人教版五年级上册《第六单元 单元分析》数学教案
第6单元 多边形的面积
单元分析
【教材分析】
本单元学习的内容主要包括:平行四边形、三角形、梯形和组合图形的面积四个部分。它们的面积计算是在学生掌握了这些图形的特征以及长方形、正方形面积计算的基础上,以未知向已知转化为基本方法开展学习的。这是进一步学习圆的面积和立体图形的表面积的基础。学习组合图形的面积安排在平行四边形、三角形和梯形面积计算之后,也是利用转化的数学思想,让学生把不规则的平面图形转化为规则的平面图形来计算,降低了学生的学习难度,并巩固了学生对各种平面图形的特征的认识及面积计算,发展了学生的空间观念。
【学情分析】
学生已经对空间观念和直观几何有了较为丰富的经验。在学习本单元之前,他们在生活中积累了有关图形认识和图形测量的经验,再加上已经学习了长方形、正方形、三角形的特征以及长方形、正方形的面积计算。为此,学习本单元面积公式的推导过程中,教师应引导学生紧密联系生活实际,从已有的认知基础和生活经验出发,让学生在数、剪、拼、摆等操作活动中,完成对新知的构建。所以引导学生利用转化的数学思想,在操作中学习新知是本单元教学的重要环节。教师既要做好引导,又要注意不要包办代替,一定要学生在独立思考和合作交流的基础上进行操作,切忌由教师带着做。通过实际操作活动,发展学生的空间观念,培养动手操作能力,为接下来学习圆的面积作好铺垫。
【教学目标】
知识技能:掌握平行四边形、三角形和梯形的面积计算公式,并能正确地计算相应图形的面积;了解简单组合图形面积的计算方法。
数学思考:在推理公式的过程中,引导学生应用转化的数学思想方法,经历计算公式的过程。
问题解决:能用有关图形的面积计算公式解决简单的实际问题。在解决问题的过程中,感受数学和现实生活的密切联系,体会学数学、用数学的乐趣。
情感态度:培养学生认真思考、比较、推理和概况的能力。
教学重点:掌握平行四边形、三角形和梯形的面积计算公式;会计算平行四边形、三角形和梯形的面积。
教学难点:渗透“转化”思想,培养学生运用转化的思考方法解决问题的能力和逻辑思维能力。
【课时划分】 9课时
1.平行四边形的面积………………………2课时
2.三角形的面积……………………………2课时
3.梯形的面积………………………………2课时
4.组合图形的面积…………………………2课时
5.整理和复习………………………………1课时
在上课时老师为了能够精准的讲出一道题的解决步骤。要根据班级同学的具体情况编写教案。才能有计划、有步骤、有质量的完成教学任务,那怎样写才能有一份高质量教案呢?小编收集整理了一些人教版四年级上册《第六单元 归纳总结》数学教案,供您参考,希望能够帮助到大家。
人教版四年级上册《第六单元 归纳总结》数学教案
第六单元 除数是两位数的除法
1、除数是两位数的除法的笔算法则:
(1)从被除数的高位数起,先看被除数的前两位;
(2)如果前两位比除数小,就要看前三位;除到被除数的哪一位,商就写在那一位的上面;
(3)余下的数必须比除数小。
2、除数是两位数的除法,一般把除数用“四舍五入法”看作和它接近的整十数来试商;试商大了要调小,试商小了要调大。(四舍商大舍去1,五入商小加上3、除数是两位数的除法法则:
(1)先用除数试除被除数的前两位数,如果前两位数比除数小,再除前三位数。
(2)除到被除数的哪一位,就把商写在哪一位上面。
(3)每求出一位商,余下的数必须比除数小。
4、三位数除以两位数,被除数的前两位数比除数小,商是一位数;被除数的前两位数比除数大,商是两位数。
5、商的变化规律(一),除数不变,被除数乘(或除以)一个非0的数,商就乘(或除以)同一个数。
6、商的变化规律(二),被除数不变,除数乘(或除以)一个非0的数,商反而除以(或乘)同一个数。
7、商的变化规律(三),被除数和除数都乘(或除以)一个非0的数,商不变。
8、解决问题 :
①单价×数量=总价
②总价÷数量=单价
③总价÷单价=数量
9、在有余数的除法中:
被除数 ÷ 除数 = 商……余数;
被除数 = 商 × 除数 + 余数。
商 =(被除数 - 余数)÷ 除数;
除数 =(被除数 - 余数)÷商
人教版五年级上册《第六单元 教材分析》数学教案
第六单元 多边形的面积
一、教学内容
1.平行四边形的面积。
2.三角形的面积。
3.梯形的面积。
4.组合图形的面积。
5.估计不规则图形的面积。
和原实验教材相比,变化主要是增加方格纸上不规则图形的面积估算。
二、教学目标
1.让学生通过动手操作、实验观察等方法,探索并掌握平行四边形、三角形和梯形的面积公式。
2.让学生会用面积公式计算平行四边形、三角形和梯形的面积,并能解决生活中一些简单的实际问题。
3.让学生认识简单的组合图形,会把组合图形分解成已学过的平面图形并计算出它的面积。
4. 让学生会用方格纸估计不规则图形的面积。
三、编排特点
1.加强知识之间的联系,促进知识的迁移和学习能力的提高。
教材以图形内在联系为线索,以未知向已知转化为基本方法开展学习。安排顺序:
2.体现动手操作、合作学习的学习方式,让学生经历自主探索的过程。
各类图形面积公式的推导均采用让学生动手实验,先将图形转化为已经学过的图形,再通过合作学习探索转化后的图形与原来图形的联系,发现新图形的面积计算公式这样一个过程。同时按照学习的先后顺序,探索的要求逐步提高。
教材在编排平行四边形的面积公式推导过程中,增加了一个小组讨论活动:观察原来的平行四边形和转化后的长方形,你能发现它们之间有哪些等量关系?这是推导面积公式的关键,也是学生学习的难点。教材这里适时给出了相应的引导,帮助学生思考。在三角形和梯形的面积公式推导过程中,分别增加了转化过程的示意图,帮助学生更好地探究和推导面积公式。
3.在解决实际问题中,渗透估测意识、策略。
教材新增来一个解决问题的例题,教学估算不规则图形的面积。
在生活实际中,经常会接触到不规则图形,它们的面积无法直接用面积公式计算。那么如何估测它们的面积呢?教材安排了借助方格纸估计不规则图形(树叶)面积的内容,培养学生估测的意识和解决实际问题的能力。
四、具体编排
(一)主题图
设计了一幅街区图。由小精灵提出观察的要求:“你发现了哪些图形?你会计算它们的面积吗?”引入面积计算的教学。
(二)平行四边形的面积
教材分以下三个步骤安排。
(1)从主题图中的两个花坛(一个长方形,一个平行四边形)引出如何计算平行四边形面积的问题。
(2)先用数方格的方法试一试。在方格纸上呈现一个平行四边形和一个长方形让学生数,说明不满1格的按半格计算。完成填表后,发现等底等高的长方形和平行四边形的面积相等,为转化作准备。
(3)探究平行四边形面积计算公式。突出转化思想,用割补的方法把一个平行四边形转化为一个长方形,教材用直观图展示了这一过程,通过观察两个图形之间的联系,引导学生推导出平行四边形面积的计算公式。最后结合平行四边形的图示,用字母表示面积计算公式。
例1是平行四边形面积公式的应用,教学中注意培养良好的书写习惯。
(三)三角形的面积
1. 继续用转化的方法探究。有了推导平行四边形面积公式的经验,这里放手让学生自己去探究。继续渗透转化思想,帮助学生理解把未知转化为已知,就能解决问题的思路。也就是把三角形转化为已经知道面积计算公式的图形。转化的方法可以割补,也可以拼摆。教材通过拼摆两个同样的三角形转化为平行四边形的方法,这种方法推导过程简单,学生比较容易理解和掌握,便于推导公式。
2. 推导过程学生独立完成。转化以后,放手让学生自己观察,写出三角形的面积计算公式,特别要强调除以2的理解。最后用字母表示出面积计算公式。
3.例2同样是三角形面积公式的应用。
(四)梯形的面积
1.转化的方式有多种:一种是分割的方法,把梯形剪成两个三角形,或将梯形剪成了一个平行四边形和一个三角形;一种是拼摆的方法,用两个一样的梯形拼成一个平行四边形。这些转化方法都是可以的,但其中用两个一样的梯形拼成一个平行四边形的方法,比较容易推导和理解,另外两种因为涉及代数式的运算,学生的推导有困难。因此教学时可以以拼摆方法为研究重点,让学生叙述推导的过程,得出梯形面积计算公式。其他方法可视学生接受能力,进行介绍。
2.例3是梯形面积公式的应用。
3.“你知道吗?”介绍古代割补的转化方法,教学中可以适当拓展,丰富学生转化的方法。
(五)组合图形的面积
教材提供了几个生活中的具体物品,使学生认识组合图形是由几个简单图形组合而成的。然后要求学生找一找生活中的组合图形。例4教学组合图形面积的计算,由于一个组合图形可以有不同的分解方法,也就有不同的面积计算方法,教材展示了两种方法。当然,学生可能还会有其他不同的方法,通过交流要让学生体会怎样分解能使计算更简便。
(六)估计不规则图形的面积
例5编排了不规则图形面积的估计。编排意图主要是:
1.培养估算意识。
教材安排了借助方格纸估计不规则图形(树叶)的面积,这是估算思想在图形与几何中的应用。
2.培养估算策略。
不规则图形不像规则图形,可以找到面积计算公式,我们只能估算出它的面积。而估算策略最重要的是要根据要估计的事物找到一个适合的测量标准,然后利用这个测量标准去估计。比如,前面我们学习的长度的估计,估计学校到家的路程,可以借助步长、单位时间走的距离或者自己熟悉的一个长度等,来进行估计。这里不规则图形的面积估算,同样也要找到一个度量的标准,根据树叶的大小,我们选择了每个小方格面积为1cm2的方格纸,当然学生也可以利用其他熟悉的测量标准来估计,比如用一个已知面积的图形(物品)来估计。
教学中,可以直接出示树叶,让学生思考怎样来估计它的面积,通过交流体会选择测量标准的重要性。
3.体会估算方法多样。
借助方格纸估计树叶的面积,首先可以确定它的面积范围。如教材所示,分别数出满格和不是满格的格子数,就能确定面积的区间。接下来,学生可以用自己的方法进行估计,比如取面积区间的中间值;或者借助前面学习平行四边形面积时的经验,把不是满格的看作半格,估计出面积;或者把超过半格的当一格,不到半格的忽略不计(也就是四舍五入)的方法;等等,只要合理都可以。还可以引导学生:如果想估的更准确一些,可以将方格纸的每个小方格等分成更小的正方形,就能探索更接近实际面积的估计值。也就是说,选择的测量标准面积越小,得到的估计越精确。
此外,还可以将不规则图形近似看作为规则图形来估计面积,利用方格纸的刻度,找出计算规则图形面积的条件进行估算。教材也呈现了这样的方法,将树叶转化为近似的平行四边形来估计面积。
(七) 整理和复习
1.突出转化。
复习面积计算公式的推导过程,重点是突出转化的思想。
2.建立联系。
让学生发现梯形和平行四边形、三角形面积公式的内在联系:当梯形的上、下底相等时就成了平行四边形的面积,梯形的上底为0时就成来三角形面积。帮助学生理解和记忆公式。
五、教学建议
1.经历探究过程,渗透转化思想。
各类图形面积公式的推导均采用让学生动手实验,将图形转化为已经学过的图形,再探索转化后的图形与原来图形的联系,发现新图形的面积计算公式这样一个过程。按照学习的先后顺序,探索的要求逐步提高。
2.注意培养学生灵活运用公式进行计算的能力。
如计算梯形的面积,不一定要把上底、下底、高都找到才能计算。练习中就有根据上底、下底之和来计算面积的,教学中,注意培养学生灵活运用公式计算的能力,加深对公式的理解。
人教版五年级上册《第三单元 归纳总结》数学教案
第三单元小数除法
1、小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。
如:0.6÷0.3表示已知两个因数的积0.6与其中的一个因数0.3,求另一个因数的运算。
2、小数除以整数的计算方法:小数除以整数,按整数除法的方法去除。商的小数点要和被除数的小数点对齐。整数部分不够除,商0,点上小数点。如果有余数,要添0再除。
3、除数是小数的除法的计算方法:先将除数和被除数扩大相同的倍数,使除数变成整数,再按“除数是整数的小数除法”的法则进行计算。
注意:如果被除数的位数不够,在被除数的末尾用0补足。
4、在实际应用中,小数除法所得的商也可以根据需要用“四舍五入”法保留一定的小数位数,求出商的近似数。
5、除法中的变化规律:
①商不变:被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。
②除数不变,被除数扩大,商随着扩大。
③被除数不变,除数缩小,商扩大。
6、循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。
循环节:一个循环小数的小数部分,依次不断重复出现的数字。如6.3232……的循环节是32.
7、小数部分的位数是有限的小数,叫做有限小数。小数部分的位数是无限的小数,叫做无限小数。
人教版五年级上册《第一单元 归纳总结》数学教案
第一单元小数乘法
1、小数乘整数:
意义--求几个相同加数的和的简便运算。
如:1.5×3表示求3个1.5的和的简便运算(或1.5的3倍是多少)。
计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。
2、小数乘小数:
意义--就是求这个数的几分之几是多少。
如:1.5×0.8就是求1.5的十分之八是多少(或求1.5的1.8倍是多少)。
计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。
注意:按整数算出积后,小数末尾的0要去掉,也就是把小数化简;位数不够时,要用0占位。
3、规律:
一个数(0除外)乘大于1的数,积比原来的数大;
一个数(0除外)乘小于1的数,积比原来的数小。
4、求近似数的方法一般有三种:
⑴四舍五入法;
⑵进一法;
⑶去尾法
5、计算钱数,保留两位小数,表示计算到分;保留一位小数,表示计算到角。
6、小数四则运算顺序和运算定律跟整数是一样的。
7、运算定律和性质:
加法:
加法交换律:a+b=b+a
加法结合律:(a+b)+c=a+(b+c)
减法:
a-b-c=a-(b+c)
a-(b+c)=a-b-c
乘法:
乘法交换律:a×b=b×a
乘法结合律:(a×b)×c=a×(b×c)
乘法分配律:(a+b)×c=a×c+b×c【(a-b)×c=a×c-b×c】
除法:
a÷b÷c=a÷(b×c)
a÷(b×c) =a÷b÷c
每一位任课老师,为了能够给学生给一个最简单易懂的教学思路。就必须编写一份较为完整的教案,这样有利于我们准确的把握教材中的重难点。让同学听的快乐,老师自己也讲的轻松。那么优秀的教案是怎么样的呢?以下是小编收集整理的“人教版六年级上册《第四单元 归纳总结》数学教案”,欢迎您参考,希望对您有所助益。
人教版六年级上册《第四单元 归纳总结》数学教案
四、 百分数
一、百分数的意义和写法
1、百分数的意义:表示一个数是另一个数的百分之几。
百分数是指的两个数的比,因此也叫百分率或百分比。
2、 千分数:表示一个数是另一个数的千分之几。
3、百分数和分数的主要联系与区别:
(1)联系:都可以表示两个量的倍比关系。
(2)区别:
①、意义不同:百分数只表示两个数的倍比关系,不能表示具体的数量,所以不能带单位;
分数既可以表示具体的数,又可以表示两个数的关系,表示具本数时可以带单位。
②、百分数的分子可以是整数,也可以是小数;
分数的分子不能是小数,只能是除0以外的自然数。
4、百分数的写法:通常不写成分数形式,而在原来分子后面加上“%”来表示。
二、百分数和分数、小数的互化
(一)百分数与小数的互化:
1、小数化成百分数:把小数点向右移动两位,同时在后面添上百分号。
2. 百分数化成小数:把小数点向左移动两位,同时去掉百分号。
(二)百分数的和分数的互化
1、百分数化成分数:
先把百分数化成分数,先把百分数改写成分母是否100的分数,能约分要约成最简分数。
2、分数化成百分数:
① 用分数的基本性质,把分数分母扩大或缩小成分母是100的分数,再写成百分数形式。
②先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。
(三)常见的分数与小数、百分数之间的互化
三、用百分数解决问题
(一)一般应用题
1、常见的百分率的计算方法:
①合格率 =
②发芽率 =
③出勤率 =
④达标率 =
⑤成活率 =
⑥出粉率 =
⑦烘干率 =
⑧含水率 =
一般来讲,出勤率、成活率、合格率、正确率能达到100%,出米率、出油率达不到100%,完成率、增长了百分之几等可以超过100%。(一般出粉率在70、80%,出油率在30、40%。)
2、已知单位“1”的量(用乘法),求单位“1”的百分之几是多少的问题:
数量关系式和分数乘法解决问题中的关系式相同:
(1)分率前是“的”:单位“1”的量×分率=分率对应量
(2)分率前是“多或少”的意思:单位“1”的量×(1分率)=分率对应量
3、未知单位“1”的量(用除法),已知单位“1”的百分之几是多少,求单位“1”。
解法:(建议:最好用方程解答)
(1)方程:根据数量关系式设未知量为X,用方程解答。
(2)算术(用除法):分率对应量÷对应分率=单位“1”的量
4、求一个数比另一个数多(少)百分之几的问题:
两个数的相差量÷单位“1”的量×100%或:
①求多百分之几:(大数÷小数-1)×100%
②求少百分之几:(1-小数÷大数)×100%
(二)、折扣
1、折扣:商品按原定价格的百分之几出售,叫做折扣。通称“打折”。
几折就表示十分之几,也就是百分之几十。例如八折= =80﹪,六折五=0.65=65﹪
2、一成是十分之一,也就是10%。三成五就是十分之三点五,也就是35%
(三)、纳税
1、纳税:纳税是根据国家税法的有关规定,按照一定的比率把集体或个人收入的一部分缴纳给国家。
2、纳税的意义:税收是国家财政收入的主要来源之一。国家用收来的税款发展经济、科技、教育、文化和国防安全等事业。
3、应纳税额:缴纳的税款叫做应纳税额。
4、税率:应纳税额与各种收入的比率叫做税率。
5、应纳税额的计算方法:应纳税额 = 总收入 × 税率
(四)利息
1、存款分为活期、整存整取和零存整取等方法。
2、储蓄的意义:人们常常把暂时不用的钱存入银行或信用社,储蓄起来,这样不仅可以支援国家建设,也使得个人用钱更加安全和有计划,还可以增加一些收入。
3、本金:存入银行的钱叫做本金。
4、利息:取款时银行多支付的钱叫做利息。
5、利率:利息与本金的比值叫做利率。
6、利息的计算公式:利息=本金×利率×时间
7、注意:如要上利息税(国债和教育储藏的利息不纳税),则:
税后利息=利息-利息的应纳税额=利息-利息×利息税率=利息×(1-利息税率)
作为杰出的教学工作者,为了教学顺利的展开。所以大多数老师都会选择制定一份教学计划。上课自己轻松的同时,学生也更好的消化课堂内容。那你有没有为了一个问题而去做过一份教案呢?以下是小编收集整理的“人教版六年级上册《第一单元 归纳总结》数学教案”,供大家参考,希望能帮助到有需要的朋友。
人教版六年级上册《第一单元 归纳总结》数学教案
一、分数乘法
一、分数乘法
(一)分数乘法的意义:
1、分数乘整数与整数乘法的意义相同。都是求几个相同加数的和的简便运算。
例如: ×5表示求5个的和是多少?
2、分数乘分数是求一个数的几分之几是多少。
例如: × 表示求的是多少?
(二)、分数乘法的计算法则:
1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。(整数和分母约分)
2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。
3、为了计算简便,能约分的要先约分,再计算。
注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
(三)、规律:(乘法中比较大小时)
一个数(0除外)乘大于1的数,积大于这个数。
一个数(0除外)乘小于1的数(0除外),积小于这个数。
一个数(0除外)乘1,积等于这个数。
(四)、分数混合运算的运算顺序和整数的运算顺序相同。
(五)、整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。
乘法交换律: a × b = b × a
乘法结合律: ( a × b )×c = a × ( b × c )
乘法分配律: ( a + b )×c = a c + b c a c + b c = ( a + b )×c
二、分数乘法的解决问题
(已知单位“1”的量(用乘法),求单位“1”的几分之几是多少)
1、画线段图:
(1)两个量的关系:画两条线段图;
(2)部分和整体的关系:画一条线段图。
2、找单位“1”: 在分率句中分率的前面; 或 “占”、“是”、“比”的后面
3、求一个数的几倍: 一个数×几倍; 求一个数的几分之几是多少: 一个数×。
4、写数量关系式技巧:
(1)“的” 相当于 “×” “占”、“是”、“比”相当于“ = “
(2)分率前是”的“:单位”1“的量×分率=分率对应量
(3)分率前是”多或少“的意思: 单位”1“的量×(1 分率)=分率对应量
三、倒数
1、倒数的意义: 乘积是1的两个数互为倒数。
强调:互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。
(要说清谁是谁的倒数)。
2、求倒数的方法:
(1)、求分数的倒数:交换分子分母的位置。
(2)、求整数的倒数:把整数看做分母是1的分数,再交换分子分母的位置。
(3)、求带分数的倒数:把带分数化为假分数,再求倒数。
(4)、求小数的倒数: 把小数化为分数,再求倒数。
3、1的倒数是1; 0没有倒数。 因为1×1=1;0乘任何数都得0,(分母不能为0)
4、对于任意数 ,它的倒数为;非零整数 的倒数为;分数的倒数是;
5、真分数的倒数大于1;假分数的倒数小于或等于1;带分数的倒数小于1。
老师讲课学生爱听,还愿意自学的情况下,往往少不了一份教案。即使每天晚上一两点都要坚持制定出一份最详细的教学计划。上课自己轻松的同时,学生也更好的消化课堂内容。那么老师怎样写才会喜欢听课呢?下面是小编为大家整理的“人教版六年级上册《第二单元 归纳总结》数学教案”,仅供参考,欢迎大家来阅读。
人教版六年级上册《第二单元 归纳总结》数学教案
二、分数除法
一、分数除法
1、分数除法的意义:
乘法: 因数 × 因数 = 积
除法: 积 ÷ 一个因数 = 另一个因数
分数除法与整数除法的意义相同,表示已知两个因数的积和其中一个因数,求另一个因数的运算。
2、分数除法的计算法则:
除以一个不为0的数,等于乘这个数的倒数。
3、 规律(分数除法比较大小时):
(1)、当除数大于1,商小于被除数;
(2)、当除数小于1(不等于0),商大于被除数;
(3)、当除数等于1,商等于被除数。
4、““叫做中括号。一个算式里,如果既有小括号,又有中括号,要先算小括号里面的,再算中括号里面的。
二、分数除法解决问题
(未知单位”1“的量(用除法): 已知单位”1“的几分之几是多少,求单位”1“的量。 )
1、数量关系式和分数乘法解决问题中的关系式相同:
(1)分率前是”的“:单位”1“的量×分率=分率对应量
(2)分率前是”多或少“的意思: 单位”1“的量×(1 分率)=分率对应量
2、解法:(建议:最好用方程解答)
(1)方程:根据数量关系式设未知量为X,用方程解答。
(2)算术(用除法):分率对应量÷对应分率 = 单位”1“的量
3、求一个数是另一个数的几分之几:就 一个数÷另一个数
4、求一个数比另一个数多(少)几分之几: 两个数的相差量÷单位”1“的量 或:
① 求多几分之几:大数÷小数 - 1
② 求少几分之几: 1 - 小数÷大数
三、比和比的应用
(一)、比的意义
1、比的意义:两个数相除又叫做两个数的比。
2、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。
例如 15 :10 = 15÷10= (比值通常用分数表示,也可以用小数或整数表示)
∶ ∶ ∶ ∶
前项 比号 后项 比值
3、比可以表示两个相同量的关系,即倍数关系。也可以表示两个不同量的比,得到一个新量。例: 路程÷速度=时间。
4、区分比和比值
比:表示两个数的关系,可以写成比的形式,也可以用分数表示。
比值:相当于商,是一个数,可以是整数,分数,也可以是小数。
5、根据分数与除法的关系,两个数的比也可以写成分数形式。
6、 比和除法、分数的联系:
7、比和除法、分数的区别:除法是一种运算,分数是一个数,比表示两个数的关系。
8、根据比与除法、分数的关系,可以理解比的后项不能为0。
体育比赛中出现两队的分是2:0等,这只是一种记分的形式,不表示两个数相除的关系。
(二)、比的基本性质
1、根据比、除法、分数的关系:
商不变的性质:被除数和除数同时乘或除以相同的数(0除外),商不变。
分数的基本性质:分数的分子和分母同时乘或除以相同的数时(0除外),分数值不变。
比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。
2、最简整数比:比的前项和后项都是整数,并且是互质数,这样的比就是最简整数比。
3、根据比的基本性质,可以把比化成最简单的整数比。
4、化简比:
(1)依据比的基本性质:
①用比的前项和后项同时除以它们的最大公因数。
②两个分数的比:用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。
③两个小数的比:向右移动小数点的位置,先化成整数比再化简。
(2)用求比值的方法。注意:最后结果要写成比的形式。
如:15∶10=15÷10==3∶2
5.按比例分配:把一个数量按照一定的比来进行分配。这种方法通常叫做按比例分配。
如:已知两个量之比为,则设这两个量分别为。
6、路程一定,速度比和时间比成反比。(如:路程相同,速度比是4:5,时间比则为5:4)
工作总量一定,工作效率和工作时间成反比。
(如:工作总量相同,工作时间比是3:2,工作效率比则是2:3)
身为一位人名教师,我们要给学生一个优质的课堂。为了不消耗上课时间,就需要有一份完整的教学计划。这样我们可以在上课时根据不同的情况做出一定的调整,你们知道那些比较有创意的教学方案吗?小编特地为您收集整理“人教版四年级上册《第五单元 归纳总结》数学教案”,仅供您在工作和学习中参考。
人教版四年级上册《第五单元 归纳总结》数学教案
第五单元 平行四边形与梯形
1、 在同一平面内,不相交的两条直线叫做平行线,也可以说这两条直线
互相平行。其中一条直线是另一条直线的平行线。(同一平面内,两条直
线不平行就相交)如果两条直线都和第三条直线平行,那么这两条直线(互相平行)。
2、 画平行线应先放三角尺,再放直尺,平移三角尺。(一贴,二靠,三移,四画)
3、 如果两条直线相交成直角,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,这两条直线的交点叫做垂足。如果两条直线都和第三条直线垂直,那么这两条直线也(互相垂直)。
4、 画垂线应先放直尺,再放三角尺,平移三角尺。(一对,二移,三画)
5、 点到直线之间垂直线段最短。
从直线外一点到这条直线所画的垂直线段最短,它的长度叫做这点到直线的距离。
6、 两条平行线之间所有的垂直线段的长度相等。(平行线间的距离处处相等)
7、两组对边分别平行的四边行叫做平行四边形;只有一组对边平行的四边形叫做梯形。
(1)平行四边形
①平行四边形的对边(平行且相等)。平行四边形相对的角(对角)度数相等,相邻的角(邻角)度数和是180度,四个角的度数和是360度。
②平行四边形容易变形,具有不稳定的特性。
③从平行四边形一条边上的一点到对边引一条垂线,这点和垂足之间的线段叫做平行四边形的高,垂足所在的边叫做平行四边形的底。平行四边形有无数条高,同一底上的高长度都相等。
(2)梯形
①在梯形中,平行的两条边分别叫做梯形的上底和下底(其中短的叫上底,长的叫下底)。不平行的两条边叫做梯形的腰。从梯形上底的一点到下底引一条垂线,这点和垂足之间的线段叫做梯形的高。
②梯形有无数条高,所有的高长度都相等。
③两腰相等的梯形叫做等腰梯形。等腰梯形的两个底角相等。
④两个完全一样的梯形可以拼成一个平行四边形。两个完全一样的三角形可以拼成一个平行四边形。
7、 正方形是特殊的长方形,长方形和正方形是特殊的平行四边形。长方形和正方形的对边互相平行,邻边互相垂直。可以用画垂线或平行线的方法画长方形和正方形。
8、用集合图表示四边形之间的关系
9、从平行四边形一条边上的一点到对边引一条垂线,这点和垂足之间的线段叫做平行四边形的高,垂足所在的边叫做平行四边形的底。
10、梯形的各部分名称.
11、两腰相等的梯形叫做等腰梯形,有两个直角的梯形叫做直角梯形。
12、四边形的内角和是3600。
13、平行四边形相对的角完全相等,相对的边平行且相等。
作为一小学位老师,我们要让同学们听得懂我们所讲的内容。为此老师就需要在上课前准备好教案,以此来提高课堂的教学质量。让同学听的快乐,老师自己也讲的轻松。那么一份优秀的教案应该怎样写呢?以下是小编收集整理的“人教版五年级文上册第六单元知识梳理”,希望对您的工作和生活有所帮助。
人教版语文第九册第六单元:父母之爱
课文
《地震中的父与子》、《“精彩极了”和“糟糕透了”》、《慈母情深》、*《学会看病》
单元主题
我们在父母的爱中长大。父母的爱是慈祥的笑容,是亲切的话语;是热情的鼓励,是严格的要求。在本组课文中,我们将看到父母之爱的一个个侧面。感受到父母之爱的深沉与宽广。认真阅读课文,把握课文内容。想一想作者是怎样通过外貌、语言和动作的描写表现父母之爱的。
词表
读读写写:
地震混乱安顿昔日废墟坚定挖掘绝望爆炸叹息悲痛颤抖拥抱糟糕确实自豪誊写敬仰奇妙出版戏剧严厉灵感创作源泉警告提醒歧途谨慎把握极端断言欢声笑语破烂不堪满怀信心一如既往
读读记记:
疲惫忙碌腼腆触摸残忍虚弱指教滚烫后悔艰涩拖沓磨炼埋怨冷漠失魂落魄震耳欲聋大吃一惊
喋喋不休雪上加霜来日方长忐忑不安聊胜于无
易错字词
废墟挖掘爆炸颤抖糟糕自豪誊写歧途残忍艰涩拖沓埋怨聊胜于无
易读错音
混乱、颤抖、誊写、腼腆、拖沓、磨炼、埋怨、忐忑不安、血丝、瓦砾、开辟、龟裂、脊背、供吃、挣钱、数落、兴奋、
形近字
漆—膝;凑—揍;誊—誉;厉—历;祥—详;歧—岐;悔—诲—侮
同音字
决—绝;爆—暴;辟—僻;报—抱;燥—躁—噪;竟—竞;糟—遭;豪—毫;使—驶;碟—蝶;练—炼;艰—坚;虚—墟;疾—急
识字方法
1、形声字规律
换偏旁:喋--蝶;搂--楼;版—板;歧—岐;谨—勤;陷—馅
加偏旁:沓—踏;腼腆—面典;谴—遣;怔—正;骥—冀;糕--羔;慎—真
2、分析字义与字形关系:忐忑、蔫
多音字
混乱混球角落角色难题灾难血液血淋淋送给给予缝补缝隙塞子堵塞塞外应该答应数落数学挣扎挣钱朝阳朝向挨着挨打兴奋高兴行业行走的确目的几乎几个词语积累
词语搭配
坚定地站起身、兴奋地嚷着、慈祥的母亲、严厉的父亲、谨慎地把握、喋喋不休地指教、骄傲地宣布、震耳欲聋的噪声、
极端的断言、瘦弱的脊背、疲惫的眼睛、龟裂的手指、熟悉的脚步声
引入歧途、挖掘废墟
句式训练
比喻句
时间艰涩地流动着,像沙漏坠入我忐忑不安的心房。
她搂住了我,赞扬声雨点般落到我身上。
省略句
“我鼻子一酸,攥着钱跑了出去……”(《慈母情深》)
“巴迪写了一首诗,精彩极了……”(《“精彩极了”和“糟糕透了”》)
段式训练
如何把一段话
写具体
《地震中的父与子》
第12自然段(生动感人的外貌描写):抓住父亲的外貌,表现了父亲不顾一切也要救出儿子的伟大父爱。《慈母情深》
第16自然段通过母亲神态动作的描述,以及连用三个“我的母亲”使一个勤劳善良的母亲形象跃然纸上,表明了我对母亲的深情。
《“精彩极了”和“糟糕透了”》
第14自然段(准确生动的连续动作描写):通过巴迪一连串动作,表现人物内心的痛苦和悲伤。《学会看病》
第21自然段(细腻生动的心理描写):形象生动的心理描写,写出了深刻的母爱。
第22自然段(形象生动的比喻):写出了母亲写出母亲度日如年的感觉。
背诵积累
课文
《“精彩极了”和“糟糕透了”》背诵并抄写最后一个自然段。
园地
园地六“日积月累”中的四句关于诚信、孝敬和立志的名言警句。
学习方法
阅读方法
《地震中的父与子》:抓住人物外貌、语言、动作描写,体会人物思想品质。
《慈母情深》:抓住对母亲外貌、语言、动作描写,体会母亲的慈祥、善良。
《“精彩极了”和“糟糕透了”》:抓住人物对话描写,以及心理活动描写体会人物的品质以及所要表达的情感。
《学会看病》:抓住生动、细致的心理描写体会人物思想感情。
交流平台
摘录描写人物语言、动作、神态、外貌、心理活动的语句。
方法:
1、回顾并体会本单元中描写人物语言、动作、神态、外貌、心理的语句。
2、摘录、体会课外阅读中的相关描写。
课外书屋
了解漫画《父与子》
1、看一看:按照题目要求观察漫画,了解漫画内容。
2、说一说:介绍漫画内容。介绍作者知识。
3、议一议:讨论漫画的妙处。
口语交际
父母爱的故事
选择父母在生活中关爱自己的点滴小事介绍给同学,共同体会不同形式的父母之爱。
作为一小学位老师,我们要让同学们听得懂我们所讲的内容。老师需要提前做好准备,让学生能够快速的明白这个知识点。让同学们很好的吸收课堂上所讲的知识点,那吗编写一份教案应该注意那些问题呢?小编收集整理了一些“2014五年级语文上册第六单元复习(人教版)”,欢迎大家阅读,希望对大家有所帮助。
第六单元复习课教学设计4稿
上课
一、交流复习方法
师:温故而知新,是我们学习过程中重要的一环,这节课,我们就来复习第六单元父母之爱(板书),平时,你会从哪些方面进行复习?
【学生说】,教师梳理
人教版五年级上册《练习课六》数学教案
第5单元 简易方程
第6课时 练习课
【教学内容】:教材P60~61练习练习十三第2、10、11题。
【教学目标】:
知识与技能:通过练习会熟练地用含有字母的式子表示数量及数量关系。能根据字母所取的值,求出含有字母的式子的值。
过程与方法:结合具体情境,经历用字母表示数和求值的练习过程,培养学生抽象概括的思维能力。
情感、态度与价值观:在练习活动中,体会生活中处处都有数学及数学知识的应用价值,培养学生解决实际问题的能力,增强学好数学的信心。
【教学重、难点】
重 点:掌握用含字母的式子表示数量关系;根据字母所取的值,求出含有字母的式子的值。
难 点:理解用含有字母的式子表示数量及数量关系,培养学生抽象概括的思维能力。
【教学方法】:创设情境、合作交流、应用与反思。
【教学准备】:多媒体、练习纸。
【教学过程】
一、基础练习
1.我能填:
(1)7·a·6=□·(□·□) 2x + 6x =(□+□)·x
(2)a+a=( ),a×a=( ),当a=5时,2a=( ),a2=( )。
(3)一个长方形,长a米,宽b米,面积S=( ),周长C=( )。
2.我会选:水果店购进一批水果,皇帝柑有x 箱,每箱重10千克,香蕉共有6千克。说出下列式子表示的意义:
(l)lOx (2)10x + 6 (3)lOx - b
3.小结并板书课题。
二、综合训练
1.创设情境:现在我们就一起坐车去游玩吧。
汽车每小时行60 km,行了t小时,一共行了( )千米。
提问并用字母表示出公式。
2.第一站:
A.购买门票。
(1)提问:在付款前先要知道哪些条件?(单价a、数量x )
付款的钱叫什么?(总价c)
你能用文字说一说这三个数量之间有什么关系吗?再用字母表示出来。
(2)从这里选一个公式来解决下面的问题:
如果每张门票55元,220元可以买几张票?
B.过关明理:(理解式子表示的意义)
(1)百万葵园一张儿童票是b元,成人票比儿童票贵15元。b+15表示什么?
(成人票的价格)
(2)我班共有48名师生购票进园,教师有(48 - c)名,这里的c表示什么?
(学生的人数)
(3)师生们排队进园,平均分成了x 组,每组12人。12x 表示什么?
(进园的总人数)
C.葵花精灵考考你:(同式异义)
我们栽种了20棵葵花,平均栽成了a行,每行栽(20÷a)棵。
一袋葵花种子a元,20元可以买(20÷a)袋。
学生填空,再用自己的话说一说上面式子表示的含义。
小结:相同的字母或相同的含有字母的式子,在不同的题目中所表示的意义不一样。
即时练习:教材第60页练习十三第3题。
像这样用你自己的话说一说下面式子的含义。
20+a 20-a 20a
3.第二站:
甲导游:我每天接待游客a人。乙导游:我每天接待游客b人。
(1)他们每天共接待游客 人,30天共接待游客 人。
(2)当a=580,b=620时,用第(1)题中的式子计算他们30天的总接待人数。
学生先独立完成,然后小组交流、汇报。
4.第三站:
(l)一本亚运宣传册有a页,小华每天看8页,看了6天。用式子表示还没看的页数。
(2)这本书如果有94页,小华看了7天。用上面的式子求还没看的页数。
小结:根据题意和字母所取的值,可以求出含有字母的式子的值。
5.第四站:
请同学们一起观察此表:说一说什么是工作效率、工作时间和工作总量。
(1)请同学们完成此表:(见板书)
(2)机器包装的速度更快,一台机器每分钟包装水果50盒,请你利用表中的公式计算一台机器1小时包装多少盒。
交流、汇报。
三、拓展提高
1.依次出现以下正方形。(教材第61页第10*题)
师:请大家仔细观察,从这个表中你发现了什么?
①生:每多摆一个正方形就增加3根小棒。
师:根据这一重要的发现,你能很快算出摆5个正方形需要多少根小棒吗?
1 + 5×3 = 15(根)
师:照这样,如果摆n个正方形,需要多少根小棒呢?谁能列出算式?(3n+1)
2.教材第61页练习十三第11*题。
学生阅读题目,理解题意,小组交流,讨论。
学生汇报
x = 6, x2 = 36, 2x = 12
x = 0或者x = 2时,x2 和2x 正好相等。
四、课堂小结
师:你能畅谈今天有什么收获吗?学生发言,教师点评。
五、作业:教辅
【板书设计】:
用字母表示数的练习
人教版五年级上册《第五单元 单元分析》数学教案
第5单元 简易方程
单元分析
【教材分析】
本单元主要学习的是用字母表示数、运算定律、计算公式和数量关系,学习方程的意义、等式的基本性质和解简易方程,以及在解决一些实际问题中简易方程的运用。在学生已有的算术和代数知识的基础上学习简易方程,有助于培养学生的抽象概括能力,发展他们思维的灵活性,并且能够巩固和加深所学的算术知识。
【学情分析】
用字母表示数,对小学生来说比较抽象,学生理解起来会有一定的难度。特别是用含有字母的式子来表示数量关系,更让学生感到困难。让学生从具体的、确定的数过度到用字母表示抽象的、可变的数,对学生来说是认识上的一个飞跃。因此在教学中,教师要充分利用学生原有的相关认识基础,使学生从具体实例到一般意义的抽象概括逐渐过渡。
学生在学习这部分内容时,往往不会将含有字母的式子看作是一个量,如:苹果2元一斤,香蕉比苹果贵x 元,2+x 既表示苹果价格与香蕉价格之间的数量关系,也表示香蕉的价格,很多学生认为这只是一个式子,不是结果。而这正是学生学习简易方程的基础,所以要先学习用字母表示一个特定的数,再学习用字母表示一般的数,也就是用字母表示运算定律和计算公式,让学生有了一定的基础后,再学习用含字母的式子表示数量和数量关系,这样由易到难,便于学生在数学认知上有更高的飞跃。
【教学目标】
知识技能:使学生初步认识用字母表示数的意义和作用,能用字母表示运算定律和计算公式等,初步了解简易方程,能用等式的性质解简易方程。
数学思考:培养学生根据具体情况,灵活选择算法的意识和能力。
问题解决:能列简易方程来解决生活中的实际问题。
情感态度:使学生感受到数学与现实生活的联系,初步学会列方程解决一些简单的实际问题。
教学重点:用含有字母的式子表示数量关系,等式的基本性质,解方程,培养学生书写规范和自觉检验的习惯。
教学难点:用含有字母的式子表示数量关系,列方程解决实际问题
【课时划分】 20课时
1.用字母表示数……………………………6课时
2.解简易方程………………………………12课时
3.整理和复习………………………………2课时
《人教版五年级上册《第六单元 归纳总结》数学教案》一文就此结束,希望能帮助您在小学教学中起到作用,如还需更多,请关注我们的“小学数学教案五年级”专题。
文章来源:http://m.jab88.com/j/111848.html
更多