复杂图形进行探索,初步培养学生综合运用全等三角形性质的能力。

教科书92页习题1。

学生分组总结。

教师布置作业,学生课后独立完成。

学生对全等三角形的情感认识。

加深学生对知识的理解,促进学生对课堂的反思。

巩固、提高、反思。使学生对知识的掌握。

全等三角形教案 篇11

“全等三角形的条件”教案 李春成 教学目标 知识与技能 (1)、经历探索三角形全等条件的过程,掌握三角形全等的“角边角”“角角边”判定方法 (2)、体会利用操作、归纳获得数学结论的过程。 (3)、培养学生的空间观念,推理能力,发展有条理地表达能力。 情感态度与价值观 (1)、经历和体验数学活动的过程以及数学在现实生活中的应用,树立学好数学的信心。 (2)、通过课堂学习培养学生敢于实践,勇于发现,大胆探索,合作创新的精神。   难点 三角形全等条件的探索,已知三角形两个角和一边画三角形 教学重点 经历对三角形全等条件的分析与画图验证的过程,能用“角边角”“角角边”去判定两个三角形全等。   教学方法 探索发现法、小组讨论法     教学过程 教学环节 教学内容 师生活动 设计意图及教师组织 创设问题情景,引入新知 一同学不小心打破了一块三角形的玻璃,如图:他应该拿哪一块回玻璃店做一块与原玻璃一模一样的?     教师利用教具提出问题,由学生讨论并提出自己的看法。   创设一个问题情境,激发学生学习的欲望和要求   建立模型,探索发现 1、动手探究 先任意画一个△ABC,再画一个△A1B1C1,使A1B1=AB,∠A1=∠A,∠B1=∠B(即使两角和它们的夹边对应相等)。把画好的△A1B1C1剪下,放到△ABC上,它们全等吗? (让学生通过画图了解,画第一边后,已经定好两个顶点,再画两个角,两个角已确定,那么三角形的第三个顶点也确定,所以这两个三角形全等) 2、探究的结果反映了什么规律?你能得出什么结论? (板书:两角和它们的夹边对应相等的两个三角形全等,可以简写成“角边角”或“ASA”) 3、动手做一做 在△ABC和△DEF中,∠A=∠D,∠B=∠E,BC=EF,△ABC和△DEF全等吗?能利用角边角条件证明你的结论吗?   4、证明的结果得出什么结论? (板书:两个角和其中一个角的对边对应相等的两个三角形全等,可以简写成“角角边”或“AAS”) 5、你能利用上面的结论解决上课开始提出的问题吗?   1、由学生自己动手画图,并把两个三角形剪下叠和在一起,看是否能完全重合。           2、学生讨论,探究的'结果反映什么规律,学生回答后教师总结并板书。     3、先由学生猜想两个三角形是否全等,然后自己动手运用角边角条件证明,学生板书。       4、由学生叙述结论,教师强调“对应”。   5、由学生利用刚学的角边角的结论说明拿第3块回店里可以,并分别说明第1、2块为什么不可以,教师用课件演示。           培养学生养成在动手操作过程中仔细观察、勤于思考、善于发现的良好习惯。通过动手操作,使学生体验到两角和它们的夹边对应相等的两个三角形全等。   培养学生小组合作交流的好习惯。       由学生尝试用角边角证明两个三角形全等。               利用数学知识解决生活中的实际问题,渗透了数学来源于实际,又应用于实际的思想。         应用拓展,巩固新知   1、例3:已知,如图,D在AB上,E在AC上,AB=AC,∠B=∠C,求证:AD=AE   2、例3变式:已知,如上图,D在AB上,E在AC上,AB=AC,∠B=∠C,求证:BD=CE   3、如图,AB⊥BC,AD⊥DC,∠1=∠2,求证:AB=AD   4、如图,已知:AB∥CD,AB=CD,点B、E、F、D在同一直线上,∠A=∠C,求证:AE=CF       学生自学例3,教师给予提示:要证明两条线段相等,两条线段分别位于两个不同的三角形中则考虑证明两三角形全等,师生共同分析,教师把解题过程板书黑板。强调书写格式。       学生独立思考后,师生共同分析,由学生书写证明过程,教师强调书写证明格式,要求写出相应的理由 通过例题,使学生掌握运用“角边角”证明三角形全等的过程。教师板书,规范学生的书写格式,培养学生良好的学习习惯。         例题后的变式题和练习,检测学生对“角边角”和“角角边”的运用情况。                                 画一画,想一想   1、三角对应相等的两个三角形全等吗?             2、你能对三角形全等的判定方法做一个小结吗?     学生通过作图体验,教师巡视,并指导学生观察手上的三角板,大、小两个三角板的三个角都相等,但这两个三角板不全等,说明三角对应相等的两个三角形不一定全等。   学生分小组讨论,得出结论:证明两个三角形全等的条件至少有一条边,三个角对应相等的两个三角形不一定全等,三边对应相等的两个三角形一定全等,两边和它们的夹角对应相等的两个三角形一定全等,两边和其中一边的对角对应相等的两个三角形不一定全等,两角和它们的夹边对应相等的两个三角形全等,两个角和其中一个角的对边对应相等的两个三角形全等。     通过动手操作,使学生对三角对应相等的两个三角形不一定全等有更深刻的印象。       通过讨论、归纳,既有助于训练学生概括归纳能力,又有助于学生在归纳概括过程中把所学的三角形的判定方法条理化、系统化。                                   能力提高 如图:已知△ABC≌△A1B1C1,AD、A1D1分别是∠BAC和∠B1 A1 C1的角平分线。求证:AD= A1D1         师生共同分析后由学生书写解题过程,由一个写得较好的学生上黑板板书。   这是一道较难的题目,给学有余力的同学提供机会,便于他们更好地运用全等三角形的性质和判定解决问题。   小结   本节课你学习了什么?发现了什么?有什么收获?本节课还存在什么没有解决的问题?   在教师的引导下,回顾本节课对知识的探究过程,提炼数学思想,掌握数学知识   帮助学生梳理知识内容,回顾自己在本节课中的收获、困难和需要改进的地方。 分层作业 巩固提高   必做题:教科书104页第5、6、11题 选做题:教科书104页第12题       通过分层练习,使每一个学生在数学上都得到不同的发展     《三角形全等的条件》(第5课时)   教       学       目       标 知识技能 1.掌握“斜边、直角边”条件的内容.   2.初步运用“斜边、直角边”条件证明两个直角三角形全等. 数学思考 使学生经历作图,比较证明等探究过程,提高分析、作图、归纳、表达、逻辑推理能力. 解决问题 会运用“斜边、直角边”条件证明两个直角三角形全等. 情感态度 通过探究与交流,解决一些问题,获得成功的体验,进一步激发探究的积极性. 重点 掌握判定两个直角三角形全等的方法. 难点 熟练选择判定方法,判定两个直角三角形全等.   【教学过程设计】   问题与情景 师生行为 设计意图 活动1   问题   (1)舞台背景的形状是两个直角三角形,为了美观,工作人员想知道这两个直角三角形是否全等,但每个三角形都有一条直角边被花盆遮住无法测量,怎么办呢?   (2)如果他带的测量工具只是一把卷尺时呢?   (3)工作人员是这样做的,他测量了每个三角形没有被遮住的直角边和斜边,发现它们分别对应相等,于是他就肯定“两个直角三角形是全等的”.你相信他的结论吗? 教师提出问题,引导学生回答.   学生分组讨论,得到不同的方法,教师引导并给予肯定,然后对工作人员提出的方法进行探究.                           在本次活动中,教师应重点关注:   (1)学生能否根据实际情况找出两个三角形全等的条件;   (2)学生对已有知识掌握情况;   (3)学生是否会观察图形,找出三角形全等的模型;   (4)学生是否能积极的参与活动. 创设实际情景,激发探究欲望,明确探究方向,引入课题.   问题与情景 师生行为 设计意图 活动2   问题   任意画出一个Rt△ABC,使∠C=90°, 再画一个Rt△A?B?C?,使   ∠C?=90°,B?C?=BC,A?B?=AB(即使斜边和一条直角边对应相等)   (1)你能画出满足条件的Rt△A?B?C?吗?应该怎样画?   (2)把画好的Rt△A?B?C?剪下,放到Rt△ABC上.他们全等吗?   . 教师先提问,明确探究任务,指导学生进行画图探究,获取“HL”的条件.   学生画图,再让学生发现存在的问题,最后给出正确的画法.   本次活动中,教师应重点关注:   (1)学生是否在与同伴交流的基础上以小组为单位通过观察发现规律;   (2)学生能否根据探究中发现的规律概括出结论“HL”;   (3)在阐述结论时,学生的语言是否规范. 以学生画图为主线展开探究活动,注重“HL”条件的发生过程,和学生的亲身体验,从实践中获取“HL”条件,培养学生探索、发现、概括规律的能力.  

全等三角形教案 篇12

一、教材分析

本节课的教学内容是人教版数学八年级上册第十一章 《全等三角形》的第一节.这是全章的开篇,也是全等条件的基础.它是继线段、角、相交线与平行线及三角形有关知识之后出现的通过本节的学习,可以丰富和加深学生对已学图形的认识,同时为学习其他图形知识打好基础,具有承上启下的作用.

教材根据初中学生的认知规律和特点,采用由浅入深、由易到难、抓联系、促迁移的方法.通过生活中的实例创设情景,形成概念,再通过平移、翻折、旋转说明变换前后的两个三角形全等,进而得出全等三角形的相关概念及其性质.

二、教学目标分析

知识与技能

1.了解全等三角形的概念,通过动手操作,体会平移、翻折、旋转是考察两三角形全等的主要方法.

2.能准确确定全等三角形的对应元素.

3.掌握全等三角形的性质.

过程与方法

1.通过找出全等三角形的对应元素,培养学生的识图能力.

2.能利用全等三角形的概念、性质解决简单的数学问题.

情感、态度与价值观

通过构建和谐的课堂教学氛围,激发学生的学习兴趣,调动学生的学习积极性,使学生勇于提出问题,乐于探索问题,同时注重培养学生善于合作交流的良好情感和积极向上的学习态度.

三、教学重点、难点

重点:全等三角形的概念、性质及对应元素的确定.

难点:全等三角形对应元素的确定.

四、学情分析

学生在七年级时已经学过线段、角、相交线与平行线及三角形的有关知识,并学习了一些简单的说理,已初步具有对简单图形的分析和辨识能力,但八年级的学生仍处于以形象思维为主要思维形式的时期.为了发展学生的空间观念,培养学生的抽象思维能力,本节课将充分利用动画演示,来揭示图形的平移、翻折和旋转等变换过程,以便让学生在观察、分析中获得大量的感性认识,进而达到对全等三角形的理性认识.

五、教法与学法

本节课坚持“教与学、知识与能力的辩证统一”和“人人都能获得必需的数学”的原则,博采启发教学法、引探教学法、讲授教学法等诸多方法之长,借助多媒体手段引导学生观察、猜想和探究,促进学生自主学习,努力做到教与学的最优组合.

六、教学教程

Ⅰ.课题引入

1.电脑显示

问题:各组图形的形状与大小有什么特点?

一般学生都能发现这两个图形是完全重合的。

归纳:能够完全重合的两个图形叫做全等形。

2.学生动手操作

⑴在纸板上任意画一个三角形ABC,并剪下,然后说出三角形的三个角、三条边和每个角的对边、每个边的对角。

⑵问题:如何在另一张纸板再剪一个三角形DEF,使它与△ABC全等?

(学生分组讨论、提出方法、动手操作)

3.板书课题:全等三角形

定义:能够完全重合的两个三角形叫做全等三角形

“全等”用“≌”表示,读着“全等于”

如图中的'两个三角形全等,记作:△ABC≌△DEF

Ⅱ.全等三角形中的对应元素

1. 问题:你手中的两个三角形是全等的,但是如果任意摆放能重合吗?该怎样做它们才能重合呢?

2.学生讨论、交流、归纳得出:

⑴.两个全等三角形任意摆放时,并不一定能完全重合,只有当把相同的角重合到一起(或相同的边重合到一起)时它们才能完全重合。这时我们把重合在一起的顶点、角、边分别称为对应顶点、对应角、对应边。

⑵.表示两个全等三角形时,通常把表示对应顶点字母写在对应的位置上,这样便于确定两个三角形的对应关系。

Ⅲ. 全等三角形的性质

1.观察与思考:

寻找甲图中两三角形的对应元素,它们的对应边

有什么关系?对应角呢?

(引导学生从全等三角形可以完全重合出发找等量关系)

全等三角形的性质:

全等三角形的对应边相等.

全等三角形的对应角相等.

2.用几何语言表示全等三角形的性质

如图:∵ABC≌ DEF

∴AB=DE,AC=DF,BC=EF

(全等三角形对应边相等)

∠A=∠D,∠B=∠E,∠C=∠F

(全等三角形对应角相等)

Ⅳ.探求全等三角形对应元素的找法

1.动画(几何画板)演示

(1).图中的各对三角形是全等三角形,怎样改变其中一个三角形的位置,使它能与另一个三角形完全重合?

归纳:两个全等的三角形经过一定的转换可以重合.一般是平移、翻折、旋转的方法.

(2).说出每个图中各对全等三角形的对应边、对应角

归纳:从运动的角度可以很轻松地解决找对应元素的问题.可见图形转换的奇妙.

3. 归纳:找对应元素的常用方法有两种:

(1)从运动角度看

a.翻折法:一个三角形沿某条直线翻折与另一个三角形重合,从而发现对应元素.

b.旋转法:三角形绕某一点旋转一定角度能与另一三角形重合,从而发现对应元素.

c.平移法:沿某一方向推移使两三角形重合来找对应元素.

(2)根据位置元素来推理

a.有公共边的,公共边是对应边;

b.有公共角的,公共角是对应角;

c.有对顶角的,对顶角是对应角;

d.两个全等三角形最大的边是对应边,最小的边也是对应边;

e.两个全等三角形最大的角是对应角,最小的角也是对应角;

Ⅴ.课堂练习

练习1.△ABD≌△ACE,若∠B=25°, BD=6㎝,AD=4㎝,

你能得出△ACE中哪些角的大小,哪些边的长度吗?为什么 ?

练习2.△ABC≌△FED

⑴写出图中相等的线段,相等的角;

⑵图中线段除相等外,还有什么关系吗?请与同伴交

流并写出来.

Ⅵ.小结

1.这节课你学会了什么?有哪些收获?有什么感受?

2.通过本节课学习,我们了解了全等的概念,发现了全等三角形的性质,并且利用一些方法可以找到两个全等三角形的对应元素.这也是这节课大家要重点掌握的

Ⅶ.作业

课本第92页1、2、3题

全等三角形教案 篇13

教材分析

利用教科书提供的素材和活动,鼓励学生经历观察、操作、推理、想象等活动,发展学生的空间观念,体会分析问题、解决问题的方法,积累数学活动经验。培养学生有条理的思考,表达和交流的能力,并且在以直观操作的基础上,将直观与简单推理相结合,注意学生推理意识的建立和对推理过程的理解,能运用自己的方式有条理的表达推理过程,为以后的证明打下基础。

学情分析

学生通过前面的学习已了解了图形的全等的概念及特征,掌握了全等图形的对应边、对应角的关系,这为探究三角形全等的条件做好了知识上的准备。另外,学生也具备了利用已知条件作三角形的基本作图能力,这使学生能主动参与本节课的操作、探究成为可能。

教学目标

(1)学生在教师引导下,积极主动地经历探索三角形全等的条件的过程,体会利用操作、归纳获得数学结论的过程。

(2)掌握三角形全等的“边边边”、“边角边”、“角边角”、“角角边”的判定方法,了解三角形的稳定性,能用三角形的全等解决一些实际问题。

(3)培养学生的空间观念,推理能力,发展有条理地表达能力,积累数学活动经验。

教学重点和难点

重点:三角形全等条件的探索过程是本节课的重点。

从设置情景提出问题,到动手操作,交流,直至归纳得出结论,整个过程学生不仅得到了两个三角形全等的条件,更重要得是经历了知识的形成过程,体会了一种分析问题的方法,积累了数学活动经验,这将有利于学生更好的理解数学,应用数学。

难点:三角形全等条件的探索过程,特别是创设出问题后,学生面对开放性问题,要做出全面、正确得分析,并对各种情况进行讨论,对初一学生有一定的难度。

根据初一学生年龄、生理及心理特征,还不具备独立系统地推理论证几何问题的能力,思维受到一定的局限,考虑问题不够全面,因此要充分发挥教师的主导作用,适时 点拨、引导,尽可能调动所有学生的积极性、主动性参与到合作探讨中来,使学生在与他人的合作交流中获取新知,并使个性思维得以发展。

教学过程

一、回顾概念整合知识以提问的方式引出本节课的教学内容:

问题1通过调查你对商品的标价、售价、进价和利润、利润率这些概念清楚了吗?你能列出它们之间的关系式吗?

(学生板书写出三个基本关系式)

教师引导得出变形关系式:利润=进价 × 利润率.

设计意图通过调查使学生对商品销售过程所涉及的基本量、基本关系式有初步的了解,为后续的学习作好铺垫.

二、强化练习巩固概念

问题2运用基本关系式来做一组练习.

1.如果足球的进价是每个a元,超市按进价提高30%后标价,则标价是多少元?

2.如果足球的进价是每个a元,标价是每个150元,现7折优惠,则每个足球的利润是多少元?

3.如果足球的进价是每个a元,卖出后盈利25%,则每个足球的利润是多少?

4.如果足球的进价是每个a元,卖出后亏损25%,则每个足球的利润是多少?

设计意图通过题组练习使学生熟练掌握进价、标价、利润、利润率之间的关系,进而促使学生理解概念.

三、实践应用合作交流

问题3解决调查编写的商品销售方面的有关问题.

设计意图通过让学生编题互问互检,学生间的相互评价,拓展学生思维,给学生创造一个合作交流和表现发挥的舞台,让学生充分体验成功后的喜悦.

四、联系实际探究新知

问题4某商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?

教师在学生独立思考几分钟后让学生估算并简单说出估算的理由,估算对否不给予评判,告诉学生估算对不对还要进行计算. 如何计算学生先独立思考,然后同桌交流,最后请一名同学到黑板板演利用一元一次方程解决此实际问题全部过程,其他同学在底下完成. 完成后同学间相互评价. 最后教师指出解决问题的关键——寻找等量关系,教师再进一步用估算方法分析亏损的原因.

设计意图在学生基本掌握解决有关商品销售问题的基础上对所学内容进行拓展,延伸. 设计开放性问题的目的是通过本题的讲解使学生灵活运用本节的知识解决生活中的实际问题,也使全体学生在获得必要发展的前题下,不同的学生获得不同的体验.

五、巩固练习当堂反馈

问题5若某商品因库存积压,准备打折出售,如果按定价的7.5折出售将赔25元,而按定价的9折出售将赚20元. 该商品定价是多少元?

(同学们思考后各自独立完成,然后同学互判)设计意图本节课对学生来说是一个难点,因此设计反馈这一环节很有必要,便于教师掌握学生学习的情况.

六、布置作业课后延伸

设计意图加深学生对知识的巩固;是课堂教学内容的延

全等三角形教案 篇14

各位评委:

今天我说课的题目是人教版数学八年级上册第十章第1节《全等三角形》。下面,我将从教材分析,教学方法与教材处理及教学过程等几个方面对本课的设计进行说明。

一、教学地位和作用

全等三角形是《三角形》这一章的主线,在知识结构上,等腰三角形,直角三角形,线段的垂直平分线,角的平分线等内容都要通过证明两个三角形全等来加以解决;在能力培养上,无论是逻辑思维能力,推理论证能力,还是分析问题解决问题的能力,都可在全等三角形的教学中得以培养和提高。因此,全等三角形的教学对全章乃至以后的学习都是至关重要的。为此,我在设计这节课的时候,以学生为主体,让他们全面地参与到学习过程中来,有意识地培养学生的创新意识和实践能力,增强他们学习的能力,让他们充分的掌握该知识点,同时尽量扩充他们的知识范畴。在教学中,采用的是“设疑——实验——发现——总结”的教学方法,并采用“变式练习”方法来提高学习效率。

二、教学的目标和要求:

1、知识目标:

(1)知道什么是全等三角形及全等三角形的对应元素;

(2)知道全等三角形的性质,能用符号正确地表示两个三角形全等;

(3)能熟练找出两个全等三角形的对应角,对应边。

2、能力目标:

(1)通过全等三角形有关概念的学习,提高学生数学概念的辨析能力;

(2)通过找出全等三角形的对应元素,培养学生的识图能力。

3、情感目标:

(1)通过感受全等三角形的对应美激发学生热爱科学勇于探索的精神;

(2)通过自主学习的发展体验获取数学知识的感受,培养学生勇于创新,多方位审视问题的创造技巧。

三、教学重点:

1、能准确地在图形中识别出对应边,对应角;

2、全等三角形的性质和利用其基本性质进行一些简单的推理和计算。

(解决方法:利用动画的形式让学生直观的识别抽象的图形和知识点从而突出和掌握重点。)

四、教学难点:

能在全等变换中准确找到对应边,对应角。(在对应边,对应角的识别,查找中运用动画的展示,使学生能直观认识该知识点,化难为易,从而突破该难点)

五、教法与学法:

采用直观,类比的方法,以多媒体为手段辅助教学,引导学生预习教材内容,养成良好的自学习惯,启发学生发现问题,思考问题,培养学生的逻辑思维能力。逐步设疑,引导学生积极参与讨论,肯定成绩,使其具有成就感,提高他们学习的兴趣和学习的积极性。

多媒体,剪刀,直尺,硬纸,三角板

七、教学过程:

(一)复习导入方面

从复习全等图形方面入手,展示一些直观的图形,接着创设一个问题情境:如何翻新一个旧的三角形的纸样让学生动手画图,实验尝试,从而发现其实解决问题的关键是画一个全等的三角形,从而引出课题。通过以上的环节主要是提高学生数学概念的辨析能力和培养学生的动手实践能力。(此环节约用时5分钟)

(二)新课讲解方面

1、全等三角形的定义

通过动画的展示,引导学生观察,分析得出全等三角形的定义(先展示动画)。目的主要在于培养学生的观察分析能力。(此环节学生约用2分钟进行讨论分析)

2、全等三角形的性质

以动画的形式,介绍全等三角形的对应顶点,对应边,对应角,并引导学生通过观察分析全等三角形的对应边,对应角之间分别有怎样的关系,从而得出全等三角形的性质。在无形中培养了学生的图形识别能力和直观判断能力。(此环节约用时7分钟)

3、全等三角形的表示法

介绍全等符号,说明表示两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上。(此环节用时约2分钟)

4、议一议

方法:(1)小组活动,展示部分小组的解决方案

(2)动画展示解决方案

(3)知识点的扩充:动画展示全等三角形的变换识别中对应边,对应角的查找。

以上环节主要趋于培养学生的团结合作精神,认识团队的力量和开拓学生的思维,扩充学生的知识范畴。(此环节约用时8分钟)

(三)课堂练习(此环节约用时18分钟)

用多媒体课件逐一展示练习题目,让学生一一解答。主要是通过练习让学生巩固所学的知识并学会用所学的知识进行推理和解决实际问题。

(四)课堂小结(此环节约用时2分钟)

经过以上的教学环节,为了帮助学生系统的掌握所学的知识,达到预期的效果,在这一步骤中,我准备利用提问的形式,师生共同进行小结和归纳。

(五)作业布置(约用时1分钟)

(六)板书设置

全等三角形教案 篇15

(1)熟记边角边公理的内容;

(2)能应用边角边公理证明两个三角形全等。

2、能力目标:

(1) 通过“边角边”公理的运用,提高学生的逻辑思维能力;

(2) 通过观察几何图形,培养学生的识图能力。

3、情感目标:

(1) 通过几何证明的教学,使学生养成尊重客观事实和形成质疑的.习惯;

(2) 通过自主学习的发展体验获取数学知识的感受,培养学生勇于创新,多方位审视问题的创造技巧。

教学难点:在较复杂的图形中,找出证明两个三角形全等的条件。

让学生把所画的 剪下,放在原三角形上,发现什么情况?(两个三角形重合)

启发学生发现、总结边角边公理:有两边和它们的夹角对应相等的两个三角形全等(简写成“边角边”或“SAS”)

1、格式要求:先指出在哪两个三角形中证全等;再按公理顺序列出三个条件,并用括号把它们括在一起;写出结论。

2、在应用时,怎样寻找已知条件:已知条件包含两部分,一是已知中给出的,二时图形中隐含的(如公共边,公共角、对顶角、邻补角、外角、平角等)所以找条件归结成两句话:已知中找,图形中看。

3、平面几何中常要证明角相等和线段相等,其证明常用方法:

证角相等――对顶角相等;同角(或等角)的余角(或补角)相等;两直线平行,同位角相等,内错角相等;角平分线定义;等式性质;全等三角形的对应角相等地。

证线段相等的方法――中点定义;全等三角形的对应边相等;等式性质。

(1)讲解例1。学生分析完成,教师注重完成后的总结。

“SAS”的三个条件是什么?

已知条件给出了几个?

投影例2:

例2如图2,AE=CF,AD∥BC,AD=CB,

求证:

学生思考、分析,适当点拨,找学生代表口述证明思路让学生在练习本上定出证明,一名学生板书。教师强调证明格式:用大括号写出公理的三个条件,最后写出结论。

学生分析思路,写出证明过程。

学生口述过程。投影展示证明过程。

教师强调证明线段相等的几种常见方法。

学生思考、分析、讨论,教师巡视,适当参与讨论。

师生共同讨论后,让学生口述证明思路。

教师强调解题格式:在“证明”二字的后面,先将所作的辅助线写出,再证明。

(3)证明线段、角相等常见的方法有哪些?

让学生自由表述,其它学生补充,自己将知识系统化,以自己的方式进行建构。

以上就是《全等三角形教案精华15篇》的全部内容,想了解更多内容,请点击全等三角形教案查看或关注本网站内容更新,感谢您的关注!

文章来源://m.jab88.com/j/179490.html

更多

最新更新

更多