教案课件是老师不可缺少的课件,大家应该要写教案课件了。在写好了教案课件计划后,这样接下来工作才会更上一层楼!你们到底知道多少优秀的教案课件呢?以下是小编为大家收集的“七年级数学下册第四章变量之间的关系导学案(新版北师大版)”希望对您的工作和生活有所帮助。
第四章变量之间的关系
第一节用表格表示的变量间的关系
【学习目标】
1.经历探索具体情境中两个变量之间关系的过程,获得探索变量之间关系的体验,进一步发展符号感。
2.在具体情境中理解什么是变量、自变量、因变量,并能举出反映变量之间关系的例子。
3.能从表格中获得变量之间关系的信息,能用表格表示变量之间的关系,并根据表格中的资料尝试对变化趋势进行初步的预测。
【学习方法】自主探究与小组合作交流相结合.
【学习重难点】重点:能从表格的数据中分清什么是变量,自变量、因变量以及因变量随自变量的变化情况。
难点:对表格所表达的两个变量关系的理解。
【学习过程】
模块一预习反馈
一、学习准备
1.我们生活在一个变化的世界中,很多东西都在悄悄地发生变化.
你能从生活中举出一些发生变化的例子吗?
教材精读
1.请同学们观察思考,逐一回答下面的问题:
根据上表回答下列问题:
(1)支撑物高度为70厘米时,小车下滑时间是多少?
(2)如果用h表示支撑物高度,t表示小车下滑时间,随着h逐渐变大,t的变化趋势是什么?
(3)h每增加10厘米,t的变化情况相同吗?
(4)估计当h=110厘米时,t的值是多少,你是怎样估计的?
(5)随着支撑物高度h的变化,还有哪些量发生变化?哪些量始终不发生变化?
在“小车下滑的过程”中:
支撑物的高度h和小车下滑的时间t都在变化,它们都是。其中小车下滑的时间t随支撑物的高度h的变化而变化。支撑物的高度h是,小车下滑的时间t是。
在这一变化过程中,小车下滑的距离(木板的长度)一直变化。像这种在变化过程中的量叫做。
我国从1949年到1999年的人口统计数据如下(精确到0.01亿):
(1)如果用x表示时间,y表示我国人口总数,那么随着x的变化,y的变化趋势是什么?
(2)X和y哪个是自变量?哪个是因变量?
(3)从1949年起,时间每向后推移10年,我国人口是怎样的变化?
(4)你能根据此表格预测2009年时我国人口将会是多少?
在“人口统计数据”中:
时间和人口数都在变化,它们都是。其中人口数随时间的变化而变化。时间是,人口数是。
归纳:借助表格,我们可以表示因变量随自变量的变化而变化的情况
模块二合作探究
1.研究表明,当每公顷钾肥和磷肥的施用量一定时,土豆的产量与氮肥的施用量有如下关系:
(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?
(2)当氮肥的施用量是101千克/公顷时,土豆的产量是多少?如果不施氮肥呢?
(3)据表格中的数据,你认为氮肥的施用量是多少时比较适宜?说说你的理由。
(4)粗略说一说氮肥的施用量对土豆产量的影响。
模块三形成提升
某电影院地面的一部分是扇形,座位按下列方式设置:
(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?
(2)第5排、第6排各有多少个座位?
(3)第n排有多少个座位?请说明你的理由。
模块四小结反思
一、本课知识
1.变量、自变量、因变量:在某一变化过程中不断变化的量,叫做;如果一个变量y随另一个变量x的变化而变化,则把x叫做,y叫做。即先发生变化的量叫做,后发生变化或者随自变量的变化而变化的量叫做。
2.常量:。
二、我的困惑;
第二节用关系式表示的变量间关系
【学习目标】
1、经历探索某些图形中变量之间的关系的过程,进一步体会一个变量对另一个变量的影响,发展符号感。
2、能根据具体情景,用关系式表示某些变量之间的关系。
3、能根据关系式求值,初步体会自变量和因变量的数值对应关系。
【学习方法】自主探究与小组合作交流相结合.
【学习重难点】重点:1、找问题中的自变量和因变量。
2、根据关系式找自变量和因变量之间的对应关系。
难点:根据关系式找自变量和因变量之间的对应关系。
【学习过程】
模块一预习反馈
一、学习准备
(1)如果△ABC的底边长为a,高为h,那么面积S△ABC=________.
(2)如果梯形的上底、下底长分别为a、b,高为h,那么面积S梯形=_________
(3)圆柱的底面半径为r,高为h,面积S圆柱=_____________V圆柱=__________;
二、教材精读
1.如图所示,△ABC底边BC上的高是6厘米.当三角形的顶点C沿底边所在直线向点B运动时,三角形的面积发生了变化.
在这个变化过程中,自变量是________,因变量是_______.
如果三角形的底边长为x(厘米),那么三角形的面积y(厘米2)可以表示为__________,当底边长从12厘米变化到3厘米时,三角形的面积
从________厘米2变化到_______厘米2.
归纳:表示变量之间关系的另一种方法:利用。我们可以根据任何一个的值求出相应的应变量的。
2.如图所示,圆锥的高是4厘米,当圆锥的底面半径由小到大变化时,圆锥的体积也随之而发生了变化。
(1)在这个变化过程中,自变量是____________,
因变量是______________.
(2)如果圆锥底面半径为r(厘米),那么圆锥的体积V(厘米3)与r的关系式是_____________
(3)当底面半径由1厘米变化到10厘米时,圆锥的体积由______厘米3变化到______厘米3.
模块二合作探究
3.如图所示,长方形的长为12,宽为x,则
(1)若设长方形的面积S,则面积S与宽x之间有什么关系?
(2)若用C表示长方形的周长,则周长C与宽x之间有什么关系?
(3)当x增加一倍时,长方形的面积S是如何变化的?周长C又是如何变化的?说一说你为什么会这样认为?
模块三形成提升
1、某种长途电话收费方式为按时收费,前3分钟收费1.8元,
以后每加一分钟收费1元,求:
(1)当时间t3分钟时的电话费y(元)与t(分)
之间的关系.
(2)计算当时间分别为5分、10分、30分、50分的电话费。
2.(1)家居用电的二氧化碳排放量可以用关系式表示为_____________,其中的字母表示________________。
(2)在上述关系式中,耗电量每增加1KW·h,二氧化碳排放量增加___________。当耗电量从1KW·h增加到100KW·h时,二氧化碳排放量从_______增加到_____________。
模块四小结反思
本课知识
1.会用关系式表示两个变量之间的关系;
2.能利用关系式求值。
二、我的困惑:
第三节用图象表示的变量间关系(1)
【学习目标】
1.经历从图象中分析变量之间关系的过程,进一步体会变量之间的关系。
2.结合具体情境,理解图象上的点所表示的意义。
3.能从图象中获取变量之间关系的信息,并能用语言进行描述。
【学习方法】自主探究与小组合作交流相结合.
【学习重难点】重点:结合具体情境,理解图象上的点所表示的意义。
并能从图象中获取变量之间关系的信息,
难点:能从图象中获取变量间关系的信息,并能用语言进行描述。
【学习过程】
模块一预习反馈
一、学习准备
1.收集一个图像
二、教材精读
1.温度的变化,是人们经常谈论的问题,请根据图形,回答下列各题:
(1)上午9时的温度是多少?12时呢?
______________________________________________________________________
(2)这一天最高温度是多少?是在几时达到的?最低温度呢?
______________________________________________________________________
(3)这一天的温差是多大?从最低温到最高温度经历了多长时间?______________________________________________________________________
(4)在什么时间范围内温度在上升?在什么时间范围内温度在下降?
______________________________________________________________________
(5)图中的A点表示是什么?B点呢?
______________________________________________________________________
(6)你能预测次日凌晨1时的温度吗?说说你的理由。
______________________________________________________________________
归纳:表示变量之间关系的又一种方法:.这一方法的特点:
注意事项:在用图象表示变量之间的关系时:通常用方向的数轴(称为横轴)上的点表示。用竖直方向的数轴(称为)上的点表示。
模块二合作探究
沙漠之舟——骆驼被称为“沙漠之舟”,它的体温随时间的变化而发生较大的变化。
(1)一天中,骆驼的体温的变化范围是?体温从最低上升到最高需要多少时间?
______________________________________________________________________
(2)从16时到24时,骆驼的体温下降了多少?
(3)在什么时间范围内骆驼的体温在上升?什么时间范围内骆驼的体温在下降?
______________________________________________________________________
(4)你能看出第二天8时骆驼的体温与第一天8时有什么关系吗?其他时刻呢?
______________________________________________________________________
(5)A点表示的是什么?还有几时的温度与A点所表示的温度相同?
______________________________________________________________________
(6)你还知道哪些关于骆驼的趣事?与同伴进行交流。
__________________________________________________________________________________________________________________________________________
模块三形成提升
1.某温度下,向一定质量的水中不断加盐粉末同时加以搅拌,能正确加入的食盐量W与所得溶液质量分数(质量分数是指溶质质量与溶液质量之比)关系的图像是图中的()
2.如图,向高为H的圆柱形空水瓶中注入水,表示注水量y与水深x的关系的图像是图中的()
3.某农民带了若干千克自产的土豆进城出售,为了方便,他带了些零用钱备用,如用y表示该农民身上的总钱数(元),x表示所售出的土豆的重量(千克),如图所示,结合图形,回答下列问题:
(1)农民自带的零钱是_______元;
(2)降价前他每千克土豆的出售价是_______元;
(3)降价后他按每千克0.4元将剩余的土豆售完,
这时他手中的钱(含备用零钱)是26元,问他一共带了________千克土豆。
模块四小结反思
本课知识
1.会用关系式表示两个变量之间的关系;
2.能利用关系式求值。
二、我的困惑:
第三节用图象表示的变量间关系(2)
【学习目标】
1.通过速度随时间变化的实际情境,进一步经历从图中分析变量之间关系的过程,加深对图象表示的理解。
2.给出实际情境,能大致描绘出它的关系图。
3.进一步培养从图象中获得信息的能力及有条理地进行语言表达的能力。
【学习方法】自主探究与小组合作交流相结合.
【学习重难点】重点:通过速度随时间变化的实际情境,能分析出变量之间关系。
难点:现实中变量的变化关系,判断变化的可能图象。
【学习过程】
模块一预习反馈
一、学习准备
1.设路程为s,速度为v,时间为t,则s=______,v=______,t=_______。
2.表示变量之间关系的方法:、、。
方法的特点:、、。
二、教材精读
1.下面四幅图象表示某汽车在行驶过程中,速度与时间之间的关系在不同状况下的表现。请把图象的序号填在相应语句后的横线上。
(1)汽车启动速度越来越快_______;
(2)汽车在行驶过程中遇到一坑地速度逐步降下来,越过坑地起速度加大_______;
(3)行驶过程中速度保持不变_______;
(4)汽车到达目的地,速度逐步减小最后停下来_______。
2.汽车在行驶过程中,速度往往是变化的。下面的图像表示一辆汽车的速度随时间变化而变化的情况。
(1)汽车从出发到最后停止共经过了多少时间?它的最高时速是多少?
(2)汽车在哪些时间段保持匀速行驶?时速分别是多少?
(3)出发后8分到10分之间可能发生了什么情况?
(4)用自己的语言大致描述这辆汽车的行驶情况。
模块二合作探究
李小勇的爸爸让他去商店买一瓶酱油,下图近似地描述了李小勇和家之间的距离与他离家后的时间之间的关系,则:
(1)李小勇去买酱油共花了_______min,他走路的平均速度是________.
(2)李小勇在买酱油的过程中有_____次停顿,其中第______次是因为买酱油付钱而停顿的。
(3)李小勇在途中另外一处停顿的原因________________________________
____________________________________________________(只要写的合理都对)
模块三形成提升
1.假定甲,乙俩人在一次赛跑中,路程s与时间t的关系如图所示,看图填空:
(1)这是一次________赛跑。
(2)甲,乙俩人中先到达终点的是__________.
(3)乙在这次比赛中的平均速度是________m/s
龟兔赛跑,它们从同一地点同时出发,不久兔子就把乌龟远远甩在了后面,于是兔子便得意洋洋地躺在大树下睡觉。乌龟一直在坚持不懈,持之以恒的向终点跑着,兔子一觉醒来,看见乌龟快到终点了,这才慌忙追赶上去,但最终输给了乌龟。图中能大致反映龟兔赛跑的路程s随时间t变化情况的是()
模块四小结反思
一、本课知识
1.设路程为s,速度为v,时间为t,则s=______,v=______,t=_______。
2.表示变量之间关系的方法:、、。
方法的特点:、、。
二、我的困惑:
第四节变量之间的关系问题探究
1.如图所示,梯形上底的长是x,下底的长是15,高是8。
(1)梯形面积y与上底长x之间的关系式是什么?
(2)用表格表示当x从10变到20时(每次增加1),y的相应值;
(3)当x每增加1时,y如何变化?说说你的理由。
(4)当x=0时,y等于什么?此时它表示的什么?
2.如图,表示一骑自行车者与一骑摩托车者沿相同路线由甲地到乙地行驶过程的图象,两地间的距离是100千米,请根据图象回答或解决下面的问题.
(1)谁出发的较早?早多长时间?谁到达乙地早?早到多长时间?
(2)两人在途中行驶的速度分别是多少?
(3)指出在什么时间段内两车均行驶在途中;在这段时间内,①自行车行驶在摩托车前面;②自行车与摩托车相遇;③自行车行驶在摩托车后面。
3.汽车在山区行驶过程中,要经过上坡,下坡,平路等路段,在自身动力不变的情况下,上坡时速度越来越慢,下坡时速度越来越快,平路上保持匀速行驶,下面的图像表示了一辆汽车在山区行驶过程中的速度随时间变化的情况。
(1)汽车在哪些时间段保持匀速行驶?时速分别是多少?
(2)汽车遇到了几个上坡路段?几个下坡路段?在哪个下坡路段上花时间最长?
(3)用自己的言语大致描述这辆汽车的行驶情况,包括遇到山路,在山路上的速度变化情况等?
随堂练习:
1.重庆市家庭电话月租费为25元,市内通话费平均每次为0.2元.若莹莹家上个月共打出市内电话次,那么上个月莹莹家应付费与之间的关系为,若你家上个月共打出市内电话100次,那么你家应付费元.
2.假定甲、乙两人在一次赛跑中,路程与时间的
关系如图3所示,那么可以知道:
①甲、乙两人中先到达终点的是.
②乙在这次赛跑中的速度为m/s.
3.声音在空气中传播的速度y(m/s)与气温x(C)之
间在如下关系:
(1)当气温x=15C时,声音的速度y=m/s.
(2)当x=22C时,某人看到烟花燃放5s后才听到声音响,则此人与燃放的烟花所在地相距m
4.拖拉机工作时,油箱中的余油量(升)与工作时间(时)的关系式为.当时,_________,从关系式可知道这台拖拉机最多可工作_________小时.
5.下表是佳佳往妹妹家打长途电话的几次收费记载:
时间/分1234567
电话费/元0.61.21.82.43.03.64.2
(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?
(2)你能帮佳佳预测一下,如果她打电话用时间是10分钟,则需付多少电话费?
6.已知长方形的相邻两边的长分别是和,设长方形的周长为.
①试写出长方形的周长与之间的关系式;
②求当长为,时的周长;
③求当周长分别为,时的值.
7.小明读七年级,他很想一个人郊外秋游,但妈妈不放心,让他将一天的时间安排做一个详细计划,于是小明绘制了图5交给妈妈,你能根据这幅图想象一下小明的秋游情况吗?
北师大版七年级数学下册《概率初步》知识点汇总
老师职责的一部分是要弄自己的教案课件,是认真规划好自己教案课件的时候了。对教案课件的工作进行一个详细的计划,接下来的工作才会更顺利!你们到底知道多少优秀的教案课件呢?下面是小编为大家整理的“北师大版七年级数学下册《概率初步》知识点汇总”,希望能对您有所帮助,请收藏。
北师大版七年级数学下册《概率初步》知识点汇总
1.在一定条件下一定发生的事件,叫做必然事件;在一定条件下一定不会发生的事件,叫做不可能事件;必然事件和不可能事件统称为确定事件。有些事情事先无法肯定它会不会发生,这些事情称为不确定事件,也称为随机事件。
2.在试验次数很大时,不确定事件发生的频率都会在一个常数附近摆动,这就是频率的稳定性。
一般地,把刻画事件A发生的可能性大小的数值,称为事件A发生的概率,记为P(A).
3.注意:在大量重复试验中,我们常用不确定事件发生的频率来估计事件发生的概率
说明概率是个定值,而频率随不同试验次数而有所不同,是概率的近似值,二者不能简单地等同.
4.事件A发生的概率记作P(A)则:0≤P(A)≤1。
必然事件发生的概率为1,不可能事件发生的概率为0,不确定事件发生的概率P(A)为0与1之间的一个常数。
5.等可能事件概率
(1)一次试验中,可能出现的结果有限多个.
(2)一次试验中,各种结果发生的可能性相等.
设一个实验的所有可能的结果有n种,每次试验有且只有其中的一种结果出现,如果每种结果出现的可能性相同,那么我们就称这个实验的结果是等可能的。
一般地,如果一个试验有n种等可能的结果,事件A包含其中的m种结果,那么事件A发生的概率为:P(A)=m/n注意:0≤P(A)≤1
一共有n种结果,每种结果出现的可能性都相同,事件A出现的结果有m种,所以事件A发生的概率为P(A)=m/n
6.游戏是否公平:
游戏对双方公平是指双方获胜的可能性相同,即获胜概率相同。
养成良好的学习习惯,掌握适当的学习方法是提高学习成绩的最佳途径,将会一生受益,我们可以共同探讨。
北师大七年级下册数学《第3章变量之间的关系》全章教案
第三章变量之间的关系
教材简析
本章的主要内容有:(1)两个变量之间关系的表示方法及变量、自变量、因变量的意义;(2)根据表格、图象、关系式获取信息并解决一些实际问题.
本章从常量的世界进入变量的世界,开始接触新的思维方式.经历探究具体情境中的两个变量之间关系的过程,感受变量的思想,培养学生的符号意识;从表格、图象中分析出某些变量之间的关系,感受几何直观的作用,并用自己的语言大致描述表格、关系式、图象所表示的变量间关系,发展学生有条理的思考和表达能力;从运动变化的角度认识数学对象的过程,培养学生发现问题、提出问题、分析问题和解决问题的能力;同时在本单元的学习中注意数形结合思想的运用,善于由图象获取信息,由图索数、由数导形,将抽象的数与直观的形有机结合起来.本章内容是中考的必考内容,主要考查变量间关系的三种表示方式(表格法、关系式法和图象法)以及从图象中获取信息,多以选择题、填空题形式出现,有时也会出现在解答题中,难度适中.
教学指导
【本章重点】
自变量、因变量的理解,图象的认识.
【本章难点】
根据具体问题,选取用表格、关系式或图象来表示某些变量间的关系,并结合对某些变量之间关系的分析,尝试对某些变化趋势进行预测.
【本章思想方法】
1.体会和掌握由特殊到一般的思想方法,如通过一些具体、特殊的实例,找出一般的规律,再用这个规律指导实践,得出所需要的具体的数据.
2.体会数形结合的思想方法,如利用图象确定变量之间关系以及预测变化趋势等,其关键是明确横轴、纵轴所表示的实际意义.
3.体会分类讨论的思想方法,如根据题目给出的不同条件进行判断,然后分类讨论,找出合适的等量关系,列出方程并求解.
课时计划
1用表格表示的变量间关系1课时
2用关系式表示的变量间关系1课时
3用图象表示的变量间关系2课时
1用表格表示的变量间关系
教学目标
一、基本目标
1.理解变量、自变量和因变量的意义,明确可以列表格表示两个变量之间的关系.
2.能从表格中读取信息,并解决相关问题.
二、重难点目标
【教学重点】
能从表格的数据中分清什么是变量、自变量、因变量,以及因变量随自变量的变化情况.
【教学难点】
对表格所表达的两个变量关系的理解.
环节1自学提纲,生成问题
【5min阅读】
阅读教材P62~P63的内容,完成下面练习.
【3min反馈】
1.完成教材P62引入问题:
解:(1)1.59s.
(2)随着h逐渐变大,t逐渐变小.
(3)不相同.
(4)根据(3)中的发现进行估计,可以是1.35s到1.29s中的任意一值.
(5)小车下滑时间t及下滑速度v等量发生变化,小车质量始终不发生变化.
归纳总结:(1)在教材P62的表1中,支撑物高度h和小车下滑时间t都在变化,它们都是变量.其中t随h的变化而变化,h是自变量,t是因变量;
(2)在某一变化过程中,可以取不同数值的量,叫做变量;取值始终保持不变的量,叫做常量.
2.完成教材P62议一议:
解:(1)随着x的增大,y逐渐增大.
(2)答案不唯一,如:从1949年起,时间每向后推移10年,我国人口分别增加1.3亿、1.35亿、1.68亿、1.32亿、1.52亿、0.76亿.
3.世纪花园居民小区收取电费的标准是0.6元/千瓦时,当用电量为x(单位:千瓦时)时,收取电费为y(单位:元).在这个问题中,下列说法正确的是(D)
A.x是自变量,0.6元/千瓦时是因变量
B.y是自变量,x是因变量
C.0.6元/千瓦时是自变量,y是因变量
D.x是自变量,y是因变量
环节2合作探究,解决问题
活动1小组讨论(师生互学)
【例1】写出下列各题关系式中的常量与变量.
(1)分针旋转一周内,旋转的角度n(度)与旋转所需要的时间t(分)之间的关系式为n=6t;
(2)一辆汽车以40千米/时的速度向前匀速直线行驶时,汽车行驶的路程s(千米)与行驶时间t(时)之间的关系式为s=40t.
【互动探索】(引发学生思考)什么是常量?什么是变量?各有什么特点?
【解答】(1)常量:6;变量:n、t.
(2)常量:40;变量:s、t.
【互动总结】(学生总结,老师点评)解此类题时,先确定在某过程中哪些量是变化的,而哪些量又是不变的,再根据数值发生变化的量为变量,数值始终不变的量为常量解决问题.
【例2】某电动车厂2018年各月生产电动车的数量情况如下表:
时间x/月123456
月产量y/万辆88.59101112
时间x/月789101112
月产量y/万辆109.59101010.5
(1)为什么称电动车的月产量y为因变量?它是谁的因变量?
(2)哪个月电动车的产量最高?哪个月电动车的产量最低?
(3)哪两个月之间产量相差最大?根据这两个月的产量,电动车厂的厂长应该怎么做?
【互动探索】(引发学生思考)(1)从表中可以看出电动车的月产量y随时间x的变化而变化,所以自变量是时间x,因变量是电动车的月产量y;(2)(3)根据表中信息答题即可.
【解答】(1)电动车的月产量y为随着时间x的变化而变化,一个时间x就有唯一一个y与之对应,因而月产量y是时间x的因变量.
(2)6月电动车的产量最高,1月电动车的产量最低.
(3)6月和1月产量相差最大.厂长应在1月份安排工人加紧生产,实现产量的增值.
【互动总结】(学生总结,老师点评)观察因变量随自变量变化而变化的趋势,实质是观察自变量增大时,因变量是随之增大还是减小.
活动2巩固练习(学生独学)
1.要画一个面积为20cm2的长方形,其长为xcm,宽为ycm.在这一变化过程中,常量与变量分别为(A)
A.常量为20,变量为x、yB.常量为20、y,变量为x
C.常量为20、x,变量为yD.常量为x、y,变量为20
2.弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂物体的质量x(kg)间有下面的关系:
x(kg)012345
y(cm)1010.51111.51212.5
下列说法不正确的是(C)
A.x与y都是变量,且x是自变量,y是因变量
B.所挂物体质量为4kg时,弹簧长度为12cm
C.弹簧不挂重物时的长度为0cm
D.物体质量每增加1kg,弹簧长度y增加0.5cm
3.A、B两地相距50千米,明明以每小时5千米的速度由A地到B地,若他距B地的距离为y千米,到达时用时x小时.请你写出在这个变化过程中的自变量和因变量.
解:在这个变化过程中,自变量是时间x,因变量是他距B地的距离y.
环节3课堂小结,当堂达标
(学生总结,老师点评)
变量
表格可以表示因变量随自变量变化而变化的情况,还能帮助我们对变化趋势进行初步的预测.
练习设计
请完成本课时对应练习!
2用关系式表示的变量间关系
教学目标
一、基本目标
1.能根据具体情境用关系式表示某些变量之间的关系.
2.能根据关系式求值,初步体会自变量和因变量的数值对应关系.
二、重难点目标
【教学重点】
找出题中的自变量和因变量.
【教学难点】
根据关系式找自变量和因变量之间的对应关系.
教学过程
环节1自学提纲,生成问题
【5min阅读】
阅读教材P66~P67的内容,完成下面练习.
【3min反馈】
1.(教材P66引入问题)如图,三角形ABC底边BC上的高是6cm.当三角形的顶点C沿底边所在直线向点B运动时,三角形的面积发生了变化.
(1)在这个变化过程中,自变量是底边BC长,因变量是△ABC的面积;
(2)如果三角形的底边长为x(cm),那么三角形的面积y(cm2)可以表示为y=3x;
(3)当底边长从12cm变化到3cm时,三角形的面积从36cm2变化到9cm2.
2.(教材P67议一议)低碳生活是指人们生活中尽量减少所耗能量,从而降低碳(特别是二氧化碳)的排放量的一种生活方式.如下表:
排碳计算公式
家居用电的二氧化碳排放量(kg)=耗电量(kWh)0.785
开私家车的二氧化碳排放量(kg)=耗油量(L)2.7
家用天然气二氧化碳排放量(kg)=天然气使用量(m3)0.19
家用自来水二氧化碳排放量(kg)=自来水使用量(t)0.91
(1)用字母表示家居用电的二氧化碳排放量的公式为y=0.785x,其中的字母表示y表示家居用电的二氧化碳排放量,x表示耗电量;
(2)在上述关系式中,耗电量每增加1kWh,二氧化碳排放量增加0.875kg.当耗电量从1kWh增加到100kWh时,二氧化碳排放量从0.875kg增加到87.5kg;
(3)小明家本月用电大约110kWh、天然气20m3、自来水5t、耗油75L,请你计算一下小明家这几项的二氧化碳排放量.
解:1100.785+752.7+200.19+50.91=297.2(kg).
即小明家这几项的二氧化碳排放量是297.2kg.
环节2合作探究,解决问题
活动1小组讨论(师生互学)
【例1】一个小球由静止开始沿一个斜坡向下滚动,通过仪器观察得到小球滚动的距离s(m)与时间t(s)的数据如下表:
时间t(s)1234
距离s(m)281832
写出用t表示s的关系式为________.
【互动探索】(引发学生思考)观察表中给出的t与s的对应值分析数据归纳得出关系式.
【分析】t=1时,s=212;
t=2时,s=222;
t=3时,s=232;
t=4时,s=242,
所以s与t的关系式为s=2t2,其中t0.
【答案】s=2t2(t0)
【互动总结】(学生总结,老师点评)(1)关系式一般是用含有自变量的代数式表示因变量的等式;(2)关系式通常把因变量写在等号的左边,含有自变量的代数式写在等号的右边;(3)利用关系式可以根据任何一个符合条件的自变量的值求出因变量的值,但已知一个变量的值求另一个变量的值时,一定要分清已知的是自变量还是因变量,不要代错了.
【例2】一辆加满汽油的汽车在匀速行驶中,油箱中的剩余油量Q(L)与行驶的时间t(h)的关系如下表所示:
行驶时间t(h)01234
油箱中剩余油量Q(L)5446.53931.524
根据表格中的信息,解答下列问题:
(1)请直接写出Q与t的关系式,并求出这辆汽车在连续行驶6h后,油箱中的剩余油量;
(2)这辆车在中途不加油的情况下,最多能连续行驶的时间是多少?
【互动探索】(引发学生思考)(1)分析表中数据可知,每行驶1h耗油量为7.5L,由此可写出油箱中剩余油量Q(L)与行驶时间t(h)的关系式;(2)由(1)知,汽车每小时耗油7.5L,油箱原有汽油54L,用后者除以前者即可求出油箱中原有汽油可以供汽车行驶多少小时.
【解答】(1)Q=54-7.5t.
把t=6代入,得Q=54-7.56=9.
即这辆汽车在连续行驶6h后,油箱中剩余油量为9L.
(2)547.5=7.2(h).
即这辆车在中途不加油的情况下,最多能连续行驶7.2h.
【互动总结】(学生总结,老师点评)观察表中的数据,发现其中的变化规律,然后根据其增减趋势写出自变量与因变量之间的关系式.
活动2巩固练习(学生独学)
1.变量x与y之间的关系式是y=x2-3,当自变量x=2时,因变量y的值是(C)
A.-2B.-1
C.1D.2
2.图中的圆点是有规律地从里到外逐层排列的,设y为第n层(n为正整数)圆点的个数,则下列函数关系中正确的是(B)
A.y=4n-4B.y=4n
C.y=4n+4D.y=n2
3.如图是一个简单的数值运算程序,当输入x的值为1时,则输出的数值为2.
―――
4.已知水池中有800立方米的水,每小时抽50立方米.
(1)写出剩余水的体积Q(立方米)与时间t(小时)之间的关系式;
(2)6小时后池中还有多少水?
(3)几小时后,池中还有200立方米的水?
解:(1)Q=800-50t(0t16).
(2)当t=6时,Q=800-506=500.
即6小时后池中还剩500立方米水.
(3)当Q=200时,800-50t=200,解得t=12.
即12小时后,池中还有200立方米的水.
环节3课堂小结,当堂达标
(学生总结,老师点评)
求变量之间关系式的三途径:
(1)根据表格中所列的数据,归纳、总结两个变量的关系式;
(2)利用公式写出两个变量之间的关系式;
(3)结合实际问题写出两个变量之间的关系式.
练习设计
请完成本课时对应练习!
3用图象表示的变量间关系
第1课时曲线型图象
教学目标
一、基本目标
1.结合具体情境,理解图象上的点所表示的意义;能从图象中获取变量之间关系的信息,并能用语言进行描述.
2.经历从图象中分析变量之间关系的过程,进一步体会变量之间的关系.
二、重难点目标
【教学重点】
理解图象上的点所表示的意义.
【教学难点】
能从图象中获取变量之间关系的信息,并能用语言进行描述.
教学过程
环节1自学提纲,生成问题
【5min阅读】
阅读教材P69~P71的内容,完成下面练习.
【3min反馈】
1.完成教材P69引入问题:
解:(1)上午9时的温度是27℃,12时的温度是31℃.
(2)这一天的最高温度是37℃,是在15时达到的;最低温度是23℃,是在3时达到的.
(3)这一天的温差是37-23=14(℃).从最低温度到最高温度经过了15-3=12(小时).
(4)3时到15时温度在上升,0时到到3时、15时到24时温度在下降.
(5)A点表示21时的温度为31℃,B点表示0时的温度为26℃.
(6)次日凌晨1时温度约是24℃.理由略.
规律总结:(1)图象是我们表示变量之间关系的又一种方法,它的特点是非常直观;
(2)在用图象表示变量之间的关系时,通常用水平方向的数轴(称为横轴)上的点表示自变量,用竖直方向的数轴(称为纵轴)上的点表示因变量.
2.二十四节气是中国古代劳动人民长期经验积累的结晶,它与白昼时长密切相关.当春分、秋分时,昼夜时长大致相等;当夏至时,白昼时长最长.如图,在下列选项中指出白昼时长低于11小时的节气(D)
A.惊蛰B.小满
C.立秋D.大寒
环节2合作探究,解决问题
活动1小组讨论(师生互学)
【例1】水滴进玻璃容器如图所示(设单位时间内进水量相同),那么水的高度是如何随时间变化的,请选择分别与A、B、C、D匹配的图象()
A.(3)(2)(4)(1)B.(2)(3)(1)(4)
C.(2)(3)(4)(1)D.(3)(2)(1)(4)
【互动探索】(引发学生思考)A容器的直径小,水上升的速度最快,故A应是图(3);B容器直径大,上升速度慢,故B应是图(2);C容器下面大,上升速度慢,上面较小,上升速度变快,故C应是图(4);D先最快,再速度放慢,然后速度又变快,最后速度不变,故D应是图(1).故选A.
【答案】A
【互动总结】(学生总结,老师点评)对于题目中有不规则容器,图象多为不规则变化,要确定这种变化关系,可以从容器横截面的变化情况进行判断.
【例2】如图所示是某市夏天的温度随时间变化的图象,通过观察可知,下列说法中错误的是()
A.这天15时温度最高
B.这天3时温度最低
C.这天最高温度与最低温度的差是13℃
D.这天0~3时,15~24时温度在下降
【互动探索】(引发学生思考)横轴表示时间,纵轴表示温度.温度最高应找到图象的最高点所对应的x值,即15时,A正确;温度最低应找到图象的最低点所正确应的x值,即3时,B正确;这天最高温度与最低温度的差应让前面的两个y值相减,即38-22=16(℃),C错误;从图象看出,这天0~3时,15~24时温度在下降,D正确.故选C.
【答案】C
【互动总结】(学生总结,老师点评)认真观察图象,明确时间是自变量,温度是因变量,然后由图象上的点确定自变量及因变量的对应值.
活动2巩固练习(学生独学)
1.某市一周平均气温(℃)如图所示,下列说法不正确的是(C)
A.星期二的平均气温最高
B.星期四到星期日天气逐渐转暖
C.这一周最高气温与最低气温相差4℃
D.星期四的平均气温最低
2.如图所示是某市2018年6月份某一天的气温随时间变化的情况.
观察此图回答下列问题:
(1)这天的最高气温是38_℃;
(2)这天在3时至15时范围内温度在上升;
(3)请你预测一下,次日凌晨1点的气温大约是25℃.
环节3课堂小结,当堂达标
(学生总结,老师点评)
1.图象是我们表示变量之间关系的又一种方法,它的特点是非常直观.
2.曲线型图象能够反映出数据的变化趋势,通过结合横、纵坐标轴表示的意义,我们能够很直观的感受到数据的意义.
练习设计
请完成本课时对应练习!
第2课时折线型图形
教学目标
一、基本目标
1.学会从折线型图形中提取信息,作出判断.
2.经历从图象中分析变量之间关系的过程,进一步体会变量之间的关系;能从图象中获取变量之间关系的信息,并能用语言进行描述.
二、重难点目标
【教学重点】
通过速度随时间变化的实际情境,分析出变量之间关系.
【教学难点】
根据现实中变量的变化关系,判断变化的可能图象.
教学过程
环节1自学提纲,生成问题
【5min阅读】
阅读教材P73~P74的内容,完成下面练习.
【3min反馈】
1.变量之间的关系的表示方法有:表格法、关系式法、图象法.
2.(教材P73引入问题)每一辆汽车上都有一个时速表用来指示汽车当时的速度.你知道现在汽车的速度是多少吗?
解:现在汽车的速度是50km/h.
3.完成教材P74引入问题:
解:(1)汽车从出发到最后停止共经过了24分钟,它的最高时速是90km/h.
(2)汽车在2至6分和18至22分的时段里保持匀速行驶,时速分别为30km/h和90km/h.
(3)答案不唯一,如:发生故障、停止不动.
(4)略
环节2合作探究,解决问题
活动1小组讨论(师生互学)
【例1】小明放学后从学校乘轻轨回家,他从学校出发,先匀速步行至轻轨车站,等了一会儿,小明搭轻轨回到家.下面能反映在此过程中小明与家的距离y与时间x的关系的大致图象是()
【互动探索】(引发学生思考)根据从学校回家,可得与家的距离是越来越近;根据步行的速度慢,可得离家的距离变化小;根据搭轻轨的速度快,可得离家的距离变化大.
【分析】A.随着时间的变化,离家的距离越来越远,故A、B错误;
C.随着时间的变化,步行离家的距离变化快,搭轻轨的距离变化慢,不符合题意,故C错误;
D.随着时间的变化,步行离家的距离变化慢,搭轻轨的距离变化快,符合题意,故选D.
【答案】D
【互动总结】(学生总结,老师点评)路程问题中,在不同的时间内,速度可以发生变化,解决此类问题时,要对图象中各个线段的意义正确理解.
【例2】端午节至,甲、乙两队举行了一年一度的赛龙舟比赛,两队在比赛时的路程s(米)与时间t(分钟)之间的图象如图所示.
根据图象,回答下列问题:
(1)这次龙舟赛的全程是多少米?哪队先到达终点?
(2)求乙与甲相遇时乙的速度.
【互动探索】(引发学生思考)明确横轴、纵轴分别表示什么,再分段提取相关信息解题.
【解答】(1)由纵坐标看出,这次龙舟赛的全程是1000米;由横坐标看出,乙队先到达终点.
(2)由图象看出,相遇是在乙加速后,加速后行的路程是1000-400=600(米),加速后用的时间是3.8-2.2=1.6(分钟),所以乙与甲相遇时乙的速度是6001.6=375(米/分钟).
【互动总结】(学生总结,老师点评)解决双图象问题时,正确识别图象,弄清楚两图象所代表的意义,从中挖掘有用信息,明确实际意义.
活动2巩固练习(学生独学)
1.用均匀的速度向一个容器注水,最后把容器注满.在注水过程中,水面高度h随时间t的变化规律如图所示(图中OAB为折线),这个容器的形状是(C)
2.如果OA、BA分别表示甲、乙两名学生运动的路程s和时间t的关系,根据图象判断快者的速度比慢者的速度每秒快(C)
A.2.5mB.2m
C.1.5mD.1m
3.星期天,玲玲骑自行车到郊外游玩,她离家的距离与时间的关系如图所示.
请根据图象回答下列问题:
(1)玲玲到达离家最远的地方是什么时间?离家多远?
(2)她何时开始第一次休息?休息了多长时间?
(3)她骑车速度最快是在什么时候?车速是多少?
(4)玲玲全程骑车的平均速度是多少?
解:(1)玲玲到达离家最远的地方是12时,此时离家30千米.
(2)她10:30开始第一次休息,休息了半小时.
(3)玲玲郊游过程中,各时间段的速度分别为:9时~10时,速度为10(10-9)=10(千米/时);10时~10时30分,速度约为(17.5-10)(10.5-10)=15(千米/时);10时30分~11时,速度约为0;11时~12时,速度为(30-17.5)(12-11)=12.5(千米/时);12时~13时,速度为0;13时~15时,在返回的途中,速度为30(15-13)=15(千米/时).由此可知,骑行最快有两段时间:10时~10时30分;13时~15时,两段时间的速度都是15千米/时.
(4)玲玲全程骑车的平均速度为(30+30)(15-9)=10(千米/时).
环节3课堂小结,当堂达标
(学生总结,老师点评)
1.在表示两变量间关系时,图象法是关系式法和表格法的几何表现形式.
2.图象法能直观反映变量间的整体变化情况及变化规律,是表格法、关系式法所无法代替的.
练习设计
请完成本课时对应练习! 文章来源:http://m.jab88.com/j/16102.html
更多