88教案网

人教版五年级上册《梯形的面积》数学教案

作为大家敬仰的人民教师,要对每一堂课认真负责。有的老师会在很久之前就精心制作一份教学计划。这样可以有效的提高课堂的教学效率,你们有没有写过一份完整的教学计划?以下是小编收集整理的“人教版五年级上册《梯形的面积》数学教案”,供您参考,希望能够帮助到大家。

人教版五年级上册《梯形的面积》数学教案

第6单元 多边形的面积

第5课时 梯形的面积

【教学内容】:教材P95~96例3及练习二十一第2、3、4题。

【教学目标】:

知识与技能:在平行四边形、三角形的面积计算公式推导的基础上,引导学生采用合作探究的形式,概括出梯形面积计算公式。正确、较熟练地运用公式计算梯形面积,并能解决一些生活中的实际问题,提高学生发现问题、分析问题、 解决问题的能力。

过程与方法:通过自主探究,小组合作,在操作、观察、比较中,培养学生的想象力、思考力,进一步发展学生的空间观念。

情感、态度与价值观:渗透数学迁移、转化思想,让学生感受数学与生活的紧密联系.提高学生学习数学的兴趣。

【教学重、难点】

重 点:理解并掌握梯形的面积公式.会计算梯形的面积。

难 点:自主探究梯形的面积公式。

【教学方法】:动手实践、自主探索、合作交流

【教学准备】:师:多媒体、完全一样的梯形若干个。生:剪刀、两个完全一样的梯形纸片(如等腰梯形、直角梯形等)、练习本。

【教学过程】

一、复习导入

1.导入:这一单元我们已经学习了三角形和平行四边形的面积计算,谁来说一说它们的计算公式?(平行四边形的面积=底×高,用字母表示是S=ah;三角形面积=底×高÷2,用字母表示是S=ah÷2。)

让学生回忆它们的面积的计算方法是怎么推导出来的?

(把它转化成已经学过的图形来研究面积。)

2.揭题:生活中的图形除了三角形和平行四边形外,还有梯形,这节课我们就利用转化的方法来研究梯形的面积计算公式。(板书课题:梯形的面积)

二、互动新授

1.出示教材第95页情境图。引导学生观察:车窗玻璃是什么形状的?(梯形)

思考:怎样求出它的面积呢?你能用学过的方法推导出梯形的面积计算公式吗?

小组讨论,学生可能会猜测到把梯形转化成平行四边形、三角形、长方形等,来推导它的面积计算公式。

2.让学生利用梯形学具验证自己的猜测。

小组活动,教师深入各小组进行指导。可提醒学生用剪刀剪一剪,再拼一拼。

3.交流汇报自己的推导过程,指学生到黑板边演示边讲解。

学生以梯形面积计算的公式推导有多种方法,可能会这样做:

(1)用两个一样的梯形拼成一个平行四边形,这个平行四边形的底等于梯形的(上底+下底),这个平行四边形的高等于梯形的高。每个梯形的面积等于拼成的平行四边形面积的一半,所以梯形的面积=(上底+下底)×高÷2。

出示推导过程:

(2)把一个梯形剪成两个三角形。

梯形的面积=三角形1的面积+三角形2的面积=梯形上底×高÷2+梯形下底×高÷2=(梯形上底+梯形下底)×高÷2

出示推导过程:

(3)把一个梯形剪成一个平行四边形和一个三角形。

梯形的面积=平行四边形面积+三角形面积

=平行四边形的底×高+三角形的底×高÷2

=(平行四边形的底+三角形的底÷2)×高

=(平行四边形的底×2+三角形的底÷2×2)×高÷2

=(平行四边形的底+平行四边形的底+三角形的底)×高÷2

因为梯形的上底=平行四边形的底,梯形的下底=平行四边形的底+三角形的底,所以梯形的面积=(上底+下底)×高÷2。

4.小结:大家都是把梯形转化成我们学过的图形,推导出它的面积计算方法,无论哪种方法我们都可以推导出梯形的面积计算公式。

板书:梯形的面积=(上底+下底)×高÷2 用字母表示:S=(a+b)×h÷2

5.教学教材第96页例3。

出示教材第96页例3情境图和横截面的示意图,引导学生观察情境图并思考:横截面是一个什么形状?(这是一个梯形;而且有两个角是直角,是一个直角梯形。)

让学生找一找,直角梯形的高在哪里?你能理解这个横截面的含义吗?

通过交流,学生能明白:直角梯形的高也是它的一个腰长。这个梯形的上底是36米,下底是120米,高是135米。

你能利用所学的知识计算一下这个直角梯形的面积吗?

让学生尝试计算,并交流汇报。

根据学生的汇报,板书计算过程:(见板书设计)

三、巩固拓展

1.完成教材第96页“做一做”。先说一说这是一个什么图形,并对该图进行分析。

学生可以把它看成一个大梯形,梯形的上底是(40+45) cm,下底是(71+65) cm,高是40cm,也可以看成两个直角梯形,其中一个梯形的上底是40cm,下底是7lcm,另一个梯形的上底是45cm,下底是65cm,高都是40cm,算出两个梯形的面积再加起来。

2.完成教材第97页“练习二十一”第3题。

本题需要先测量计算所需条件的长度,再利用梯形面积计算公式求面积。

3.完成教材第97页“练习二十一”第4题。先让学生观察飞机模型的机翼是什么形状,(是两个完全相同的梯形)再让学生说一说怎样求机翼的面积。求机翼的面积,可以先求出一个梯形的面积,再乘2;也可以根据梯形面积公式的推导经验,设想把两个梯形拼成一个底长lOOmm+48mm,高250mm的平行四边形,求出它的面积。

四、课堂小结

师:这节课你学会了什么?有哪些收获?

引导总结:

1.在推导梯形的面积公式时,可以把梯形转化成我们学过的图形来推导。

2.梯形的面积=(上底+下底)×高÷2。

3.用字母表示:S=(a+b)×h÷2。

五、作业:教材第97页练习二十一第2题。

【板书设计】:

梯形的面积

梯形的面积=(上底+下底)×高÷2

用字母表示:S=(a+b)×h÷2

例3:

S=(a+b)h÷2

=(36+120)×135÷2

=156×135÷2

=10530 (m2)

精选阅读

苏教版五年级上册《梯形面积的计算》数学教案


一个优质课堂,就是老师在讲学生在答,讲的知识都能被学生吸收。老师需要做好课前准备,编写一份教案。这样可以让同学们很容易的听懂所讲的内容,那吗编写一份教案应该注意那些问题呢?下面是小编精心整理的“苏教版五年级上册《梯形面积的计算》数学教案”,欢迎阅读,希望您能阅读并收藏。

苏教版五年级上册《梯形面积的计算》数学教案

教学内容:

教材14—15页例6、例7及相应的“试一试”“练一练”,练习三第1—3题。

教学目标:

1.学生通过自己探究,理解并掌握梯形面积公式,能应用公式进行正确计算。

2.学生通过操作和观察,发展空间观念;培养学生的分析、综合、抽象、概括和运用转化的思考方法解决实际问题的能力。

3.学生在探索发现的过程中,获得积极的情感体验,感受数学的魅力。

教学重点:

探索发现梯形的面积公式。

教学难点:

在探究中理解梯形的上、下底与平行四边形的底之间的关系。

教学准备:

多媒体课件、剪下书上第117页的梯形。

探究方案:

一、自主准备

你能想办法求出下面梯形的面积吗?(每个小方格表示1平方厘米)

你打算怎样做,与同学交流。(可以在图上画一画)

假如要你探究三角形的面积,你打算把它转化成什么图形进行研究? 我想转化成

二、自主探究(剪下课本第117页的6个梯形)

1.拼一拼:剪下的梯形中,哪两个梯形能拼成平行四边形,动手拼一拼。

2.能拼成平行四边形的,求出平行四边形和梯形的面积,再填写下表。

3.想一想

(1)拼成平行四边形的两个梯形有什么关系?

(2)拼成的平行四边形的底与梯形的上底、下底有什么关系?

平行四边形的高与梯形的高有什么关系?

每个梯形的面积与平行四边形的面积有什么关系?

(3)根据平行四边形的面积公式,推想梯形的面积计算公式

三、自主应用

试一试:一块梯形麦田,上底36米,下底54米,高40米。这块麦田的面积是多少平方米?

四、自主质疑

说一说

(1)梯形的面积公式是怎么推导的?你有什么疑问?

(2)你认为本节课应学会什么?

教学过程:

一、明确目标

提问:同学们,通过自主学习,你知道今天的学习内容吗?(揭示课题)你认为本节课应学会什么?

二、探究交流

1.出示例6,交流梯形的面积。

(1)组织汇报:面积是多少。

(2)组内交流,你是用什么方法知道的。

(3)组织全班交流。

2.出示例6,交流梯形面积的探究情况。

(1)小组交流:对照例6的表格说一说自己是怎么拼的,怎么填的?讨论并交流例6下面的问题。

(2) 全班交流:指名上台展示拼法,并对照拼图说一说:拼成的平行四边形的底与梯形的上、下底有什么关系?梯形的高与拼成的平行四边形的高有什么关系?梯形的面积与拼成的平行四边形的面积有什么关系?

(3)总结归纳:两个完全一样的梯形拼成一个平行四边形,拼成的平行四边形的底就是梯形的上底与下底的和,拼成平行四边形的高就是梯形的高,每个梯形的面积则是拼成平行四边形面积的一半,因为平行四边形的面积=底×高,所以梯形的面积 =(上底+下底)×高÷2

学生在书上完成梯形面积的字母公式。

3.交流“试一试”。

(1)出示“试一试”的梯形图,你是怎么求这块梯形的面积的?先和自己的同桌说一说自己的想法及计算的结果。

(2) 全班交流:梯形的面积计算过程中,为什么要除以2?

4.完成 “练一练”。

出示“练一练”,学生独立完成。

全班交流:每个梯形的面积是多少?你是怎么想的?

明确:根据梯形和拼成的平行四边形的面积关系,如果已知拼成的平行四边形面积,怎样求梯形的面积?如果已知每个梯形的面积,怎样求平行四边形的面积?

三、巩固拓展

1.完成练习三第1题。

(1)学生自己找出面积相等的梯形。

(2)同桌交流:你是怎么找出面积相等的梯形的?

(3)全班交流:由于这四个梯形的高都相等,只要比较它们上、下底的和是否相等。除左边第3个之外,其余梯形的面积都相等,因为它们上、下底的和都是8厘米,高都是4厘米。

2.完成练习三第2题。

学生独立计算后再集体交流结果。

3.完成练习三第3题。

(1) 出示零件的示意图,全班讨论交流:怎么理解“横截面”?指出图中零件中的横截面在哪里?

(2) 小组交流:这个零件的横截面是什么形?它的上底、下底、高各是多少?怎样求这个横截面的面积?

(3)学生独立计算后再集体交流结果。

(4)学生订正。

四、总结延伸、组织阅读。

1.你有什么收获?还有什么疑问?

2.阅读教材第15页最后的内容,并动手画一画。

板书设计:

梯形面积的计算

两个完全一样的梯形可以拼成一个平行四边形。

平行四边形的底 = 梯形的上底+下底

平行四边形的高 = 梯形的高

梯形的面积 = 平行四边形面积的一半

梯形的面积 = (上底+下底)×高÷2 s=(a+b)×h÷2

苏教版五年级上册《梯形的面积计算》数学教案


苏教版五年级上册《梯形的面积计算》数学教案

第二单元 多边形的面积

梯形的面积计算

教学内容:

课本第14页。

教学目标:

1、使学生通过观察、操作、猜测、填表、讨论等方法探索并掌握梯形面积的计算方法,通过迁移前面学法,自主探究梯形上下底、高与平行四边形的底、高之间的关系,能正确计算梯形的面积,应用公式解决相关的实际问题。

2.培养学生观察、推理、归纳能力,体会转化思想的价值。

3.让学生进一步积累解决问题的经验,增长新图形面积研究的策略意识,获得成功体验,提高学习自信心。

教学重点:

探索并掌握梯形的面积计算方法。

教学难点:

理解梯形推导公式过程中梯形上、下底与平行四边形的底之间的关系。

教学准备:

课件

教学过程:

一、复习旧知,揭示课题。

(预设3分钟)

1、出示梯形图形,说出各部分的名称。

拿出昨天晚上自己剪的梯形,同桌间说出图形各部分的名称。

2、揭示课题。

二、自学例6。

(预设17分钟)

1.自学。(预设5分钟)

导学单:

(1)你能想办法求出梯形的面积吗?如何做?

(2)小组交流。

刚才各组进行了热烈的讨论交流,下面我们来看看各组的成果。

教师根据学生的汇报情况及时进行互动对话。总结出:转化是计算梯形面积最基本,也是最有效的方法。

三、自学例7。

自学

导学单:(预设12分钟)

(1)结合三角形面积的推导过程,我猜想可以把梯形转化成 ( )来求面积。

(2)拿出昨晚剪的两个图行,自己拼一拼、算一算、填一填,再思考:

(a)拼成平行四边形的两个梯形有什么关系?

(b)拼成的平行四边形的底与梯形的上底、下底有什么关系? 拼成的平行四边形的高与梯形的高有什么关系?每个梯形的面积与拼成的平行四边形的面积呢?

(c)根据平行四边形的面积公式,怎样求梯形的面积?

(d)小组交流。

点拨:

(1)你是怎样想到把梯形转化成平行四边形的?那么,一个梯形的面积和拼成的平行四边形的面积有什么关系?

(2)拼成的平行四边形的底等于梯形的( )与( )的和;拼成的平行四边形的高等于梯形的( )。

每个梯形的面积是拼成的平行四边形的面积的( )

梯形面积=平形四边形面积÷2

=( )×高÷2

3.如果用s表示梯形的面积,用a、b和h分别表示梯形的上底、下底和高,那么你准备怎样用字母表示梯形面积计算公式?学生独立尝试,一生板演:

字母公式:s=(a+b)×h÷2

强调公式中的“÷2”,这儿的“÷2”能少吗?为什么?

四、练习(预设14分钟)

1、寻找合适的条件,求出图形中梯形的面积。(单位:cm)

教师提供课堂分层练习单

教师巡视,指导有困难的学生。

2、想一想,填一填、

用两个完全一样的梯形,拼成平行四边形。

如果梯形的面积是12平方厘米, 拼成的平行四边形的面积是( )平方

厘米。

如果平行四边形的面积是24平方厘米, 涂色梯形的面积是( )。

第2题,提问:涂色梯形的面积与整个平行四边形的面积有什么关系?

3、判断题

(1)两个梯形都能拼成一个平行四边形。 ( )

(2)两个形状一样的梯形一定能拼成一个平行四边形。 ( )

(3)两个完全一样的梯形一定能拼成一个平行四边形。 ( )

(4)平行四边形的面积是梯形面积的2倍。 ( )

第3题,强调两个完全一样的梯形一定能拼成一个平行四边形。

4、一条新挖的渠道,横截面是梯形(如图)。渠口宽2.8米,渠底宽1.4米,渠深1.2米。它的横截面的面积是多少平方米?

第4题:说一说,你是怎样理解“横截面”的?

指一指,图中的物体的“横截面”具体在哪里?

五、课堂总结

通过这节课的学习,你学到了什么知识呢?

教学反思:

苏教版五年级上册《梯形面积的计算练习》数学教案


苏教版五年级上册《梯形面积的计算练习》数学教案

第二单元 多边形的面积

梯形面积的计算练习

教学内容:

课本第18页。

教学目标:

1、进一步加深学生对梯形面积计算公式的理解,熟练应用公式计算面积。

2.使学生能灵活应用公式解决简单的实际问题,提高应用公式的能力。

3.让学生进一步积累解决问题的经验,获得成功体验,提高学习自信心。

教学重点:

巩固和应用梯形的面积公式。

教学难点:

应用梯形的面积公式。

教学准备:

课件

教学过程:

一、揭示课题 。(1分钟)

昨天学习了,梯形的面积计算,今天我们利用它解决实际问题。

板书课题。

二、复习铺垫。(4分钟)

回忆并口述梯形面积公式的推导过程。

导学要点:

两个完全一样的梯形拼成一个平行四边形,平行四边形的底相当于梯形的上、下底的和,高相当于梯形的高,平行四边形的面积=(上底+下底)×高,所以梯形的面积=(上底+下底)×高÷2

三、整体练习。(25分钟)

学生自主练习时,教师巡视了解学生的练习情况,收集错题。

1、完成数学书本18页第4题。

2、完成数学书本18页第5题。

注意:测量结果一般取整厘米数。

3、完成数学书本18、19页第6、7、题。

求多少棵白菜的思维过程是总面积÷每棵白菜的面积。

4、完成数学书本19页第8题。

看看谁能想出两种方法解决。

该模型尾翼是两个怎样的梯形组成的?可以先求一个梯形的面积再乘2,也可以直接求出这两个梯形拼成平行四边形的面积。

5、完成数学书本19页第9题。

你是如何知道三角形的底是多少的?

四、课堂总结

通过这节课的学习,你学到了什么知识呢?

教学反思:

沪教版五年级上册《梯形的面积》数学教案


沪教版五年级上册《梯形的面积》数学教案

【教学内容】九年义务教育课本数学五年级第一学期(试用本)第65页

【教学目标】

1. 知识与技能

(1)通过拼、摆等操作活动,探究并掌握梯形面积的计算方法。

(2)能根据梯形面积计算公式,正确计算梯形的面积。

2. 过程、能力与方法

通过观察、比较、分析以及动手操作等自主探究活动,经历梯形面积公式的推导过程,发展空间观念。

3. 情感、态度与价值观

在个体探究与合作学习相结合的学习活动中获取新知,体验成功的喜 悦。

【教学重点】理解梯形面积的计算方法,正确计算梯形的面积。

【教学难点】梯形面积计算方法的推导过程。

【教学准备】

课件、剪刀、梯形纸。

【教学过程】

一、复习导入

1. 复习长方形、平行四边形、三角形的面积计算方法。

2. 出示课题:梯形的面积

二、新知探究

1. 联想猜测、探求方案

猜测:计算梯形的面积,需要知道什么条 件?

【策略说明:学生之前已亲历了平行四边形和三角形面积公式的探究过程,对“转化”思想在推导平面图形面积公式中的作用已有了 较深的感受,因此放手让学生自主解决,创设出较大的探究空间以激发学生的创造性。】

2. 小组合作,实验 探究。

探究:利用已有知识,计算梯形面积。

(1)提出小组合作的要求

(2)自主探究,合作学习

(3)全班汇报交流

【策略说明:通过小组合作,让学生自主探究,用不同的方法把梯形转化成了学过的图形并进行计算,初步感知梯形面积计算的方法。】

3. 归纳总结,推导公式

归纳:梯形面积的计算公式。

(1)指导看书

(2)反馈交流

【策略说明:再次合作,运用运算定律和运算性质,统一梯形面积的计算方法,归纳梯形面积计算公式。】

4.巩固新知:

求出以下梯形的面积(每个小方格都是边长为1厘米的正方形)

【策略说明:通过练习,让学生体会 ,如果几个梯形的上底、下底和高分别对应相等,那么它们的面积不受形状的影响,也分别相等。】

三、拓展思维

介绍利用梯形面积的其他推导方法

【策略说明:通过媒体演示将三角形、梯形、平行四边形统一起来,初步渗透梯形中位线的概念,可对梯形的面积计算方法加以拓展,延伸,并进一步促进学生空间观念的发展 。】

四、综合练习

在方格纸上画一个面积为6平方厘米的梯形。

【策略说明:利用方格图,画规定 面积的梯形,既可以巩固梯形的计算方法, 也可以再一次沟通梯形与其他平面图形面积计算之间 的关系,达到灵活运 用,举一反三的目的。】

苏教版数学五年级上册教案 梯形面积的计算


作为大家敬仰的人民教师,要对每一堂课认真负责。为此老师就需要在上课前准备好教案,以此来提高课堂的教学质量。才能有计划、有步骤、有质量的完成教学任务,那怎样写才能有一份高质量教案呢?以下是小编收集整理的“苏教版数学五年级上册教案 梯形面积的计算”,欢迎阅读,希望您能阅读并收藏。

教学目标:1.理解、掌握梯形面积的计算公式,并能运用公式正确计算梯形的面积。

2.发展学生空间观念。培养抽象、概括和解决实际问题的能力。

3.掌握“转化”的思想和方法,进一步明白事物之间是相互联系,可以转化的。

教学重点:理解、掌握梯形面积的计算公式。

教学难点:理解梯形面积公式的推导过程。

教学过程:

1.导入新课

(1)投影出示一个三角形,提问:

这是一个三角形,怎样求它的面积?三角形面积计算公式是怎样推导得到的?学生回答后,指名学生操作演示转化的方法。

(2)展示台出示梯形,让学生说出它的上底、下底和各是多少厘米。

(3)教师导语:我们已学会了用转化的方法推导三角形面积的计算公式,那怎样计算梯形的面积呢?这节课我们就来解决这个问题。(板书课题,梯形面积的计算)

2.新课展开

第一层次,推导公式

(1)操作学具

①启发学生思考:你能仿照求三角形面积的办法,把梯形也转化成已学过的图形,计算出它的面积吗?

②学生拿出两个完全一样的梯形,拼一拼,教师巡回观察指导。

③指名学生操作演示。

④教师带领学生共同操作:梯形(重叠)旋转平移平形四边形。

(2)观察思考

①教师提出问题引导学生观察。

a.用两个完全一样的梯形可以拼成一个平行四边形。这个平行四边形的底和高与梯形的底和高有什么关系?

b.每个梯形的面积与拼成的平形四边形的面积有什么关系?

(3)反馈交流,推导公式。

①学生回答上述问题。

②师生共同总结梯形面积的计算公式。

板书:梯形的面积=(上底+下底)×高÷2

③字母表示公式。教师叙述:如果有S表示梯形的面积,用a、b和h分别表示梯形的上底、下底和高,怎样用字母表示梯形面积的计算公式呢?

学生回答后,教师板书:“S=(a+b)h÷2”。

第二层次,深化认识。

(1)启发学生回忆平行四边形面积公式的推导方法。

①提问:想一想平行四边形面积公式是怎样推导得到的?

②学生回答,教师在展示台再现平行四边形面积公式的推导方法。

(2)引导操作。

①学习平行四边形面积时,我们用割补的方法把平行四边形转化成长方形。能否仿照求平行四边形面积的方法,把一个梯形转化成已学过的图形,推导梯形面积的计算公式呢?

②学生动手操作、探究、讨论,教师作适当指导。

(3)信息反馈,扩展思路。

说一说你是怎样割补的?教师展示各种割补方法。

第三层次,公式应用。

(1)出示课本第89页的例题,教师指导学生理解“横截面”。

(2)学生尝试解答。

(3)展示台出示例题的解答,反馈矫正。

(4)完成例题下面的“做一做”。

3.巩固练习

(1)完成练习十七第1、2和3题。

(2)讨论完成练习十七第4和6题。

4.全课小结。(略)

人教版五年级上册《组合图形的面积》数学教案


人教版五年级上册《组合图形的面积》数学教案

第6单元 多边形的面积

第7课时 组合图形的面积

【教学内容】:教材P99例4及练习二十二第1~6题。

【教学目标】:

知识与技能:结合生活实际认识组合图形,并掌握用分解法或添补法求组合图形的面积。

过程与方法:根据各种组合图形的自身条件,选择有效的计算方法进行面积计算。

情感、态度与价值观:能运用组合图形的知识,解决生活中组合图形的实际问题。

【教学重、难点】

重 点:理解组合图形的多种面积计算方法,会找出计算每个简单图形所需的

条件。

难 点:根据组合图形的条件,有效地选择计算组合图形面积的方法。

【教学方法】:动手实践、自主探索、合作交流。

【教学准备】:

师:多媒体、各种平面图形。

生:七巧板、简单图形学具、少先队中队旗实物。

【教学过程】

一、情境导入

1.创设情境导入:同学们都玩过七巧板吧,在七巧板里都有哪些图形呢?(长方形、三角形、平行四边形……)

2.你能用七巧板拼出什么图形来?指几名学生用七巧板拼出图形,并展示。

通过学生拼出的图形引出组合图形的定义:由两个或两个以上的简单图形组成的大的不规则图形叫组合图形。

3.这节课我们就一起来学习求组合图形的面积。(板题:组合图形的面积)

二、互动新授

l.谈话:在实际生活中,有许多图形都是由几个简单的图形组合而成的。出示教材第99页的各种图形。

这些组合图形里有哪些是学过的图形?同学们试着找一找。

小组合作,尝试找出情境图中的组合图形是哪些图形组成的,并交流汇报。

汇报时学生可能对相同的图形有不同的组合方法,特别是对队旗的组成,在此要鼓励学生发表不同的看法。

学生可能会想到:队旗是由两个梯形组成,或是由一个长方形和两个三角形组成,还可以看成由一个梯形和一个三角形组成。小房子的表面是由一个三角形和一个正方形组成的。风筝的面是由四个小三角形组成的,

2.说一说:在生活中还有哪些地方有组合图形?请同学们说一说。

学生可能会想到:厨房里的三角架、房子的分布图、桌子等。

3.引导思考:关于组合图形,你还想研究它的什么知识?

学生可能想到研究它的周长,也可能想到研究它的面积。

适时点拨:它们的周长就是围成图形的所有线段的长度。这节课我们重点研究组合图形的面积。

4.出示教材第99页例4:一间房子侧面墙的形状图。

引导学生观察图并思考:怎样计算出这个组合图形的面积?

组织学生小组合作学习,说一说是怎样分的,然后再算一算。

集体汇报,学生可能会想到两种方法:

(1)把组合图形分成一个三角形和一个正方形,先分别算出三角形和正方形的面积,再相加。

教师可将学生的分法用多媒体展示:

并根据学生回答板书:

5×5+5×2÷2

=25+5

=30( m2)

(2)把这个组合图形分成两个完全一样的梯形。先算出一个梯形的面积,再乘2就可以了。

教师可将学生的分法用多媒体展示:

并根据学生回答板书:

(5+5+2)×(5÷2)÷2×2

=12×2.5÷2×2

=30(m2)

教师鼓励学生算法的多样化,并选择自己喜欢的方法计算。

三、巩固拓展

1.完成教材第101页“练习二十二”第1题。

先让学生对组合图形分一分,说一说是如何分割的,再计算。

学生可能会把组合图形分成一个平行四边形和一个三角形,也有的可能分成两个三角形和一个梯形。这时要让学生对这两种方法进行比较,从而选择较简便的方法解决问题。

2.完成教材第101页“练习二十二”第2题。

本题图形是队旗,在例题里已经对其进行了简单的分析,这里可以让学生思考“能用几种方法计算”,拓展学生的思维。

学生可能会想到:把队旗分成两个梯形,求两个梯形面积的和;或者把队旗分成一个长方形和两个三角形,求它们的面积之和;或者用一个长方形的面积减去一个三角形的面积求队旗的面积。

3.完成教材第101页“练习二十二”第3题。

先独立思考如何计算,再自主算一算。通过这两道题的练习,让学生知道计算组合图形的面积时,不只是能用加法计算,有时也可以用一个图形面积减去另一个图形的面积。

四、课堂小结

师:这节课你学会了什么?有哪些收获?

引导总结:

1.由两个或两个以上的简单图形组成的大的不规则图形叫组合图形。

2.求组合图形的面积时,可以把它分割成我们学过的简单图形,计算出简单图形的面积后再相加。

3.计算组合图形的面积时,不只是能用加法计算,有时也可以用一个图形面积减去另一个图形的面积。

五、作业:教材第101页练习二十二第4、5、6题。

【板书设计】:

组合图形的面积

由两个或两个以上的简单图形组成的大的不规则图形叫组合图形。

5×5+5×2÷2 (5+5+2)×(5÷2)÷2×2

=25+5 =12×2.5÷2×2

=30(m2) =30 (m2)

人教版五年级上册《组合图形的面积(1)》数学教案


人教版五年级上册《组合图形的面积(1)》数学教案

教学内容:教材P99例4及练习二十二第1~6题。

教学目标:

知识与技能:结合生活实际认识组合图形,并掌握用分解法或添补法求组合图形的面积。

过程与方法:根据各种组合图形的自身条件,选择有效的计算方法进行面积计算。

情感、态度与价值观:能运用组合图形的知识,解决生活中组合图形的实际问题。

教学重点:理解组合图形的多种面积计算方法,会找出计算每个简单图形所需的条件。

教学难点:根据组合图形的条件,有效地选择汁算组合图形面积的方法。

教学方法:动手实践、自主探索、合作交流。

教学准备:师:多媒体、各种平面图形。 生:七巧板、简单图形学具、少先队中队旗实物。

教学过程

课前预习案

1、判断

(1)两个完全相同的梯形可以拼成一个平行四边形,拼成的平行四边形的面积是梯形的2倍。 ( )

(2)梯形的面积比平行四边形的面积小。 ( )

(3)一个面积是80平方厘米的平行四边形,分割成两个完全一样的梯形,每个梯形的面积是40平方厘米。 ( )

一、谈话导入

师:我们一起来复习前面学过的图形的面积公式:

正方形的面积=边长×边长

长方形的面积=长×宽

平行四边形的面积=底×高

三角形的面积=底×高÷2

梯形的面积=(上底+下底)×高÷2

二、自主探究:

1.探究活动一:组合图形的分解:

(1)观察课本99页的四幅主题图,说说它们分别是由哪些简单图形组成的?

(2)一个组合图形我们可以把它分割成已学过的几个图形,试着把下面的图形分一分。

(3)同一个图形,我们从不同的角度认识,也可以分成几个不同的基本图形。分一分,看看我们的队旗可以分成哪些不同的基本图形?

(4)找一找生活中的组合图形。

2.探究活动二:计算组合图形的面积。

(1)出示例题,讨论交流:怎样计算这面墙的面积?

(2)一个组合图形我们可以分成已经会计算面积的几个简单图形,分别计算出它们的面积,再求和。

(3)尝试解答:

方法一:这面墙的形状可以分成一个( )和一个( )。

把组合图形分成一个三角形和一个正方形,先分别算出三角形和正方形的面积,再相加。

教师可将学生的分法用多媒体展示:

并根据学生回答板书:

5×5+5×2÷2

=25+5

=30( m2)

方法二:这面墙的形状可以分成两个相同的( )形。

把这个组合图形分成两个完全一样的梯形。先算出一个梯形的面积,再乘2就可以了。

教师可将学生的分法用多媒体展示:

并根据学生回答板书:

(5+5+2)×(5÷2)÷2×2

=12×2.5÷2×2

=30(m2)

教师鼓励学生算法的多样化,并选择自己喜欢的方法计算。

三、课堂达标

1.判断。

(1)任何一个平行四边形都可以分割成两个完全一样的梯形。( )

(2)等底等高的两个三角形可以拼成一个平行四边形。 ( )

2.一个三角形的面积是22.5平方分米,与它等底等高的平行四边形的面积是多少平方米?

3.练习十八的第1题,先让学生对组合图形分一分,说一说是如何分割的,再计算。

学生可能会把组合图形分成一个平行四边形和一个三角形,也有的可能分成两个三角形和一个梯形。这时要让学生对这两种方法进行比较,从而选择较简便的方法解决问题。

4.练习十八的第2题

本题图形是队旗,在例题里已经对其进行了简单的分析,这里可以让学生思考“能用几种方法计算”,拓展学生的思维。

学生可能会想到:把队旗分成两个梯形,求两个梯形面积的和;或者把队旗分成一个长方形和两个三角形,求它们的面积之和;或者用一个长方形的面积减去一个三角形的面积求队旗的面积。

(1)由中队旗引入 (2)算出它的面积。(单位:厘米)--可能有下面几种情况

S总=S梯×2 S总=S长-S

5.练习二十二的第3题。

先独立思考如何计算,再自主算一算。通过这两道题的练习,让学生知道计算组合图形的面积时,不只是能用加法计算,有时也可以用一个图形面积减去另一个图形的面积。

6.练习十八的第4、5题,生独立完成。

四、课堂小结

师:这节课你学会了什么?有哪些收获?

引导总结:

1.由两个或两个以上的简单图形组成的大的不规则图形叫组合图形。

2.求组合图形的面积时,可以把它分割成我们学过的简单图形,计算出简单图形的面积后再相加。

3.计算组合图形的面积时,不只是能用加法计算,有时也可以用一个图形面积减去另一个图形的面积。

作业布置:

板书设计:

组合图形的面积

由两个或两个以上的简单图形组成的大的不规则图形叫组合图形。

5×5+5×2÷2 (5+5+2)×(5÷2)÷2×2

=25+5 =12×2.5÷2×2

=30(m2) =30 (m2)

人教版五年级上册《多边形的面积复习》数学教案


人教版五年级上册《多边形的面积复习》数学教案

第8单元 总复习

第4课时 多边形的面积复习

【教学内容】:教材P113第2题及练习二十五第7、20题。

【教学目标】:

知识与技能:通过复习,进一步理解多边形的含义,理解和掌握多边形面积计算公式,并能灵活应用公式解决一些问题。

过程与方法:通过整理,感受数学知识内在联系,完善知识结构,进一步理解转化的数学思想和方法。

情感、态度与价值观:通过操作、观察、比较,发展空间观念,渗透等积变换的数学思想,并使学生感受学习数学的乐趣。

【教学重、难点】

重 点:整理完善知识结构,灵活运用面积公式解决问题。

难 点:沟通多边形面积公式之间的内在联系。

【教学方法】:归纳整理,演示讲解;复习回顾。

【教学准备】:多媒体。

【教学过程】

一、构建网络,新知汇总

师:同学们,咱们在第五单元里学习了平行四边形、三角形和梯形的面积及其计算,而且,还接触到了组合图形的面积,大家不仅要会利用面积公式求面积,还要掌握面积公式之间的联系,学会观察组合图形的组成。今天,我们就来复习这部分知识。(板书课题:多边形面积的复习)

师:那么我们是如何根据长方形的面积推倒出平行四边形、三角形和梯形的面积公式呢?请大家从你的头脑记忆库里提取下面的知识,看看谁的记忆库最充实?

讨论:平行四边形、三角形和梯形的面积公式是怎样推导出来的?

师:同位同学可以商量商量。(学生汇报:教师演示)

师:大家在回忆推导公式的过程中,本着把新知转化为旧知的原则,找到了几个面积公式之间的联系。通过这样的梳理,大家对我们的面积公式是不是更加熟悉了。(边说边出示图。见板书设计)

引导学生观察,从左往右看,根据长方形的面积公式可以推导出其他图形的面积公式,从右往左看,我们在探讨一种新的图形面积时,都是把它转化成已学过的图形来计算。

二、查漏补缺,错误汇总

师:现在你们的记忆库中还有内存吗?那,就请大家想一想,你们在利用公式解决问题时有什么容易出错的地方或是需要大家注意的地方?

根据学生的回答归纳:1.弄清图形,选择公式。2.找对应的底和高。3.注意单位换算。4.三角形和梯形的面积别忘了除以2。5.解决问题时,弄清面积与其他数量的关系。6.看清组合图形是由哪几个简单图形组成的,找简单的解决方法。7.已知面积,求底或高可以用方程解。)

师:看来同学们都特别的善于总结和观察,下面,我们就利用前面的复习来做几组练习。

三、综合练习,巩固提高

(一)按要求解答。(只列式,不计算)

1、平行四边形底是4分米,高2.7分米,求它的面积?

2、三角形面积是30平方米,底8分米,求它的高?

3、梯形的面积是84平方米,高10米,上底5米,求下底?

师小结:如果给出图形的面积,让我们去求底或高,除了可以变化公式以外,还可以用方程解答,这也是一个很好的方法。下面我们来看几道判断题。

(二)判断题:

1.三角形面积是平行四边形面积的一半。 ( )

2.两个面积相等的梯形,形状是相同的。 ( )

3.两个完全一样的梯形可以拼成一个平行四边形。 ( )

4.两个三角形的高相等,它们的面积就相等。 ( )

5.把一个长方形的木条框架拉成一个平行四边形,它的周长和面积都不变。 ( )

看来 ,同学们的分析和表达能力都很强,现在,我们来解决实际问题。

(三)解决问题

1.教材第113页第2题。

出示第2题,引导学生看题。

学生独立解答,并在小组中互相检查。

教师指名板演,然后集体订正。

师:通过计算这些图形面积,你想提醒大家什么?

(计算图形面积时,底和高要对应)

2.教材第116页练习二十五第9题。

(1)组织学生用剪刀把正方形纸片按题目要求剪一剪。

(2)算一算剩下的面积是多少。

方法一:4×4-2×2÷2=14(cm2)

方法二:(2+4)×2÷2+2×4=14(cm2)

3.教材第116页练习二十五第10题。

(1)组织学生在小组中讨论:怎样计算这个图形的面积呢?

(2)组织学生汇报,并展示求面积的方法,学生可能会有以下几种方法:

①将方格中的图形分割成几个简单的基本图形,分别求出基本图形的面积,再求和得出所求图形的面积。

教师强调分割的方法有多种,引导学生选择容易获取求面积时所需数据的方法进行分割。

②将方格中的图形添补成某个简单的基本图形,求出基本图形的面积,再分别减去各添补的图形面积,得出所求图形面积。

③已知小方格的边长为1cm,则每个小方格的面积为1cm2,通过数方格来确定图形的面积。

(3)全班交流,集体订正。

四、课堂小结

多边形的面积计算关键在于熟练地运用多边形的面积计算公式;对于复杂的组合图形的面积的计算,在于巧妙地将组合图形分割或添补成若干个基本图形,进而通过基本图形面积的和或差得到组合图形的面积;对于不规则图形的面积的计算,可以将它分割或添补成已学的简单图形,或是用方格纸转化为已学过的图形来估算。

五、作业:教材练习二十五第7、20题。

【板书设计】

多边形的面积总复习

沪教版五年级上册《梯形》数学教案


沪教版五年级上册《梯形》数学教案

【教学目标】:

[认知目标]:

了解梯形各部分名称;理解掌握梯形的本质特征,认识几种特殊的梯形及其属性;培养观察比较、类比归纳、操作想象等能力,发展空间观念,形成一定的创新意识。

[能力目标]:

联系生活实际,通过观察、分类、比较、操作等方法,进行自主探究活动。

[情感目标]:

通过自主探究,合作交流,体验成功,建立自信,激发学习兴趣,培养 审美情趣。

【教学重点】:

掌握梯形的本质属性,理解梯形高的概念,会作梯形的高。

【教学难点】:

理解掌握梯形的本质属性。

【教学准备】:

教学课件 梯形、三角形、平行四边形图片若干 直尺、量角器、剪刀等

【教学过程】:

一、复习导入:

1.回顾学过的平面图形。

师:同学们,在以前的学习中,我们学习了很多平面图形,你们都知道哪些?(学生边说老师边出示: 正方形、长方形、平行四边形和三角形等)

2.透明色带操作。

师:请同学们用信封里的三角形和平行四边形的透明色带交叠,看看可以交叠出什么图形?(学生动手操作)

(1)生展示交叠的图形。

(2)师:你们交叠出了许多的图形,这些图形都有什么相同的特征吗?

(3)生自由回答

3.揭示课题。

(1)师:交叠出的都是一个什么图形呢?这就是我 们今天要探究学习的另一个平面图形“梯形”(出示课题)。

【说明:学生对梯形早已有了一定的感性认识,在交叠操作和与已知的平面图形比较中进一步感知梯形的本质属性,为后面进行梯形知识的建构奠定基础。】

二、合作探究。

1.师 :凭前面学习三角形、平行四边形的经验,你们想从哪些方面认识梯形呢?

预设:生可能从以下方面回答:

(1)定义

(2)各部分名称

(3)特征

……

师:那我们就按自己的想法先研究什么样的图形是梯形。

【说明:学生已经学过三角形、平行四边形等平面图形,对研究方法已有一定的掌握,这样教学以关注学生需求,教师可就着学生的思路进行教学,尊重学生,变“要学生学”为“学生要学”。】

2.合作探究梯形的定义。

(1)学生选择老师提供的研究材料(一些梯形的图片、量角器、直尺等),先独立思考,再以小组汇总意见讨论。(学生以组讨论,教师巡视,引导学生参与到活动中去。)

(2)组织小组汇报交流。

小组可能从以下几个方面回答:

① 通过数一数、量一量等方法得知有四个角、四条边、四个顶点、一组对边平行,另一组对边不平行的图形是梯形。

② 教师引导学生把“四个角、四条边、四个顶点”等特点归纳为“四边 形”

③ ②有一组对边平行,另一组对边不平行的四边形叫梯形。

④ 师引 导学生把两句话归为一句话“只有一组对边平行的四边形叫梯形”

③师:“只有”是什么意思?去掉“只”可以吗?

……

【说明:在这个教学环节中,教师以合作者、参与者的角色与学生一起研究讨论,学生由于有前面学习三角形、平行四边形等知识的基础,可以自己利用学具和材料去研究梯形的特征。教师留给学生充分的时间和空间,让他们先自主探究,再合作交流 完成学习任务。】

3.找 生活中的梯形。

师:在我们的实际生活中就有许多梯形,你能说说在生活中发现的梯形吗?

4.动手操作,创作梯形。

(1)学生利用纸、 笔、剪刀等学具折、画或剪出梯形。

(2)展示作品。

(3)学生判断、评析创作的作品是否是梯形。

【说明:通过找、画、折、剪、判断、评析等活动,让学生更进一步掌握梯形的特征。】

5.了解梯形各部分的名称

(1)学生自学课本了解梯形各部分名称,同桌拿起刚才创作的梯形指指各部分说说名称,并标出各部分的名称。

(2)学生把创作的梯形(标出各部分名称的)贴在黑板上展示。

师引导辨析 “底”和“腰”的区别。

(3)汇报交流,重点说说梯形的高在哪里。

师引导辨析是“两底”之间的距离才是梯形的高,梯形有无数条高。

6.画高练习

师示范画出 下面梯形的高,学生模仿练习

7.介绍特殊的梯形

(1)由画最后一个梯形的高引出直角梯形,归纳出直角梯形的定义。

(2)等腰梯形

①观 察发现等腰梯形的特征

学生拿出老师给准备的等腰梯形,以小组通过动手折一折、量一量等,实践找一找这样的梯形特殊在哪儿。

②汇报交流,互相补充,达成共识:两条腰相等,上面底角、下面底角分别相等等。

③归纳定义。

8.知识建构

师:现在,我们知道了四边形家族中又多了一个成员,你们能把这几位成员间的关系想办法清楚地表示出来吗?

学生分类整理学过的四边形,然后展示交流整理结果,组织互评,激励学生用不同的形式整理(如集合圈等)。

【说明:通过对所学过的四边形进行分类整理,可以让学生系统梳理掌握的知识。】

三、巩固练习:

1.根据梯形的特征进行判断、说明这些图形是不是梯形。

2.判断:

(1)长方形、平行四边形、梯形都是四边形 。()

(2)一个梯形中有一组对边平行。()

(3)互相平行的一组对边叫做梯形的腰。()

(4)所有的梯形都不是是轴对称图形。 ()

3.玩一玩

(1)你能把一个三角形和一个平行四边形分别只剪一刀就剪成一个梯形吗?

完成汇报时引导学生归纳出把这两种图形变成梯形都是要构造出只有一组对边平行的四边形,三角形是要创造出一组对边平行,而平行四边形则要破坏一组对边平行。

(2)用两个完全一样的梯形,拼出一种你熟悉的图形。

(3)利用多种梯形图片,摆出一种你最喜欢的图案。

【说明:学生通过多层次的练习,巩固知识,提升能力。最后的玩一玩,让学生在学中玩,玩中学,激发浓厚的学习兴趣,也体现了玩数学的教学理念,这样可以调动学生的积极性,学生主动参与到数学活动中去。】

四、总结:

师:谈谈你这节课的收获及感想,可以对你和同学们的表现做个评价。

【说明:学生畅所欲言总结收获、评价自我和他人,是对知识的梳理巩固,也体现学生的主体地位。学生通过自我的评价,相互的评价和教师的评价有机结合,全面反映学生的学习情况和状态。】

苏教版五年级上册《简单组合图形的面积》数学教案


苏教版五年级上册《简单组合图形的面积》数学教案

第二单元 多边形的面积

简单组合图形的面积

教学内容:

课本第21页。

教学目标:

1、使学生结合生活实际认识组合图形,会把组合图形分解成学过的平面图形并计算出面积

2、能运用所学知识解决生活中组合图形的实际问题。

3、自主探索,合作交流。培养学生认真思考,团结协作的能力。

4、通过找一找、分一分、拼一拼,培养学生识图的能力和综合运用有关知识的能力,能合理地运用“割”、“补”等方法来计算组合图形的面积。

教学重点:

探索并掌握组合图形的面积计算方法。

教学难点:

理解并掌握组合图形的组合及分解方法。

教学准备:

课件

教学过程:

一、创设情境,激趣导入。

1、同学们,我们已经学习了哪些多平面图形?

导学要点:

请同学们看大屏幕,认识组合图形。像这样由几种简单图形组合而成的图形,我们就把它们叫做组合图形。

2、感知:组合图形在我们生活中的应用很广泛(生举例),今天,我们就结合一个生活中的例子来学习组合图形的面积。

板书:组合图形的面积

二、小组合作探究

1、出示前置性作业小组交流

复习

(1)说说你学过哪些平面图形 ?

(2)说说这些图形的面积计算公式?

2、自学21页的例10

(1)导学单

1)小组合作将组合图形分成我们学习过的图形。说说你的分法,你是怎样想的?

2)尝试计算每个图形的面积。

3)思考:组合图形的面积是怎样计算出来的?

导学要点:

(1)分割法:将整体分成几个基本图形,求出它们的面积和。

(2)添补法:用一个大图形减去一个小图形求出组合图形的面积。

师:你是怎样想的?这两种解法你喜欢用哪一种解法?说说你的理由。

(2)小组交流

1)从例题中我们可以看出,同一个组合图形,我们可以运用怎样的方法来解决?

2)由于方法不同,我们计算组合图形的方法有什么不同?

3)求组合图形面积时关键是做什么?

导学要点:

(1)要根据原来图形的特点进行思考。

(2)要便于利用已知条件计算简单图形的面积。

(3)可以用不同的方法进行割补。

(3)全班交流

1)学生举例并解答(前置作业 我的例子)

2)结合学生自己举的例子解答讲解。

三、应用新知,解决问题

1、 课本第21页练一练

(1)生独立计算。

(2)生展示思路。

点拨:

计算组合图形的面积的基本策略:把原来的图形先分割成几个基本图形,再求这几个基本图形的面积只和;或者先把原来的图形拼补一个基本图形,再求相关基本图形面积之差。

2、课本第23页练习四第1题前两题。

点拨:

(1)引导说说第一个图形梯形的上下底和高各是多少?是怎样看出来的?

(2)引导说说第二个图形三角形的底是多少厘米?是怎样看出来的?

3、课本第23页练习四第二题

点拨:

引导说说组合图形面积的计算方法。

四、课堂总结

通过这节课的学习,你学到了什么知识呢?

教学反思:

苏教版五年级下册《圆的面积》数学教案


老师要承担起对每一位同学的教学责任,在开展教学工作之前。这时就需要自己去精心研究如何做一份学生爱听老师爱讲的教案。让同学听的快乐,老师自己也讲的轻松。你知道怎样才制作一份学生爱听的教案吗?以下是小编收集整理的“苏教版五年级下册《圆的面积》数学教案”,希望对您的工作和生活有所帮助。

苏教版五年级下册《圆的面积》数学教案

教学目标:

1.使学生经历操作、观察、验证和讨论归纳等数学活动的过程,探索并掌握圆的面积公式,能正确计算圆的面积,并能应用公式解决相关的简单实际问题。

2.使学生进一步体会“转化”方法的价值,培养运用已学知识解决新问题的能力,发展空间观念和初步的推理能力。

3.体会数学来自于生活实际的需要,感受数学与生活的联系,进一步产生对数学的好奇心和兴趣。

教学重点:

探索并掌握圆的面积公式,能正确计算圆的面积。

教学难点:

理解圆的面积公式的推导过程。

教学准备:

圆的面积公式的推导图。

一、回顾旧知,引入新知

1.师:四年级时,我们学习了求长方形和正方形的面积的方法,谁来说一说它们的面积的计算方法。

学生回答,教师予以肯定。

2.提问:圆的周长怎么计算?已知圆的周长,如何计算它的直径或半径?

3.引入:我们已经研究了圆的周长和直径、半径的计算方法,今天这节课我们来研究圆的面积是如何计算的。

(板书:圆的面积)

设计意图 通过复习,促进学生对周长和已知周长求直径或半径的理解,唤起学生求长方形和正方形面积的经验,为新课的学习做好准备。

二、合作交流,探究新知

1.教学例7。

(l)初步猜想:圆的面积可能与什么有关?说说你猜想的依据。

(2)圆的面积和半径或直径究竟有着怎样的关系呢?我们可以做一个实验。

(3)出示例7第一幅图。思考:图中正方形的边长与圆的半径有什么关系?图中正方形的面积和圆的半径有什么关系?

(4)学生独立完成填空。

(5)猜测:圆的面积大约是正方形面积的几倍?

学生回笞后,明确:圆的面积小于正方形面积的4倍,有可能是3倍多一些。

(6)出示例7后两幅图,按照同样的方法进行计算并填表。

正方形的面积/

圆的半径/

圆的面积/

圆面积大约是正方形面积的几倍

(精确到十分位)

2.交流归纳:观察上面的表格,你有什么发现?

通过交流,明确

(1)圆的面积是它的半径平方的3倍多一些。

(2)圆的面积可能是半径平方的兀倍。

3.教学例8。

(l)谈话:经过刚才的学习,我们已经知道圆的面积大约是它半径平方的3倍多一些,那么圆的面积究竟应该怎样来计算呢?

(2)操作体验:教师演示把圆平均分成16份,并拼成一个近似的平行四边形。

(3)提问:拼成的图形像什么图形?追问:为什么说它像一个平行四边形?

初步想象:如果把圆平均分成32份,也用类似的方法拼一拼,想一想,拼成的图形与前面的图形相比有怎样的变化?

(4)进一步想象:如果将圆平均分成64份、128份,也用类似的方法拼一拼。闭上眼睛想一想,随着份数的增加,拼成的图形会越来越接近一个什么图形?

(5)交流后,教师出示推导图。拼成的长方形与原来的圆有什么联系?在小组中讨论交流。

(6)在集体交流中借助图示小结:长方形的面积与圆的面积相等;长方形的宽是圆的半径;长方形的长是圆周长的一半。

(7)追问:如果圆的半径是r,长方形的长和宽应该怎样表示?根据长方形面积的计算方法,怎样来计算圆的面积?

(8)根据学生的回答,教师板书

长方形的面积一长×宽

圆的面积=

(9)追问:有了这样一个公式,知道圆的什么条件,就可以计算圆的面积了?

4.教学例9。

(1)出示例9,提问:有没有在生活中见过自动旋转喷水器?

(2)想象一下自动喷水器旋转一周后喷灌的地方是什么图形,喷水的最远的距离是什么意思。

(3)学生独立完成计算。

(4)集体交流。

5.教学例10。

(1)请同学读题,解读题意。

(2)找出题中的已知条件。

(3)分析解题过程。

(4)明确各个量之间的转化关系。

三、巩固练习,加深理解

1.完成“练一练”。

(1)学生独立解答。

(2)集体交流。

2.完成练习十五第1题。

(l)学生独立解答。

(2)集体交流。

3.完成练习十五第3题。

(1)学生列式后用计算器计算。

(2)集体交流。

4.完成练习十五第4题。

(1)学生独立解答。

(2)集体交流,指出:已知周长求面积,先要根据周长求出半径。

5.作业:练习十五第2、5题。

四、课堂小结

师:通过今天的学习,你有什么收获?

学生发言,教师点评。

圆的面积

长方形的面积=长×宽

圆的面积=

苏教版五年级上册《不规则图形的面积》数学教案


苏教版五年级上册《不规则图形的面积》数学教案

第二单元 多边形的面积

不规则图形的面积

教学内容:

课本第22页。

教学目标:

1、会用不同的方法估计不规则图形的面积,解决与面积有关的实际问题,正确率达到75%以上。

2、体会解决问题策略的多样性,培养认真、细致的好习惯。

教学重点:

用不同的方法估计不规则图形的面积。

教学难点:

理解两种不同估计方法的合理性。

教学准备:

课件

教学过程:

一、复习铺垫(3分钟左右)

用数方格的方法数出下列图形的面积。

导入:下面每个小方格表示1平方厘米,你有办法知道下列图形的面积吗?

交流:你是怎么知道图形面积的?数方格的时候要注意什么?

二、自学例11 (15分钟左右)

1、明确给出的数学信息以及所需要解决的问题。

出示教材例11情境图

导入:图中有哪些数学信息?怎样才能知道这个湖泊的面积大约是多少公顷?

点拨:可以先数出图中湖泊所占的方格个数。

2、自学。

导入:你准备怎样估计?围绕导学单进行自主学习。

在学生自学时,教师收集学生不同的估计方法。

导学单(时间:5分钟)

1.把图中湖泊所占的方格分成几类?

如何明显地区分开来?

2.有顺序地数出整格的个数,不满整格的如何处理呢?可以阅读数学书第22

页卡通的方法。

3.湖泊的面积大约是多少公顷?与小组同学交流你的数法。

3、小组交流。

交流内容

1、如何区分整格和不满整格的?

2、不满整格的你是怎么数的?

3.数的时候要注意些什么?

导学要点:

(1)把整格和半格分别涂上不同的颜色,避免重复和遗漏。

(2)不满整格的可以全部看成半格计算;或者先数整格的个数,再把不满整格的也看成整格,数出一共有多少格。

(3)有顺序地去数,做到不重复、不遗漏。

4、全班交流

交流两种不同的估计方法,理解估计面积在一个范围内的合理性。

点拨:这个湖泊的面积大于多少公顷而且小于多少公顷?就是指面积大于整格数而且小于所有的格子数。

三、练习(12分钟左右)

(1)基础练习

练一练第1题

点拨:树叶上对称的,可以只数树叶的一半。

(2)针对性练习

练一练第2题、练习四第9题

提示:在边长1厘米的方格纸上画手掌的轮廓或树叶的轮廓。

(3)数学阅读

第24页的你知道吗

拓宽:长度单位有丈、尺、寸,质量单位有斤、两,面积单位有亩、分。

1公顷=10000平方米,1公顷=15亩,1亩=10000÷15≈667平方米。

四、课堂总结

通过这节课的学习,你学到了什么知识呢?

教学反思:

人教版五年级上册《三角形的面积》数学教案


人教版五年级上册《三角形的面积》数学教案

第6单元 多边形的面积

第3课时 三角形的面积

【教学内容】:教材P91~92例2及练习二十第1、2题。

【教学目标】:

知识与技能:掌握三角形的面积计算公式,并能正确计算三角形的面积。

过程与方法:经历探索三角形的面积计算公式的过程,能用三角形的面积计算公式解决简单的实际问题。

情感、态度与价值观:培养学生观察、比较、推理和概括能力。

【教学重、难点】

重 点:探索并掌握三角形的面积公式,能正确计算三角形的面积。

难 点:三角形的面积计算公式的推导过程和实际应用。

【教学方法】:动手实践、自主探索、合作交流

【教学准备】:多媒体。

【教学过程】

一、复习导入

1.出示长方形、正方形、平行四边形、三角形的图片。

提问:我们学过了哪些平面图形的面积?计算这些图形的面积公式是什么?

学生回答:长方形的面积=长×宽;正方形的面积=边长×边长;

平行四边形的面积=底×高。

2.师:今天我们就一起来研究“三角形的面积”。(板书课题:三角形的面积)

3.学习新知识之前,我们共同回忆一下平行四边形的面积计算公式是怎样得出的?(演示推导过程)

(我们把一个平行四边形转化成一个长方形,它的面积与原来的平行四边形的面积相等。这个长方形的长与平行四边形的底相等,这个长方形的宽与平行四边形的高相等,因为长方形的面积等于长乘宽,所以平行四边形的面积等于底乘高。)

二、互动新授

l.谈话:成为一名少先队员后,我们每个人都要佩带红领巾。红领巾是什么形状的?(三角形)如果要想知道它用多少面料,要怎样解决呢?(求出三角形的面积。)

追问:怎样求三角形的面积?引导学生利用平行四边形的面积公式的推导猜测,可以把三角形转化成我们已经学过的图形。

2.请每个小组拿出三角形学具,并说一说你发现了什么?(每组都有完全一样的直角三角形、锐角三角形、钝角三角形各两个。)

师提出操作要求:用两个同样的三角形拼一拼,并思考:能拼出什么图形?拼出图形的面积你会计算吗?拼出的图形与原来的三角形有什么联系?(这里不让学生回答,而是通过动手操作得出结论。)

3.分小组操作,并利用下表做好记录。

我们是用两个( )三角形,拼成了一个( )。

原三角形的底等于拼成的( )形的( );原三角形的高等于拼成的( )形的( );原三角形的面积等于拼成的( )形的( )。

教师巡视指导。

小组汇报操作结果:让学生边汇报边把转化后的图形贴在黑板上。

学生可能选用两个完全一样的锐角三角形拼成了一个平行四边形,拼成的平行四边形的面积=底×高,

每一个锐角三角形的面积是这个平行四边形面积的一半,所以得出一个三角形的面积=底×高÷2。

也可能选用两个完全一样的直角三角形拼成了一个长方形,拼成的长方形的长就是直角三角形的一条直角边(可以看作直角三角形的高),拼成的长方形的宽就是直角三角形的另一条直角边(可以看作直角三角形的底)。拼成的长方形的面积=长×宽,每一个直角三角形的面积就是这个长方形面积的一半,所以得出一个三角形的面积=底×高÷2。

还可以选两个完全一样的钝角三角形拼成一个平行四边形。同理,每一个钝角三角形的面积是这个平行四边形面积的一半。所以,得出一个三角形的面积=底×高÷2。

4.小结:不管是锐角三角形、直角三角形,还是钝角三角形,只要是两个完全一样的三角形,就能拼成一个平行四边形,其中一个三角形的面积是拼成的平行四边形的面积的一半。

追问:是不是任意一个三角形的面积都是任意一个平行四边形面积的一半呢?

教师可以通过任意一个三角形和与其不等底等高的平行四边形的纸板,让学生通过对比得出:三角形的底和高必须与平行四边形的底和高相等时,这个三角形的面积才是平行四边形的面积的一半。三角形的面积是与它等底等高的平行四边形的面积的一半。(教师根据学生回答板书)

再让学生说一说三角形的面积的计算公式是什么?

5.如果用a表示三角形的底,h表示三角形的高,S表示三角形的面积,那么三角形的面积计算公式可以写成:S=ah÷2(板书)。

6.教学教材第92页例2。

出示第92页例2:红领巾的底是lOOcm,高是33cm,它的面积是多少平方厘米?

让学生独立计算,再集体订正。

说一说都是怎样做的,并根据学生的汇报板书计算过程:

S=ah÷2

=100×33÷2

=1650(cm2)

7.让学生再说一说:为什么要除以2?

学生可能会回答:“底×高”表示用两个完全一样的三角形拼成的平行四边形的面积;因为一个三角形的面积是拼成的平行四边形面积的一半,所以要“÷2”。

三、巩固拓展

1.出示:一种零件有一面是三角形,三角形的底是5.6厘米,高是4厘米。这个三角形的面积是多少平方厘米?

由学生独立解答,订正答案。

2.完成教材第92页“做一做”第1题。

先说一说涂色的三角形的面积与平行四边形的面积有什么关系,再计算。

(涂色的三角形的面积是平行四边形面积的一半。)

3.完成教材第92页“做一做”第2题。

先让学生找一找三角尺的底和高,使学生明白直角三角形的任意一条直角边作底,另一条直角边就作高。如底是7.2cm,高是12.5cm。再进行计算。

四、课堂小结

师:这节课你学会了什么?有哪些收获?

引导总结:

1.三角形的面积=底×高÷2,用字母表示S=ah÷2。

2.要求三角形的面积需要知道三角形的底和高。

3.三角形的面积是与它等底等高的平行四边形的面积的一半。

五、作业:教材第93页练习二十第1、2题。

【板书设计】:

三角形的面积

三角形的面积是与它等底等高的平行四边形的面积的一半。

三角形的面积=底×高÷2

例2

S=ah÷2

=100×33÷2

=1650(cm2)

《人教版五年级上册《梯形的面积》数学教案》一文就此结束,希望能帮助您在小学教学中起到作用,如还需更多,请关注我们的“小学数学教案五年级”专题。

文章来源:http://m.jab88.com/j/111853.html

更多

猜你喜欢

更多

最新更新

更多