88教案网

简便计算教学反思

简便计算教学反思8篇。

教师愿意成为学生进步的阶梯,为即将开始的课堂准备教案是非常重要的。教师的每一种教学行为都会受到教学设计方案的约束和控制,经过多次筛选小编为您找到了最新最全的“简便计算教学反思”,供大家参考借鉴,希望可以帮助到有需要的朋友!

简便计算教学反思 篇1

核心提示:在本节课的教学中,力求体现算法的多样化和最优化。

首先,例题的教学中,注意引导学生思考、甄别数学信息的正确使用。在本例题中呈现了多条数学信息,但是在解决例题提出的数学问题时,不是所有的数学信息都要使用...

在本节课的教学中,力求体现算法的多样化和最优化。

首先,例题的教学中,注意引导学生思考、甄别数学信息的正确使用。

在本例题中呈现了多条数学信息,但是在解决例题提出的数学问题时,不是所有的数学信息都要使用到,始终要关注学生是否能根据数学问题选择正确的数学信息来有效解决问题。例题中的三个问题可以依次给出,让学生说"一打装"是什么意思,然后由学生自己提出问题.学生容易理解12×25=3×4×25的算理,但可能对于12×25=12×100÷4比较难理解,教师应给予启发引导,突破教学难点.

其次,注重培养学生的数学语言表达能力,在对比学生的不同算法中,注意学生对自己不同解决方法的描述,重视学生对算法的理解。

最后,在新授的自由提问并解决问题环节,要关注学生提出的数学问题是否依据了例题中给出的数学信息,数学问题的描述是否准确。

简便计算教学反思 篇2

满校园都洋溢着愚人节的气氛,权且满足了学生这兴奋的心情吧!

到今天为止,第三单元《运算定律与简便计算》就算是告一段落了。从昨天的测试来看,大部分孩子们对于基础的简便运算题已经能够选择合适的方法进行简算了,但是情况也不能太乐观,这期间还有一些学习困难的孩子对于变形后的乘法分配律不太理解,例如昨天的一道考题:777*9+111*37。题目中已经提示要将777转化为111*7了,但是孩子们的思维还是不开阔,想不出下一步该怎么算。今天用最后一节课对于整个单元进行了一个回顾与整理,顺便将昨天的题作为一个重点题目讲了一下,从孩子们的反应中看得出来,大多数的学生已经能够掌握这种先变型后计算的方法了,但那几个学困生仍然是无从下手。

这节课设计的亮点就是先给学生讲解典型例题,然后再让学生仿照例题做“模拟训练”。收效还不错,讲解的时候提醒孩子们该题的解决方法是什么,怎样通过转化能将不太容易解决的问题变成可以进行口算的例子。孩子们在真正的理解了运算定律之后才着手练习,因此,正确率就相应的跟着提上来了,今后的练习课,当然是跟计算有关的练习还可以继续采取这样的形式让学生巩固知识要点,从而将解决问题的方法内化为今后学习的方法。

然而,课总是不那么十全十美,今天遇到的问题是没有能够将这种检查的工作贯穿整节课,课上肯定仍然有“浑水摸鱼”的孩子,看表情是已经听的很明白、很清晰了,但是实际操作的时候就出问题了,比如说讲完第一个例子之后,随之就出了一个模拟训练题:666*9+222*73这个题,有5名同学居然又要将666和222都要转化成111再进行简便运算了,殊不知本题就是要将加号两边的算式变出相同的因数来就可以了,孩子们却在大费周章的进行“照猫画虎”!哎!还是在学习的举一反三和逐类旁通方面没有给学生做一个很好的引导啊!

这个单元到此就结束了,不可以再花太长的时间练习了,否则后面的课就要出问题了。但是可以讲深化练习放在自习课的时间去开展,定要将简便运算的方法渗透给每一位力求上进的孩子们!让简便运算不再是个解不开的谜藏在孩子们中间。

简便计算教学反思 篇3

本节课我只设计了两个环节,(1)复习运算定律,(2)运用运算定律进行简便运算。在复习运算定律时,让学生通过具体的例子表示运算定律,为下一步的灵活运用奠定了基础。

简便计算应该是灵活、正确、合理地运用各种性质、定律等,使复杂的计算变得简单,从而大幅度地提高计算速度及正确率。开始时学生对简算还挺感兴趣,毕竟简算可以摆脱那些繁琐的四则混合运算了,也不用竖式计算了,可是随着简算类型的不断增多,学生开始对一些类型混淆了,特别是乘法结合律和乘法分配律混淆的最多。随着简算方法的多样化,简算的准确性也大打折扣。简算不仅要求学生能明确运算顺序,正确计算,而且还要求学生有一定的观察能力,甚至要有一些直觉,能够进行合理的分析,找出其中能够进行简便运算的特征,并合理地进行简便运算。

上了这节练习课后,学生不仅能解决问题,而且简便计算的方法也掌握得比较好,所以我认为“简便计算”的教学必须遵循“以生活实际为出发点,展示知识的发生过程,让学生知其所以然。”

简便计算教学反思 篇4

连除简便计算是在学生学习了加法、乘法运算定律和减法性质的基础上进行教学的。让学生理解并掌握“一个数连续除以两个数,可以用这个数除以两个除数的积,也可以用这个数先除以第二个数再除以第一个数让运算变得简便”是教学的重点,因此我有意识地强化了“根据算式特点灵活运用除法运算性质进行简便计算。”这也是本课的难点。为了突破重难点,我在设计时作了这样的处理:

1、在教学中渗透学习方法的指导,因为有减法性质的基础,我认为学生应用类比迁移能够比较自然地想到除法的运算性质,所以我依托“类比迁移”的数学思想,以“猜想---验证---应用”的教学思想引导学生展开自主探究。采用这种教学思路的意义在于渗透一种“学习方法”,这对培养学生的可持续发展能力应该是有帮助的。有句话说得好,“让学生在游泳中学会游泳”,这也是我在平时课堂教学中想努力追求的。

2、教学环节设计紧凑,环环相扣,从复习铺垫到新知的探究和巩固练习我都做了精心的设计。复习铺垫部分我设计了几道可以进行简便计算的加法、减法、乘法和除法的练习题,以这几道题为依托为进入下个环节的猜测进行了准备,比如说:148+75+5=343-75-25=25×(4×6)=425-(125+27)=237-38-137=它们都和本节课的知识有紧密的联系,目的是让它们根据这几道题的方法很容易的联想到除法是不是也有这样的规律,事实证明,这几道题是有效的,当我出示4500÷25÷4=时,并提出问题是不是也有简便方法时,很多孩子马上进行了猜测,很自然的引出了新知的探究,让孩子们的猜测更有目的性、方向性和可行性,我认为这个地方的设计思路很好,但由于这些数值偏大,学生算起来不太好算,而这节课重点是为了探究规律,如果把数设计的小一点会更好算,重点会更突出,更节省时间。新知的探究环节我让学生以小组为单位举出这样的实例,这个环节虽然设计很好,但由于孩子年龄小,在举例子时又缺乏引导,很多孩子无所适从,不会举例子,我只好亡羊补牢,又进行引导,结果浪费了宝贵的时间,以至后来的环节时间有点紧,如果备课时再细心一些,充分考虑到孩子的起点,效果会好得多。但是巩固练习部分我觉得设计很好,不仅形式多样而且内容充实,有效的巩固了新知,让孩子对除法的性质和简便运算理解的更透彻,运用得更熟练!不足是因为前面的环节占用时间太多,练习题没有处理完。

这节课还有很多不足,发现规律后,我本来想让学生结合生活实例再次验证,但因为对习题的选择不是太合适,所以只验证了其中的一个规律,而对于第二个规律,习题却不能完成验证,这一点是一个失误,应该进行修正,如果把习题再认真选一选效果一定要会好得多。

还有本节课教师的语言设计不是很精练,不能起到画龙点睛的效果,验证结束后,学生得到连除的计算方法有三种,为了强调简便计算,我应该及时引导:“这三种方法,如果让你选择,你会选择哪一种?”从而让学生明白,解决问题的方法有很多种,但要学会根据算式中的数据特点,灵活选择简便的方法进行计算。这也是我们的数学的价值所在,可惜没有及时引导,很遗憾!

总之,本节课既有成功,又有不足,在第二次上课时,我会扬长补短,争取把这节课上的更完美!

简便计算教学反思 篇5

长期以来,课堂上教师滔滔不绝,学生默默聆听的教学方式和“以本为本”的教学准则阻碍着学生的发展。尤其在计算教学中,教师总是严格、忠实地执行教材。学生的计算虽不成问题,但他们往往只知其然,不知其所以然,并且缺乏自主构建、自主探索,不利于学生的思维发展和能力的培养。在新课程的`推进中,学生的学习方式是我们关注的焦点。因此,在新理念的引领下,我作了如下尝试。

[片断一]

师:同学们喜欢去超市购物吗?今天,老师先让大家尽兴地去超市逛逛,好吗?

[推出购物超市流动车,上面有98元的足球、1999元的彩电、395元的VCD、48元的乒乓拍、4999元的电脑、29元的《三国演义》、159元的大衣等,让学生分别以顾客和营业员的角色进行买卖。待每个同学都有了购物体验后,回到座位。]

师:大家的收获真不少,能介绍一下你买到的东西,描述一下付款的经过吗?

生1:我买了1只足球98元,我付出100元,营业员找给我2元。

师:为什么能找到2元?

生1:因为足球只要98元,而我付了100元,多付了2元,所以营业员要找给我2元。

师:噢,原来这样。

生2:我买的是彩电,我付出20xx元,找回1元。

生3:我也买了1只足球,我先付出90元,再付出8元,这样就不用营业员找了。

……

师:在买东西的过程中,你们感到哪种付款方式最方便?

生1:我认为付出整十、整百、整千元,再让营业员找一些零钱比较方便,这样我们不必带一些零钱去购物了。

生2:我认为身边正好有零钱的话,要多少钱就付多少钱,不用营业员找了,也好把零钱用了,减轻负担。

师:营业员们,你们的收款过程又是怎样的呢?

生:他们买足球的话,大部分都付100元,我收了钱后,再找给他们2元。

师:为什么还要找给他们2元?

生1:因为足球是98元,我多收了2元,所以要找给他们,否则就占人家的便宜了。

生2:我记得有一位顾客买了一台VCD,他付给我3张100元,1张50元,2张20元和1张5元,正好是395元,我就不用找钱给他了。

师:看来,你们都有丰富的购物经验,利用生活中的这些经验来进行计算,会不会给我们一些启示呢?想试试吗

[解读]

数学来源于生活,从学生的生活经验和已有的知识出发,将数学活动与他们的生活、学习实际相连,创造生动有趣的活动情境,在活动的体验中,去探索与之相关的数学问题。这不仅能够较好地激发学生的学习兴趣和求知欲望,使他们积极主动地参与数学活动,而且能最大限度地发挥他们的聪明才智和创造潜能。

在这个教学片断中,教师为学生创设了模拟购物的活动情境,再现生活原型,让学生投入到愉悦的“购物”活动中。热闹、欢快的购物场面,似乎使他们忘却了那是在上数学课,而考虑较多的就是怎样付款和收款,从中不断地体验到“多收了钱要找给人家,多付了钱要找回”。在热热闹闹购物之后,让学生交流购物经历时,教师不失时机地追问:“为什么要找给2元?”“为什么能找回2元?”“哪种付款方式最方便?”为学生探究简算方法,突破教学难点起了良好的铺垫。

简便计算教学反思 篇6

四年级这些日子学习简便算法,教材第三单元是加减法的运算定律和简便运算方法,紧接着是乘法的运算定律和有关乘、除法运算的简便算法,教学中我把这两部分内容归结在了一起,统称为“简便算法”。

关于计算方法的教学,我始终认为不能只靠老师讲解方法,还是要通过大量的练习才能达到那种熟练程度,才能使学生形成数感、形成技巧,才能够运用自如地进行计算和解决问题。但青版教材在这部分内容的编写上更加注重一些问题的解决,而对计算的练习编写却比较单薄。

例如对于乘法分配律这部分内容的教学,教材安排了4课时的教学时间,第一课时学习乘法分配律及课后第

1、2题,第二课时学习运用乘法分配律的计算方法,第

三、四课时解决自主练习中的一些问题。

但在教学运用乘法分配律解决问题时,课本中的例题是12×105和135×6+65×6,学生接受起来难度不太大,但自主练习中却出现了48×

25、85×199+8

5、98×

34、56×(20-3)等几种类型,以及由它衍生出来35×99+

35、101×83-83等题目,由于班级里有60多个智力不同、接受能力不等的学生,所以要想能够熟练地计算就不是一节课两节课能解决的了。

课本中的练习题数量极少,每种类型的题只有一道两道,在教学中我就针对一种类型的题目出几个同样的题目进行反复练习,用两节课时间把这几种类型题目的解决方法和学生共同探究出来以后,就开始进行一些乘法分配律混合题目的练习,练了两节课后,又把所有的简便计算混合在一起进行试做,学生一开始颇有点“葫芦搅茄子”的意思,可经过几节课的练习,情况有了明显的好转。我又针对练习题的类型编了一百多道简便计算的题目,十几道题分成一组当做每天晚上的作业,经过一段时间的课堂集中练习和课后的独立作业,终于把这些简便算法区别开来了。

简便算法学了三个星期,虽然耗费的时间比较多,但看到每天的作业错误量越来越少,也挺有成就感的。

简便计算教学反思 篇7

连减法的简便运算这节课,我用的是导学课的模式进行组织教学的,首先我进行的口算练习,有利于本节课学生在计算时提高速度,本节课我是先出示了导学提纲,让学生进行自主学习,再进行讨论交流算法,“由此你发现了什么”可以使学生由具体算式,发展到一般情况,锻炼了学生的探索规律,进行总结的能力。我担心有的学困生不能做到完全总结,我出示了“友情提示”给出提示语,让学生思考、总结,收到了良好效果,再出示规律,学生齐读掌握了重点,通过反馈精讲,使学生更加清晰了简算的要点,所有同学都能学会,我还在最后的时候,出示了能力提升题,使不同学生得到不同层次的提升。在备课过程中进行了精心的准备,还运用了多媒体教学,学生的兴趣也很高,注意力更集中,运算过程可以大量演示,效果比较好。

我在四年一班上了一节同样的课,课堂结束后,听课教师对本堂课的评价较好,我自己也对本节课的教学效果感到满意。然而在同学年的二班讲授时,效果却不尽如人意。在教学一开始的时候探究减法运算性质时过于拖沓,虽然花的时间比较多,我也关注了班级的学困生,但是他们中的个别学生掌握的还是不好,在让学生上前面板书的时候,减法运算性质逆用这样的题型,个别学生能力比较弱,不能逆向思维,这也造成时间的浪费。

所以在上二班的课时,我都有点困扰,因为我总是把握不准班级差异,也许是对学生的了解还不够吧,所以在今后的教学工作中,在精心备课的同时,还应该备学生,认真分析学情,设计教案,应因班级,因学情而有所不同,从而使所有的学生都能够学会知识,提高能力。

简便计算教学反思 篇8

简便计算是小学计算教学中的重要组成部分。我的理解是:简便计算应该是灵活、正确、合理地运用各种性质、定律等,使复杂的计算变得简单,从而大幅度地提高计算速度及正确率。

这段时间我们一直在教学简算,开始时学生对简算还挺感兴趣,毕竟简算可以摆脱那些繁琐的四则混合运算了,也不用竖式计算了,可是随着简算类型的不断增多,学生开始对一些类型混淆了,随着简算方法的多样化,简算的准确性也大打折扣。于是,我开始困惑、开始思考、我开始发现:简算不仅要求学生能明确运算顺序,正确计算,而且还要求学生有一定的观察能力,甚至要有一些直觉,能够进行合理的分析,找出其中能够进行简便运算的特征,并合理地进行简便运算。

于是,我让学生做了大量的直接简算的题。通过练习,引导学生总结出一些常见的可以简算的对象,如:“25与4相乘”、“125与8相乘”、“5与任何双数相乘”以及其他的可以凑整的数,同时使学生对简算有了比较深刻的理解。

其中“运用乘法分配律进行简算”是学生最不容易掌握的。根据以前的教学我发现,特别是一些变式简算就更加的困难了。我认为主要原因就是学生没有自觉观察算式特点的习惯。学生对于计算的目的是得到答案,而忽略了计算的过程,这也跟我平时的教学习惯有很大的关系。比如:有这样一道题(80+8)×25,学生完成后,我随即将该题改为“88×25”让学生做,学生做出了两种答案:①、88×25=80×25+8×25=20xx+200=2200;②、88×25=11×(8×25)=11×200=2200。我请学生分别介绍了他们的想法,他们说:第①种是把88分成80+8,再利用乘法分配律,让他们分别同25相乘;第②种则将88分成8×11,然后利用乘法交换率和结合率,先把8与25相乘,最后再乘11。

听完学生的介绍后,我进行了总结,首先肯定了两种答案的正确,然后对两种答案进行了分析:两种答案的共同之处在于都发现了8与25相乘非常简便,可以凑整。于是想方设法对88进行分解,因此都把握住了这道题的关键,所以都是正确的;两种解法的区别是,分解的方法不同,第①种解法是用加法进行的分解,所以使用的是乘法分配律。第②种解法用乘法进行的分解,所以使用的是乘法交换律和结合律。方法不同却有异曲同工之处。

由此可见,简便运算的思路会有很多,只要把握“凑整”这个解题关键,正确、合理地使用运算定律,就是正确的。

以上就是《简便计算教学反思8篇》的全部内容,想了解更多内容,请点击简便计算教学反思查看或关注本网站内容更新,感谢您的关注!

文章来源:http://m.jab88.com/j/136797.html

更多

猜你喜欢

更多

最新更新

更多