88教案网

人教版六年级下册《比例的应用》数学教案

一个优质课堂,就是老师在讲学生在答,讲的知识都能被学生吸收。因此,老师会想尽一切方法编写一份学生易接受的教案。上课才能够为同学讲更多的,更全面的知识。那么优秀的教案是怎么样的呢?以下是小编为大家收集的“人教版六年级下册《比例的应用》数学教案”,供大家参考,希望能帮助到有需要的朋友。

人教版六年级下册《比例的应用》数学教案

教学目标:

1.使学生能正确判应用题中涉及的量成什么比例关系。进一步熟练地判断成正、反比例的量,加深对正、反比例概念的理解,

2.使学生能利用正反比例的意义正确解答应用题,巩固和加深对所学的简易方程的认识。

3.培养学生的判断分析推理能力。

教学重点:

使学生能正确判断应用题中的数量之间存在什么样的比例关系。并能利用正反比例的关系列出含有未知数的等式正确运用比例知识解答应用题

教学难点:

学生通过分析应用题的已知条件和所求问题,确定那些量成什么比例关系,并利用正反比例的意义列出等式。

教学过程:

一、旧知铺垫

1.下面各题两种量成什么比例?

(1)一辆汽车行驶速度一定,所行的路程和所用时间。

(2)从甲地到乙地,行驶的速度和时间。

(3)每块地砖的面积一定,所需地砖的块数和所铺面积。

(4)书的总本数一定,每包的本数和包装的包数。

过程要求

①说一说两种量的变化情况。

②判断成什么比例。

③写出关系式。

2.根据题意用等式表示。

(1)汽车2小时行驶140千米,照这样速度,3小时行驶210千米。

(2)汽车从甲地到乙地,每小时行70千米,4小时到达。如果每小时行56千米,要5小时到达。

二、创设情境引入内容

1.出示例5

“画面上张大妈与李奶奶的对话让我们知道了哪些数据?你能提出什么问题?”

学生回答后引出求水费的实际问题。

你们学过解答这样的问题吗?能不能解答?让学生自己解答,交流解答的方法。

引入:“这样的问题可以用应用比例的知识来解答,我们今天就来学习用比例的知识进行解答。”

出示以下问题让学生思考和讨论

①问题中有哪两种量?

②它们成什么比例关系?你是根据什么判断的?

③根据这样的比例关系,你能列出等式吗?

明确

因为水价一定,所以水费和用水的吨数成正比例。也就是说,两家的水费和用水的吨数的比值是相等的。

学生讨论交流

演示解题过程:设未知数,根据正比例的意义列出方程,接着解比例求出未知数。让学生检验所求的未知数x是否合乎题意。检验的方法是把求出的数代入原等式(即方程),看等式是否成立。把求出的16代入等式,左式==1.6,右式==1.6,左式=右式,也就是它们的比值相等,与题意相符,所以所求的解是正确的。

问题:“王大爷家上个月的水费是19.2元,他们家上个月用多少吨水?”

要求学生应用比例的知识解答,然后交流。通过订正、交流,使学生明确条件和问题改变后,题目中水费和用水的吨数的正比例关系没变,只是未知量变了。

2.出示例题6的场景。

同样先让学生用已学过的方法解答,然后学习用比例的知识解答。

师:“想一想,如果改变题目的条件和问题该怎样解答?”

出示以下问题让学生思考和讨论

①问题中有哪两种量?

②它们成什么比例关系?你是根据什么判断的?

③根据这样的比例关系,你能列出等式吗?

注意启发学生根据反比例的意义来列等式,使学生进一步掌握两种量成反比例的特点和解决含反比例关系的问题的方法。

让学生演示解题过程,集体修正。

3.完成“做一做”,

直接让学生用比例的知识解答

问题:对照两题说一说两道题数量关系有什么不同,是怎样列式解答的。

总结应用比例知识解答问题的步骤

(1)分析题意,找到两种相关联的量,判断它们是否成比例,成什么比例。

(2)依据正比例或反比例意义列出方程。

(3)解方程(求解后检验),写答。

扩展阅读

苏教版六年级下册《解比例》数学教案


苏教版六年级下册《解比例》数学教案

教学要求:

1.使学生认识解比例的意义,学会应用比例的基本性质解比例。

2.使学生进一步巩固比和比例的意义,进一步认识比例的基本性质。

教学重点:认识解比例的意义。

教学难点:应用比例的基本性质解比例。

教学过程:

一、复习引新

1.做第32页复习题。

出示复习题。让学生先思考可以怎样想。[可以用求已知比比值的方法来确定( )里的数;也可以用比的基本性质,把已知的一个比的前项、后项同时扩大。]让学生根据思考的方法在括号里填上数。指名口答结果,老师板书括号里的数。

2.根据比例的基本性质把下面的比例改写成积相等的式子。(口答)

4 :3= 2 :1.5 = x :4= 1 :2

提问;根据积相等的式子,你能求出最后一题里的x吗?

3.引入新课。

在上面两题里,第1题是求比例里的未知项。(板书:求比例里的未知项)从第2题可以看出,根据比例的基本性质,如果已知比例中的任何三项.就可以求出这个比例里另外一个未知项.这种求比例里的未知项,就叫做解比例。(板书课题)现在,我们就应用比例的基本性质来解比例。

二、教学新课

1.教学例2。

出示例2。提问:你能用比例的基本性质来解比例,求出未知项x吗?自己先想一想,有没有办法做。再试着做做看。指名一人板演,其余学生做在练习本上。集体订正,让学生说说怎样想的,第一步的根据是什么,并向学生说明解比例的书写格式。

2.教学例3。

出示例题,让学生用比例形式读一读。让学生解答在自己的练习本上。指名口答解比例过程,老师板书。让学生说一说解比例的方法。指出:解比例一般按比例的基本性质写出积相等的式子,再求未知数x。

3.教学“试一试”。

提问已知数都是怎样的数。让学生自己解答。学生口答是怎样做的,老师板书。

4.小结方法。

提问:你认为根据比例的基本性质要怎样解比例?

三、巩固练习

1.做“练一练”。

指名四人板演。其余学生分两组,每组两道题,做在练习本上。

2.做练习六第8题。

让学生做在课本上,指名口答。

3.做练习六第l0题。

学生分两组,每组一题,做在练习奉上。要求写出检验过程。指名口答x的值和检验过程,老师板书检验过程。并说明检验时把x代入原来的比例,看两边比的比值是否相等。

4.做练习六第11题。

学生口答、老师板书,看能写出多少个比例。

四、讲解思考题

提问:根据题意,两个外项正好互为倒数,你想到什么?(积是1)两个外项的积已知是1,你能求另一个内项吗?

五、课堂小结

这堂课学习的什么内容?应用比例的基本性质怎样解比例,

六、布置作业

课堂作业:练习六第6题第(1)~(4)题,第7题。

家庭作业:练习六第6题第(5)、(6)题,第9题和思考题。

人教版六年级下册《正比例和反比例的意义》数学教案


人教版六年级下册《正比例和反比例的意义》数学教案

教学目标:经历从具体实例中认识成正比例和反比例的量的过程,理解正比例、反比例的意义,学会判断两种相关联的量是否成正比例或反比例。

教学过程:

(一)导引探究,由表及里

教学例1,认识成正比例的量。

1.谈话引出例1的表格。一辆汽车在公路上行驶,行驶的时间和路程如下表。

时间(时)123456……路程(千米)80160240320400480……

在让学生说一说表中列出了哪两种量之后,教师引导学生逐步探究:行驶的时间和路程有关系吗?行驶的时间是怎样随着路程的变化而变化的?行驶的时间和路程的变化有什么规律?(学生探究第3个问题时,教师可进行适当的引导,如引导学生写出几组路程和时间对应的比,并要求学生求出比值。)

2.引导学生交流并聚焦以下内容:路程和时间是两种相关联的量,路程随着时间的变化而变化;时间扩大、路程也扩大,时间缩小、路程也缩小;路程和时间的比值总是一定的,也就是“路程/时间=速度(一定)” (板书关系式)。

3.教师对两种量之间的关系给予具体说明:路程和时间是两种相关联的量,时间变化,路程也随着变化。当路程和对应时间的比值总是一定(也就是速度一定)时,我们就说行驶的路程和时间咸正比例(板书“路程和时间成正比例”),行驶的路程和时间是成正比例的量。

4.让学生根据板书完整地说一说表中路程和时间成什么关系。

[数学概念是客观现实中数量关系和空间形式的本质属性在人脑中的反映。数学概念的来源一般有两个方面:一是直接从实际经验中概括得出;二是在原有的初级概念基础上通过新旧概念的相互作用而获得。正比例概念的形成属于前者,因此例1的教学可以充分利用表格,让学生通过对表中数据的观察和分析,由浅入深,由表及里,逐步认识成正比例的量的特点。本环节先让学生观察例题中的表格,说一说表中列出的是哪两种量;接着用三个引探性的问题逐步引导学生在探究学习活动中发现路程与时间之间的关系及变化趋势;最后,聚焦、明晰这两种量之间的关系,让学生初步认识正比例的特点。这样的教学有利于学生经历正比例概念的形成过程。]

(二)自主探究,尝试归纳

出示例2:汽车从甲地开往乙地,行驶的速度和所用时间如下表,它们之间有什么规律?

速度(千米/时)406080100120……时间(时)3020151210……

1.出示供学生自主探究的问题:当速度变化时,时间是否也随着变化?这种变化与例1中两种量的变化有什么不同?速度和时间的变化有什么规律?

2.引导学生在自主探究、交流中认识成反比例的量的特点:速度和时间是两种相关联的量,速度变化,时间也随着变化;例2 中两种量的变化规律是:一种量扩大,另一种量反而缩小;速度和时间的变化规律是它们的乘积一定,可以表示为“速度×时间=路程(一定)” (板书关系式)。

3.在发现变化规律的基础上,让学生仿照正比例的意义,尝试归纳反比例的意义,引出反比例概念(板书“速度和时间成反比例”)。

[从生活原型中逐步抽象,从已有概念中衍生,从数学概念的学习中迁移等,都是建构数学概念的有效方法。有了学习正比例的基础,反比例意义的学习应更加体现学生的学习自主性。本环节除了让学生发现成反比例的量之间的关系,还让学生仿照正比例的意义,尝试归纳反比例的意义。这样能真正发挥学生的学习主动性,让学生在自主探究过程中经历反比例概念的形成过程。]

(三)对比探究,把握本质规律

1.将例1、例2教学时探究发现的内容用多媒体呈现出来,揭示正比例、反比例的内涵本质。

多媒体呈现:

例1 路程/时间=速度(一定)

路程和时间成正比例

例2 速度×时间;路程(一定)

速度和时间成反比例

2.探究活动。

(1)让学生仿照例1完成教材第62页“试一试” (题略),仿照例2完成教材第65页“试一试”(题略)。

(2)引导学生将成正比例的量与成反比例的量进行对比探究,找出它们的相同点与不同点。

[例1中路程和时间相依互变,速度不变,例2中速度和时间相依互变,路程不变,这样的对比有利于学生从变中看到不变;例 1中速度是不变量,例2中路程是不变量, 同样都有不变量,例1中路程和时间成正比例,而例2中速度和时间成反比例,这样的对比有利于学生从不变中看到变。变与不变关键要抓住本质——“比值一定” 还是“积一定”。对比探究活动旨在让学生把握概念内在的联系与区别,形成正比例、反比例概念的认知结构。]

(3)引导学生尝试用字母表达式对正比例的意义和反比例的意义进行抽象概括。

启发学生思考:①如果用字母x和y分别表示两种相关联的量、用k表示它们的比值,正比例关系可以怎样表示?②如果用字母x和y表示两种相关联的量,用k表示它们的积,反比例关系可以怎样表示?

根据学生的回答,板书关系式“正比例y/x=k (一定)”,“反比例x×y=k(一定)”。

[概念符号化在概念教学中很重要。《数学课程标准》明确指出,符号感主要表现之一是能从具体情境中抽象出数量关系和变化规律,并用符号来表示。学生概念形成的主要过程为:感知具体对象阶段、尝试建立表象阶段、抽象本质属性阶段、符号表征阶段、概念运用阶段。在符号表征阶段,学生尝试用语言或符号对同类对象的本质属性进行概括。本阶段教学是概念符号表征阶段,在这个阶段之前,学生对正比例、反比例的本质属性及特征有一定的认识,可以开始尝试用符号对正比例、反比例进行概括。“y/x=k (一定)”,“x×y=k(一定)”,是对正比例、反比例意义的抽象表达,是揭示正比例、反比例数量关系及其变化规律的数学模型。]

3.组织对比性练习。

(1)成正比例、反比例的对比练习。笔记本的单价、购买的数量和总价如下表:

表1

数量/本2030405060……总价/元3045607590……

表2

单价/元1.52456……数量/本4030151210……

在表1中,相关联的量是 和 , 随着 变化, 是一定的。因此,数量和总价成 关系。 !

在表2中,相关联的量是 和 ,随着 变化, 是一定的。因此,单价和数量 成关系。

[将获得的新概念推广到其他的同类对象中去,是概念运用的过程,也是进一步理解概念的过程。表1是成正比例的量,表2是成反比例的量,这种正比例与反比例的对比,有利于学生进一步加深对正比例、反比例意义的认识,对正比例或反比例中两种量变化趋势和规律的把握。]

(2)成比例与不成比例的对比练习。

下面每题中的两个量哪些成正比例,哪些成反比例?哪些既不成正比例也不成反比例?

①圆的直径和周长。

②小麦每公顷产量一定,小麦的公顷数和总产量。

③书的总页数一定,已经看的页数和未看的页数。

[这一类型题比较抽象,学生只有对正比例、反比例的意义有了较深刻的理解, 才能正确地作出判断。这样的练习有助于学生从整体上把握各种量之间的关系,有助于进一步提高学生判断成正比例、反比例的量的能力。此题型在新授课上还只是让学生初步接触,重点训练还要放在练习课。]

(3)从生活中寻找成正比例、反比例的量的实例,进行对比练习。

[举例练习是概念巩固阶段的重要组成部分。如果让学生独立找生活中成正比例、反比例的量的实例, 可能有一定难度, 我们可采用小组讨论的形式进行。此练习还可以让学生感受到数学与生活的联系.

人教版六年级上册《比的应用》数学教案


在上课时老师为了能够精准的讲出一道题的解决步骤。在上课前要仔细认真的编写一份全面的教案。让同学们很好的吸收课堂上所讲的知识点,那么教案怎样写才好呢?小编收集整理了一些人教版六年级上册《比的应用》数学教案,仅供您在工作和学习中参考。

人教版六年级上册《比的应用》数学教案

第4单元 比

第3课时 比的应用

【教学内容】

第54--56页“比的应用”及练习十二。

【教学目标】

过程与方法:能运用比的意义解决按照一定的比进行分配的实际问题。

情感、态度与价值观:进一步体会比的意义,感受比在生活中的广泛应用,提高解决问题的能力。

知识与技能:培养学生运用数学解决生活中问题的能力。

【教学重难点】

重点:利用比的知识解决相关实际问题。

难点:根据题中所给的比,掌握各部分量占总数量的几分之几,能

熟练地用乘法求各部分量。

【导学过程】

【自主预习 】

1、我们在教学中学过平均分,平均分的结果有什么特点?在日常生活中,为了分配的合理,往往需要把一个数量分成不等的几部分,即把一个数量按照一定的比来进行分配。这种方法通常叫按比例分配。

2、一瓶500ml的稀释液,其中浓缩液和水的体积分别是100ml和400ml,__________?(补充问题并解答)___________________________________________________________

【新知探究】

1、阅读例2主题图,再用自己的话表述题意,说说稀释液是怎么配制的?

想一想“浓缩液和水的体积1:4”,是什么意思?

就是说在500ml的稀释液,浓缩液占1份,水的体积占4份,一共是5份,浓缩液占稀释液的5分之1,水的体积占稀释液的5分之4。

2、自己动笔,尝试用不同的方法解决问题,你想出了几种?每一种的解题思路是什么?

3、对照课本,比较两种解法的联系与区别,你更喜欢哪一种?并把例题解答过程中的空白处填完整。

4、对得数进行检验,并思考:这道题中完整的检验包含几个方面?

检验的方法有两种:

一是把求得的浓缩液和水的体积相加,看是不是等于稀释液的总体积;

二是把求得的浓缩液和水的体积写成比的形式,看化简后是不是等于1:4

5、练一练:P55练习十二题1、2、3题。

6、学校把栽280棵树的任务,按照六年级三个班的人数分配给各班。一班有47人,

二班有45人,三班有48人。三个班各应栽树多少棵?

___________________________________________________________

【知识梳理】

本节课你学习了哪些知识?

【随堂练习】

1、完成练习十二的第4、8题

2、练习十二的第7题

北京版六年级下册《比例的意义》数学教案


北京版六年级下册《比例的意义》数学教案

教学目标:

1、 理解比例的意义,会根据比例的意义组成比例。

2、 经历引导学生参与知识的形成过程,发现过程和运用过程,体验数学与日常生活的紧密联系。

3、 感受生活中处处有数学,激发学习数学的兴趣。

教学重、难点:理解比例的意义。

教学方法:自主合作,讨论交流。

教学过程:

一、 复习旧知,目标展示。

1、 上学期,我们学习了有关比的知识,你能说说什么是比吗?举例说明比各部分的名称。

2、 今天,我们要在比的基础上学习一个新知识(板书:比例)。

3、 看到这个数学新名词——比例,你的脑子里产生出哪些问题?

【老师有选择地板书如:什么是比例(或比例的意义),比例的组成及名称,比和比例的区别等。】

4、 同学们提的这些问题都很有价值。这节课,我们就来研究这些问题。

二、 合作交流,探究新知。

〈一〉教学比例的意义。

1、 我们从学习数学开始,几乎天天都用到等号,你能说出几个含有等号的式子吗?说说等号在式子中的作用是什么?(连接左右两边相等的两部分)

2、 自主探究,初步形成印象。

(1) 两个比相等可以用等号连接吗?

(2) 你能在练习本上写出两个可以有用等号连接的比吗?

(3) 和你小组内同学交流你写出的式子,并说明理由。

(4) 学生汇报。

3、 形成概念。

(1) 像黑板上我们所列出的这些式子叫做比例。

(2) 你能用自己的话说说什么是比例吗?

(3) 老师小结:表示两个比相等的式子叫做比例。

4、 深化概念,巩固练习。

(1) 你认为组成比例的关键是什么吗?(两个比的比值相等)

(2) 你能抓住这个关键写几个比例式吗?(2分钟的时间看谁写得多,并且和别人的不一样。)

〈二〉教学比例各部分的名称。

1、 比例各部分有自己的名称?你知道吗?

(预设:学生如果不清楚的话,教师说明比例各部分的名称)

2、 找出黑板上这几个比例的内、外项。

3、 比可以写成分数的形式,比例也可以写成分数形式。

(1) 把黑板上的这几个比例式写成分数形式。(先小组讨论,再全班交流)

(2) 找出它们的内、外项。

(3) 你发现什么规律了吗?

〈三〉比和比例的区别。

1、 小组讨论、交流。

2、 全班交流。

3、 小结:比例是由两个相等的比组成的式子。比例有4项,比有2项。

三、 巩固练习。

1、 填空。

(1)、表示( )的式子叫做比例。

(2)、判断两个比能否组成比例,要看它们的( )是不是相等。

(3)、写出比值是 的两个比( ):( )和( ):( ),写成比例是( )。

(4)、选取48的4个因数组成一个比例是( )。

2、课本32页国旗尺寸成比例吗?

3、课本33页“做一做”第2题。(用右图中的4个数据可以组成多少个比例?)

(1)学生独立思考后,小组交流。

(2)全班交流。

(3)教师引导:比例的变化有规律可循吗?若有能用已学的知识解释吗?如不能解释,课后请预习课本34页。下节课我们就来研究这个问题。

人教版六年级下册《比例的意义和基本性质》数学教案


人教版六年级下册《比例的意义和基本性质》数学教案

教学目标:

1.知识与技能:认识比例,知道比例的的内项和外项,理解和掌握比例的基本性质,会判断两个比能否组成比例。

2.过程与方法:通过自主探究、合作交流、观察、比较,培养学生分析、比较、抽象和概括的能力,经历认识比例和比例的基本性质的过程。

3.情感态度与价值观:体会国旗中隐含的数学规律,丰富关于国旗的知识,培养学生爱国旗、爱祖国的情感。

教学重点:

理解比例的意义,探究比例的基本性质。

教学难点:

探究比例的基本性质和应用意义,会判断两个比能否组成比例。

教学过程:

一、创设情境,设疑激趣

同学们,国旗是中华人民共和国的象征。每当周一升国旗时,我们心中充满了对祖国的热爱和作为一个中国人的自豪。热爱国旗就是热爱祖国,国旗对我们这么重要,你们想不想更多地了解一些国旗的知识呢?你对国旗的大小有哪些了解?

学生思考回答(挖掘学生生活经验)

同学们知道的真多,说明同学们平时认真观察,是个有心人。

二、引导探究,自主建构

活动一:探究比例的意义

1.你了解到哪些关于国旗大小的知识?

学生交流,给学生充分的交流机会。

2.你们仔细观察,结合我们上节课学的比的相关知识,估计一下每种规格国旗长和宽或者宽和长之间是否存在什么规律?

(1)猜测

预设:生1、长和宽的比值相等;生2、宽和长的比值相等,

(2)小组验证

每个小组任选两种规格国旗,验证一下每种国旗长和宽之间存在的规律。

(3)展示交流小组验证结果,学生到黑板前板书得出结论。

预设:每种国旗的长和宽的比都是3:2,他们的比值相等。

每种国旗的宽和长的比是2:3,他们的比值相等。

教师小结:240:160与144:96的比值相等我们可以把比值相等的式子写成 240:160=144:96 或 240/160=144/96

我们把表示两个比相等的式子叫做比例,组成比例的四个数叫做比例的项,两端的两项叫做比例的(外项),中间的两项叫做比例的(内项)。括号中的可以让学生说一说。

你能说出一个比例吗?说一说你是怎么理解比例的?

怎么判断两个比是不是成比例?

试一试,判断下面哪组中的两个比可以组成比例。

2:3和6:9 4:2和28:40 5:2和10:4 20:5和1:4

活动二:探究比例的基本性质

1.利用学生列举的比例和判断题中的比例,大胆猜想一下,每个比例两个内项和两个外项之间会存在什么关系?

2.小组内验证猜测结果

3.展示验证猜测情况。得出结论,

预设:

“在比例里,两个外项相乘的积就等于两个内项相乘的得数”。

“在比例里,把两个外项乘起来,再把两个内项乘起来,它们的得数是一样的”。

教师归纳总结。

同学们说得对,在比例里,两个外项的积等于两个内项的积。这就是比例的基本性质。

板书:比例的基本性质。

谁能用分数形式表示以上比例?怎样求两个内项和两个外项的积呢?(分子和分母交叉相乘)

三、强化训练、应用拓展

同学们学习了比例的意义与性质,那么能利用它们解决实际问题吗?

1.判断下面哪组中的两个比可以组成比例?

(1) 6:9和 9:12

(2)1/2:1/5和5/8:1/4

(3)1.4:2 和 7:10

(4) 0.5:0 .2和10:4

2.判断。

(1)表示两个比相等的式子叫做比例 ( )

(2)0.6:1.6与3:4能组成比例 ( )

(3)如果4a=5b,那么a:b=4:5( )

3.填空

5:2=80:( )

2:7=( ):5

1.2:2.5=( ):4

在一个比例里,两个外项互为倒数,其中一个内项是6,另一个内项是( )。

在一个比例里,两个内项的积是12,其中一个外项是2.4,另一个外项是( )。

4.写出比值是5的两个比,并组成比例

5.根据3a=5b把能组成的比例写出来。

四、自主反思、深入体验

通过这节课的学习你有什么收获?

苏教版六年级下册《比例的基本性质》数学教案


苏教版六年级下册《比例的基本性质》数学教案

教学目标:

1、使学生认识比例的“项”以及“内项”和“外项”。

2、理解并掌握比例的基本性质,会应用比例的基本性质正确判断两个比能否组成比例。

3、通过自主学习,让学生经历探究的过程,体验成功的快乐。

教学重、难点:理解并掌握比例的基本性质;引导观察,自主探究发现比例的基本性质。

教学过程:

一、创设情境,教学比例的基本知识。

1、复习:

师:什么叫比例?下面每组中的两个比能否组成比例?出示:

1/3∶1/4和12∶9  1∶5和0.8∶4  7∶4和5∶3  80∶2和200∶5

学生根据比例的意义进行判断,教师结合回答板书:

1/3∶1/4=12∶9  7∶4≠5∶3 1∶5=0.8∶4  80∶2=200∶5

2、认识比例各部分的名称

(1)介绍“项”:组成比例的四个数,叫做比例的项。

(2)3 :5 = 18 :30 学生尝试起名。

师介绍:比例的两项叫做比例的外项,中间的两项叫做比例的内项。

3 :5 = 18 :30

内项

外项

(3)如果把比例写成分数的形式,你还能指出它的内、外项吗?

出示:3/5=18/30

(4)已经知道了比例各部分名称,接下来我们一起来研究比例是否也有什么规律或者性质,有兴趣吗?

师:刚才,你们是根据比例的意义先求出比值再作出判断的。老师不是这样想的,可很快就判断好了,想知道其中的秘密吗?告诉你们,老师是运用了比例的基本性质进行判断的。

二、教学例4

1、提问:你能根据图中的数据写出比例吗?

(1)引导学生写出尽可能多的比例。并逐一板书,同时说出它们的内项和外项。

(2)引导思考:仔细观察写出的这些比例式,你能否发现有没有什么相同的特点或规律呢?

2、学生先独立思考,再小组交流,探究规律。

(板书:两个外项的积等于两个内项的积。)

3、验证:是不是任意一个比例都有这样的规律?

⑴课件显示复习题(4组):

1/3∶1/4和12∶9;

1∶5和0.8∶4;

7∶4和5∶3;

80∶2和200∶5

学生验证。

⑵学生任意写一个比例并验证。

教师将学生所举比例故意写成分数形式,追问:哪两个是内项,哪两个是外项,让学生算出积并结合回答板书。通过交*连线使学生明确:在这样的比例中,比例的基本性质可以表达为:把等号两端的分子、分母交*相乘,结果相等。

师:老师也写了一个比例(板书:3∶2=5∶4),怎么两个外项的积不等于两个内项的积!你们发现的规律可能是有问题的。

引导学生得出:你举的例子从反面证明了我们发现的规律是正确的。因为3∶2和5∶4这两个比是不能组成比例的。只有在比例中,两个外项的积等于两个内项的积。

师:很有道理!同学们很会观察,很会猜想,很会验证,自己发现了比例的基本性质。

板书:在比例中,两个外项的积等于两个内项的积。这叫做比例的基本性质。

⑶如果用字母表示比例的四项,即a:b=c:d,那么这个规律可以表示成什么。

(4)完整板书:在比例里,两个外项的积等于两个内项的积。这就是比例的基本性质。

读书P44页,勾画

5、小结:刚才我们是怎样发现比例的基本性质的?(写了一些比例式,观察比较,发现规律,再验证)

6、比例的基本性质的应用

(1)比例的基本性质有什么应用?

(2)做“试一试”:出示“3.6 :1.8和0.5 :0.25”。

A、先假设这两个比能组成比例

:让学生自己根据比例的基本性质判断,如果能组成比例就写出这个比例式。提问:3.6 :1.8和0.5 :0.25能组成比例吗? 根据比例的基本性质,能判断两个比能不能组成比例吗?

b、说出写出的比例的内项和外项分别是几,再分别算出外项和内项的积。

C、根据比例的基本性质判断组成的比例是否正确。

三、综合练习:

1、完成练一练

(1)学生尝试练习。

(2)交流讨论。使学生明确:可以把四个数写成两个比,根据比值是否相等作出判断。也可将四个数分成两组,根据每组中两个数的乘积是否相等作出判断,其中运用比例的基本性质进行判断比较简便。

2、在(  )里填上合适的数。

1.5:3=( ):4

12:( )=( ):5

先让学生尝试填写,再交流明确思考方法。

3、补充一组灵活训练题:

A、如果让你根据“2×9=3×6”写出比例,你行吗?你能写出多少个呢?

B、你能用“3、4、5、8”这四个数组成比例吗?若能,请把组成的比例写出来。

C、你能从3、4、5、8中换掉一个数,使之能组成比例吗?

四、全课小结:

同学们真行!不仅探索发现了比例的基本性质,还能自觉地运用比例的基本性质,去判断两个比能否组成比例,去求比例中的未知项。

能告诉我比例的基本性质是什么吗?你觉得学了它有什么用处?

五、课堂作业。

1、做练习十第1、3题

2、独立完成2、4题

板书设计:

比例的基本性质

3 :5 = 18 :30

内项

外项

6:4=3:2 4:6=2:3  4:2=6:3 3:6=2:4

3×4=6×2

a:b=c:d ad=bc

在比例里,两个外项的积等于两个内项的积,这叫做比例的基本性质。

小学六年级数学按比例分配的应用教案


教学内容:课本第63页例2;练一练;《作业本》第28页。

教学目标:进一步理解按比例分配的意义,巩固解答按比例分配的基本方法,并能应用按比例分配解决简单的实际问题。

教学重点:在连比中按比例分配应用题的特征与解答方法

教学难点:理解连比(三部分比)的意义与分数应用题的关系

教学关键:理解连比(三部分比)的意义

教学过程:

一、基本练习:

1、你可以想到什么?

(1)某班男、女生人数比是5∶4;

(2)柳树、杨树棵数比是1∶6;

(3)科技书和故事书比是5∶4。

2、练习:

(1)学校有故事书80本,故事书和科技书的本数之比是2∶3,科技书有多少本?

(2)改编1题中的故事书80本为科技书有80本。

分析:每题有多种不同的解法,想想你能列出几种不同的解法?

二、新授

1、出示例2:一种混凝土,由水泥、沙子和石子按2∶3∶5拌制而成。要配制这种混凝土6000千克,需要水泥、沙子和石子各多少千克?

(1)想:2∶3∶5叫做水泥、沙子和石子这三种量的连比。意思是这种混凝土里水泥占2份,沙子占3份,石子占5份。

(2)学生尝试解答。

(3)反馈、讲评。

2、试一试:一种青铜,内含铜88份,锡10份,锌2份。要炼制这种青铜400吨,需要铜、锡、锌各多少吨?

3、补充:一个长方体的棱长总和是24厘米,长、宽、高的比是3∶2∶1,这个长方体的体积是多少?

三、练一练。P64。

四、课堂小结。

这堂课与上堂课有什么不同吗?你学会了什么?

五、《作业本》第28页。

北京版六年级下册《比例尺》数学教案


北京版六年级下册《比例尺》数学教案

教学目标:

1.使学生理解比例尺的含义,能正确说明比例尺所表示的具体意义。

2.认识数值比例尺和线段比例尺,能将线段比例尺改成数值比例尺,将数值比例尺改成线段比例尺。

3.理解比例尺的书写特征。

教学重点:

比例尺的意义。

教学难点:

将线段比例尺改写成数值比例尺。

教学过程:

一、引入

教师:前面我们学习了比例的知识,比例的知识在实际生活中有什么用途呢?

请同学们看一看我们教室有多大,它的长和宽大约是多少米。(长大约8米,宽大约6米。)如果我们要绘制教室的平面图,若是按实际尺寸来绘制,需要多大的图纸?可能吗?如果要画中国地图呢?于是,人们就想出了一个聪明的办法:在绘制地图和其他平面图的时候,把实际距离按一定的比例缩小,再画在图纸上,有时也把一些尺寸比例小的物体(如机器零件等)的实际距离扩大一定的倍数,再画在图纸上。不管是哪种情况,都需要确定图上距离和实际距离的比。这就是比例的知识在实际生活中的一种应用。今天我们就来学习这方面的知识。

二、教学比例尺的意义。

1.什么是比例尺(自学书上内容,学生交流汇报)

出示图例1

在绘制地图和其它平面图的时候,需要把实际距离按一定的比缩小(或扩大),再画在图纸上。这时,就要确定图上距离和相对应的实际距离的比。一幅图的图上距离和实际距离的比,叫做这幅图的比例尺。

2.介绍数值比例尺

让学生看图。

“我们经常在地图上看到的比例尺有这两种:1:100000000是数值比例尺,有时也可以写成:1/100000000 ,表示图上距离1厘米相当于实际距离100000000厘米。

3.介绍线段比例尺

还有一种是线段比例尺(看北京地图),表示地图上1厘米的距离相当于地面上50km的实际距离。”

4.介绍放大比例尺

出示图例2

“在生产中,有时由于机器零件比较小,需要把实际距离扩大一定的倍数以后,再画在图纸上。下面就是一个弹簧零件的制作图纸。“

学生看图,“你知道比例‘2:1’表示什么意思吗?这也是一个比例尺,图上距离与实际距离的比是2:1

比较这个比例尺与上面的比例尺有什么相同点,什么不同点。

相同点:都表示图上距离与实际距离的比。

不同点:一种是图上距离小于实际距离,另一种是图上距离大于实际距离。

5.总结

比例尺书写特征。

(1)观察:比例尺1:100000000

比例尺1/5000000

比例尺2:1

(2)看一看,比例尺书写形式有什么特征。

为了计算方便,通常把比例尺写成前项或后项是1的比。

6.比例尺的化简和转化

“我们再看一下北京地图上的这个线段比例尺,这里图上距离:实际距离=1厘米:50千米,你会把这个线段比例尺转化成数值比例尺吗?”

说明:这两个数量的单位不同,所以先要把它们化成相同单位,再化简。

“是把厘米化作米,还是把米化作厘米?为什么?”(因为把米化作

“50千米等于多少厘米?”学生回答后,教师把50千米改写成5000000厘米。

“现在单位统一了,是多少比多少,怎样化简?”

图上距离:实际距离=1:5000000

教师出示比例尺不同的地图给学生看,让学生说出它们的比例尺各是多少,表示什么意思。

最后教师指出

①比例尺与一般的尺不同,这是一个比,不应带计量单位。

②求比例尺时,前、后项的长度单位一定要化成同级单位。如10厘米:10米,要把后项的米化成

③为了计算简便,通常把比例尺的前项化简成“1”,如果写成分数形式,分子也应化简成“1”。

三、巩固练习

1.做一做。

过程要求

(1)学生独立完成。(要求写出数值比例尺)

(2)同学之间互相交流。

(3)汇报交流结果。

2.完成课文练习八第1~3题。让学生完成第48页的“做一做”。教师可提醒学生注意把图上距离和实际距离的单位化成同级单位。集体订正时,要注意检查学生求出的比例尺的前项是不是“1”。

四、课堂小结

(本课要点:1.比例尺的意义;2.线段比例尺和数值比例尺的互化;3.注意单位名称的改写,如把千米和厘米的换算就是扩大或缩小100000倍的关系。)

苏教版六年级下册《认识比例尺》数学教案


苏教版六年级下册《认识比例尺》数学教案

教学目标:

1、使学生理解比例尺的意义,学会求比例尺。

2、使学生经历比例尺产生过程和探究比例尺应用的过程提高学生解决实际问题的能力。

3、结合情境使学生体验到数学与生活的密切联系进一步激发学生学习数学的兴趣。

教学重点:

理解比例尺的概念,根据比例尺的意义求出比例尺。

难点:

从不同角度理解比例尺的意义。

教学内容:

一、情景导入,明确比例尺用途。

师:同学们,我国国土面积有多大?(960万平方公里)

大家知道吗?我国的国土面积居世界第三位。这么大的面积,我可以现在就展示出来,大家相信吗?(大屏)我是怎样做到的呢?(缩小)在现实生活中有时根据需要把图形放大或缩小若干倍再画到图纸上。那么大家猜猜:这张图把中国领土缩小了多少倍?(100000000)

二、归纳概念。

师:1:100000000中的1表示什么?(图上距离) 那么,100000000呢?(实际距离) 这两个距离是以什么形式出现的呢?(比) 我们赋予这个比一个新的名称------比例尺。(板书课题) 那么,比例尺怎么求呢??图上距离:实际距离=比例尺(板书) 我们还可以把它写成比的形式。(板书)

理解1:100000000的意义。(图上距离1厘米,表示实际距离100000000厘米。) 同桌互说。出示习题。

师:比例尺是一个大家族,他们是一对孪生兄弟。左面的这个比例尺也可以写成分数形式。由于他们是数字组成的,我们称他们为数值比例尺。右面的这个比例尺所表示的意思是图上距离1厘米,实际距离50千米。也可以用它(大屏)表示。他们是由线段组成的,我们称为线段比例尺。在画线段比例尺的时候要注意线段的长度要是1厘米。在最后面的数字末尾加一个单位名称。

师:在生产中,有时由于机器零件比较小,需要把实际尺寸扩大一定的倍数以后再画到图纸上。

师问:你知道2:1是什么意思吗?(图上距离2厘米,表示实际距离1厘米) 你发现了什么?前项大于后项。 这个图形比实际的要大。(比例尺前项比后项大时,就表示放大。)

师:请看大屏,仔细观察这2个比例尺,你发现了什么??(总有一个数字是1) (小结:为了计算方便,通常把比例尺写成前项或后项是1的比。)

三、讲解例题。

1、出示例题,指名读题。

2、结合公式“比例尺=图上距离:实际距离”列式

3、强调:比例尺在计算的时候要统一单位。比例尺没有单位名称。

四、习题练习。

1、做一做 一栋楼房东西方向长40m,在图纸上的长度是50cm。这幅图纸的比例尺是多少?

2、填空

(1)( )和( )的比叫做这幅图的比例尺。

(2)通常把比例尺写成前项或后项为( )的比。

(3)比例尺分( )比例尺和( )比例尺两种。

(4)比例尺 表示图上1cm的距离代表实际距离( )km,转化成数值比例尺是( )。

3、判断

(1)所有的比例尺的前项都是1。( )

(2)一幅图的比例尺应根据图纸的大小来确定。( )

(3)一幅图的比例尺是8:1,这幅图所表示的实际距离大于图上距离。( )

(4)地图上量得5cm的距离表示实际400m的距离,这幅地图的比例尺是1:80。( )

(5)一幅地图的比例尺是1:500000厘米。( )

(6)比例尺就是一把尺子。( )

4、请你根据地图中的数值比例尺标出线段比例尺。

5、团结路的实际距离是1800m。

(1)量一量团结路上在图上的距离,求出这幅图的比例尺。

(2)将这幅图的比例尺用线段比例尺表示出来。

6、七星瓢虫的实际长度是5mm。量出下图七星瓢虫的长度,求这幅图的比例尺。

7、附加题

用1:1000 000,1:6000 000,1:250 000,1:100这四种比例尺画同一种物体,哪一种比例尺绘制的图比较大? 总结:这节课你有什么收获? 数学是需要大家探索的学科,希望大家多多发现问题,多多解决问题。

人教版六年级上册《圆面积的应用》数学教案


人教版六年级上册《圆面积的应用》数学教案

教学内容:教材67-68页。

教学目标:

1.使学生理解内接正方形和外切正方形的含义,掌握圆与内接正方形、外切正方形之间面积的计算方法。

2.经历问题解决的全过程,并在解决具体问题的基础上发现更为一般的数学规律,提高发现问题、提出问题、分析问题、解决问题的能力。

教学重点:掌握圆与内接正方形、外切正方形之间面积的计算方法。

教学难点:在解决问题的基础上发现数学规律。

教学过程:

一、创设情景,生成问题

1、 计算下面各圆的面积

r=8dm r=12cm d=4m

2、 填表

二、探索交流,解决问题

(一)学习例3

1、仔细观察:什么是内接圆和外切圆,它们都有什么特征?

2、正方形的边长与圆的半径有什么关系?

3、学生尝试解决外切正方形与圆之间的面积。

(1)通过观察,学生容易看出,正方形的边长就是圆的直径。

(2)它们之间的面积=正方形面积-圆的面积

(3)学生独立计算,集体订正。

4、解决内接正方形与圆之间的面积。

(1)怎样求内接正方形与圆之间的面积?

学生不难发现:圆的面积-正方形的面积

(2)那正方形的面积怎样求?

观察提示:转化成2个三角形

(3)学生尝试解决

5、回顾与反思:形成一般性的结论。

当r=1m时,和前面的结果完全一致。

(二)生活中的数学

学生阅读教材70页资料,了解圆形在生活中的应用。

三、巩固应用,内化提高

1、完成“做一做”.独立解决。

2、完成练习十五的第5-9题。

(1)第5题:求圆环的面积

(2)第6题:大圆的面积-小圆的面积

(3)第7题:

a.观察图形,明确什么是周长,什么是面积?

b.分别说出这里的周长包含哪些长度,面积包含哪几个部分?

c.学生独立列式解答。

(4)第8题:小组合作完成

(5)第9题:圆的面积-中间正方形的面积

四、回顾整理,反思提升

说一说这节课的收获。

苏教版六年级下册《正比例和反比例》数学教案


苏教版六年级下册《正比例和反比例》数学教案

教学目标:

1、知识技能目标

(1)通过具体问题进一步理解正比例和反比例的意义和特点,体会它们的联系与区别;

(2)能根据给出的有正比例关系的数据在有坐标系的方格纸上画图,并根据其中一个量的值估计另一个量的值;

(3)能找出生活中成正比例和成反比例量的实例、并进行交流。

2、过程性目标

(1)在交流讨论中完善自己判断正、反比例关系的经验认识,掌握判断正、反比例关系的方法;

(2)通过数“形”结合,进一步感受和领会正、反比例关系的变化规律及特点,进一步渗透函数思想。

3、情感态度目标

逐步增强数学学习的自信心,体验当独立思考解决不了问题时,与他人合作的成就感,逐步增强团队精神。

教学重点:

进一步掌握正、反比例的意义。 教学难点:掌握正确判断两个量是否成正比例或反比例的方法。

教学过程:

一、情境引入 导入复习

1、揭示课题

师:今天我们一起来复习正比例和反比例的相关知识。

板书课题:正比例反比例。

2、比一比

师:通过前面的学习,我们知道生活中成正比例关系或反比例关系的例子有很多,现在我们就来玩个小比赛,我们以小组为单位,比比哪组同学能举出更多的成正比例关系的量或成反比例关系的量。

学生小组内举例并记录下来。教师巡视,收集成正比例、反比例、不成正比例和反比例的例子各一个,记录在卡片上。

3、反馈评价。

教师根据各组举例的情况进行评比,并进行激励性评价。

二、回顾整理 建构网络

1、过渡

师:刚才同学们举了这么多的例子,但是老师发现这些例子中有的是成正比例,有的是成反比例,有的是不成正比例也不成反比例。那么,该怎么样判断两个量是成正比例还是成反比例呢?

2、复习正比例

(1)师:(用投影仪出示收集到的成正比例的例子)这两个量是否成正比例或反比例?为什么?(正比例)

学生回答,多让几个学生说说。

教师根据学生回答进行小结,并板书:正比例:一种量随着另一种量的变化而变化,两种量的比值一定。

(2)师:成正比例的两种量可以用多种方式表示这两种量之间的关系。(课件出示:一辆汽车在高速公路上行使,速度保持在100千米/时,说一说汽车行驶的路程随时间变化的情况,并用多种方式表示这两个量之间的关系。)

师:你们有什么方法能把题中的路程与时间的关系表示出来呢?(列表、画图、用式子表示) 学生回答。学生介绍完每一种方法时,教师让他们说一说要怎样做?

师:其实刚才同学们介绍的方法就是课本第63页的三种方法,请大家打开课本第63页,仔细读一读,并把三种方法补充完整。 学生独立完成,教师巡视指导。

师:(课件出第63页的表格)谁来告诉大家,表格里的空格应填几?(200、300、400、500)你是怎样算的?(根据“速度*时间=路程”计算) 指名回答。

师:(课件出示课本第63页的坐标图)谁来说说这幅图又该怎样做呢?(根据表格中的数据描点)仔细观察所描出的点,你发现了什么?(所描的点都在同一直线上)仔细观察这幅图,估一估,如果时间是3.5时,路程应是多少?(350)时间是5.5时呢?(550)

师:如果时间用t表示,路程用S表示,那么两者的关系可以怎样表示?(St=100)

3、复习反比例

师:(投影仪出示收集到的成反比例的例子)这是刚才一位同学所举的例子,大家判断一下,两种量成正比例还是反比例?(反比例)为什么?(一种量随着另一种量的变化而变化,两种量的积一定。)

指名回答,多让几个学生说说。教师根据学生的回答进行小结,并板书:反比例:一种量随着另一种量的变化而变化,两种量的积一定。

4、练习

师:大家现在已经能熟练地判断两种量是否成正比例或反比例,(用投影仪出示收集到的不成正比例也不成反比例的例子)这是刚才一位同学举的例子,你们帮忙判断一下,是成何种比例?(不成正比例也不成反比例)

5、比较正反比例的异同

师:通过刚才的复习梳理,你认为正比例和反比例有什么相同点和不同点?(课件出示下面表格)想一想,再和小组内的同学讨论讨论。

正比例反比例相同点不同点

学生独立思考后在小组内讨论交流,教师巡视指导。

师:哪组能派名代表来说说?

教师指名回答,多让几个学生说说,学生每说出一点教师用课件出示,说不出教师再进行引导,最终形成下面表格。

正比例反比例相同点

1、都有两种相关联的量,一个不变量。

2、一种量随着另一种量的变化而变化。

不同点

1、一种量扩大或缩小,另一种量也扩大或缩小。(变化方向相同)

2、相对应的两个数的比值是一定的。

1、一种量扩大或缩小,另一种量反而缩小或扩大。(变化方向相反)

2、相对应的两个数的积是一定的。

三、巩固练习 深化理解

1、下面表格中的两个量是否成正比例或反比例?为什么?(书本64页第一题)

2、订阅《小学生周报》的总钱数与《小学生周报》的份数是否成正比例或反比例?为什么?

3、⑴如果y=8x,x和y成( )比例。

⑵如果y= 8/x,x和y成( )比例。

四、课堂总结 深化提高

师:今天我们不仅进一步认识了正比例和反比例的意义,还对它们进行了比较,通过今天的学习,你学到了什么?你觉得怎样判断相关联的两种量成正比例还是反比例?

北师大版六年级下册《比例的认识》数学教案


北师大版六年级下册《比例的认识》数学教案

教学目标

1.在具体情境中,理解比例的意义和基本性质,会应用比例的意义和 基本性质正确判断两个比能否组成比例。

2.在探索比例的意义和基本性质的过程中发展推理能力。

3.通过自主学习,经历探究的过程,体验成功的快乐。

教学重难点

理解比例的意义和基本性质。

教学过程

一、创设情境,提出问题。

师:上学期我们学过了有关比的知识,说说你对比都有了哪些了解?

师:今天我们要学的知识也和比有着密切的关系。

师:今天,小明带来了几张自拍照。仔细观察图片,这些照片中那些像,那些不像?

二、探索尝试,解释交流。

1.认识比例及各部分名称。

师:那两张照片像呢?为什 么?

它们长和宽的比值相等,所以就像。

师:它们的比值相等,我们就用等号将两个比连接起来。像这样表示两个比相等的式子,我们把它叫做比例。谁能举几个比例的例子?

师:你能给比例各部分起名字吗?

2.练一练:

下表是调制蜂蜜水时蜂蜜和水的配比情况,根据比例的意义,你能写出比例吗?(写一写,与同伴交流。)

3.认识比例的基本性质。

观察这些比例,除了它们的比值相等外,你还发现什么?

师:谁 愿意谈谈自己的发现?

师:你们这个发现是不是一个规律呢?请同学们来验证一下。

师 :对,在比例里,两外项的积等于两内项的积。这在数学上叫比例的基本性质。

三、课堂练习。

1.

(1)分别写出图中两个长方形长与长的比和宽与宽的比,判断这两 个比能否组成例。

(2)分别写出图中每个长方形长与宽的比,判断这两个比能否组成比例。

2.哪几组的两个比可以组成比例?把组成的比例写出来。

15:18和30:36 4:8和5:20

1/4:1/16和0.5:2 1/3:1/9和1/6:1/18

3.应用比例内项的积与外项的积的关系 ,判断下面哪几组的两个比可以组成比例,并写出组成 的比例。

10:1.5和8:1.2 6:9和12:18

4.根据下面的两组乘法算式,分别写出两个不同的比例。

90.4=1.2 3a=2b

四 、总结:

说说这节课都有哪些收获?

点击查看更多:小学数学教案

提醒:

最新小升初政策、最新奥数试题、最全小学语文知识点

尽在“”微信公众号

西师大版六年级下册《正比例》数学教案


西师大版六年级下册《正比例》数学教案

教材分析:

正比例这个内容是学生在学习了比的意义、比的化简与比的应用等内容的基础上进行的。本课是有关比例知识的初步认识,结合具体情境,理解正比例的意义,判断两个量是否成正比例。教材提供了三个情境,其中一个是图像,两个是表格,让学生在具体问题、具体情境中认识成正比例的量,初步感受生活中存在很多成正比例的量;让学生通过观察、比较、分析、归纳等数学活动,自主发现正比例的变化规律,理解正比例的意义,会判断两个量是否成正比例。

学情分析:

学生在学习乘法时,已经知道一个因数扩大几倍,另一个因数不变,积就扩大几倍这个规律,这个规律实际上就是正比例的一个变化规律,所以,学生对这个内容是有个初步的接触。在这个内容的学习中,学生最容易掌握的是根据表格中的具体数据判断两个量是否成正比例,最难掌握的是离开具体数据,根据文字叙述判断两个量是否成正比例,特别是学生对学过的数量关系不熟悉时就更难了。

教学目标:

1、结合丰富的事例,认识正比例,理解正比例的意义,并初步感受生活中存在很多成正比例的量。

2、能根据正比例的意义,判断两个相关联的量是不是成正比例。

教学重点:

1、结合丰富的事例,认识正比例,理解正比例的意义。

2、能根据正比例的意义,判断两个相关联的量是不是成正比例。

教学难点:

能根据正比例的意义,判断两个相关联的量是不是成正比例。

教学用具:

课件

教学过程:

一、在情境中感受两种相关联的量之间的变化规律。

(一)情境一

1、一种汽车行驶的速度为90千米/小时。汽车行驶的时间和路程如下

2、请把下表填写完整。

3、从表中你发现了什么规律?

说说你发现的规律:路程与时间的比值(速度)相同。

(二)情境二

1、一些人买一种苹果,购买苹果的质量和应付的钱数如下。

2、把表填写完整。

3、从表中发现了什么规律?

应付的钱数与质量的比值(也就是单价)相同。

4、说说以上两个例子有什么共同的特点。

小结:路程随时间的变化而变化,在变化过程中路程与时间的比值相同;应付的钱数随购买苹果的质量的变化而变化,在变化过程中应付的钱数与质量的比值相同。

(三)情境三

1、 观察图,分别把正方形的周长与边长,面积与边长的变化情况填入表格中。请根据你的观察,把数据填在表中。

2、填完表以后思考:这两个表格中的变化情况与上两题的变化规律相同吗?

说说从数据中发现了什么?

3、 小结:正方形的周长和面积都随边长的增加而增加,在变化过程中,正方形的周长与边长的比值一定都是4。正方形的面积一边长的比是边长,是一个不确定的值。

(四)归纳正比例的意义

1、时间增加,所走的路程也相应增加,而且路程与时间的比值(速度)相同。那么我们说路程和时间成正比例。

2、购买苹果应付的钱数与质量有什么关系?

3、正方形的周长与边长有什么关系?

4、观察思考成正比例的量有什么特征?

一个量变化,另一个量也随着变化,并且这两个量的比值相同。

5、小结

两种相关联的量,一种量扩大,另一种量也随着扩大,一种量缩小,另一种量也随着缩小,并且这两种量中相对应的两个数的比值(也就是商)一定,这两种量就是成正比例的量,它们的关系就是正比例关系。

二、巩固练习

1、想一想

正方形的周长与边长成正比例吗?面积与边长呢?为什么?

师小结:

(1)正方形的周长随边长的变化而变化,并且周长与边长的比值都是4,所以正方形的周长与边长成正比例。

请你也试着说一说。

(2)正方形的面积虽然也随边长的变化而变化,但面积与边长的比值是一个变化的值,所以正方形的面积和边长不成正比例。

请生用自己的语言说一说。

2、小明和爸爸的年龄变化情况如下

小明的年龄/岁67891011

爸爸的年龄/岁3233

(1) 把表填写完整。

(2) 父子的年龄成正比例吗?为什么?

(3) 爸爸的年龄=小明的年龄+26。虽然小明岁数增加,爸爸岁数也增加,但是小明岁数与爸爸岁数的比值随着时间发生变化,不是一个确定的值,所以父子的年龄不成正比例。

与同桌交流,再集体汇报

三、全课总结:说说你在这节课中学到了什么知识?有什么不明白的地方?

板书设计:

正比例

路程÷时间=速度(一定)

总价÷数量=单价(一定)

正方形的周长÷边长=4(一定)

两种相关联的量,一种量扩大(或缩小),另一种量也随着扩大(或缩小),并且这两种量的比值(也就是商)一定,这两种量就成正比例。

《人教版六年级下册《比例的应用》数学教案》一文就此结束,希望能帮助您在小学教学中起到作用,如还需更多,请关注我们的“小学数学教案六年级”专题。

文章来源:http://m.jab88.com/j/113993.html

更多

猜你喜欢

更多

最新更新

更多