一个优质课堂,就是老师在讲学生在答,讲的知识都能被学生吸收。因此,老师会想尽一切方法编写一份学生易接受的教案。上课才能够为同学讲更多的,更全面的知识。那么优秀的教案是怎么样的呢?以下是小编为大家收集的“苏教版四年级上册《图形王国》数学教案”,供大家参考,希望能帮助到有需要的朋友。
苏教版四年级上册《图形王国》数学教案
第九单元 整理与复习
第3课时 图形王国
教学内容:
教材第102页。
教学目标:
1、复习学习过的容量单位:升和毫升,知道升和毫升之间的关系;
2、能观察由此来看个正方体拼成的图形,并用平面图形表示出来;
3、知道两条直线之间的关系,并能熟练地测量角的度数。
教学重难点:
角度数的测量与画角
教学准备:
量角器
教学过程:
一、复习回顾升和毫升
1、我们学习过表示容量的单位有哪些?升和毫升之间的有什么样的关系?
2、完成P102页第12题和13题。
3、指名汇报交流。
二、复习观察物体
1、我们已经学习过从哪几个位置观察物体?
2、完成第14题。
三、复习角的有关知识
1、本学期我们认识了哪几种角?怎样的两条直线互相垂直?互相平行的直线有什么特点?
2、完成P102页第15题
把一条线段延长,表示射线;另一条线段延长,表示直线。
线段、射线和直线各有什么特点?
归结小结:共同点:都是直的
不同点:直线没有端点 射线一个端点 线段两个端点
3、P102页第16题
下面各是什么角?哪几个角的度数可以直接说出来?其余的角你能用量角器量一量吗?
用量角器量角时要注意什么?
4、P102页第17题
你会用量角器量角了,那你会画角吗?
(1)画一个70度的角。
(2)分别画出已知直线的垂线和平行线。什么叫垂线,什么叫平行线?画出的两条直线有什么关系?
四、课堂总结:
今天复习了什么知识?
板书设计:
共同点:都是直的
不同点:直线没有端点
射线一个端点
线段两个端点
教后反思:
苏教版四年级下册《轴对称图形的对称轴》数学教案
教学目标:
1.让学生经历长方形、正方形等轴对称图形各有几条对称轴的探索过程,会画简单的几何图形的对称轴,并借此加深对轴对称图形特征的认识。
2.让学生在学习过程中进一步增强动手实践能力,发展空间观念,培养审美情操,增加学习数学的兴趣。
教学重难点:
经历发现长方形、正方形对称轴条数的过程。画平面图形的对称轴。
课前准备:
小黑板、学具卡片。
教学活动:
一、复习导入
出示飞机图、蝴蝶图、奖杯图。
提问:这三幅图有什么共同的特征?(都是轴对称图形) 指着蝴蝶图提问:你怎么知道它是轴对称图形的?(指名到讲桌上折纸并回答) 把蝴蝶图贴在黑板上,提问:谁能指出这幅图的对称轴?(学生指出后,教师用点段相间的线画出对称轴,并板书:对称轴) 谈话:这节课我们继续学习轴对称图形,重点研究轴对称图形的对称轴。(把课题补书完整)
二、教学例题
1.谈话:首先我们研究长方形的对称轴。请拿出一张长方形纸对折,并画出它的对称轴。 学生折纸画图,教师巡视,发现不同的折法。
2.指名到投影仪前展示自己的折法和画法。 提问:你能告诉同学们折纸时应该注意什么,画对称轴时应该怎么画吗?对他的发言有没有不同的意见?谁还有不同的折法吗?也来展示一下。(指名展示)为什么这条线(指着学生画出的对称轴)也是这张长方形纸的对称轴?
3.谈话:这样看来,我们已经找到了长方形的两条对称轴,它还有另外的对称轴吗?用纸折折看。通过操作我们发现长方形只有两条对称轴。
4.出示黑板上画好的长方形,谈话:刚才我们用折纸的办法找到了长方形的对称轴,现在画在黑板上的长方形能对折吗?如果要画出它的对称轴你有什么办法吗?在小组内讨论。让学生充分发表意见。 如果有学生提到用和黑板上的长方形同样大的纸对折找到对称轴后再在黑板上描画,指出这样做是可以的,但是我们不用折纸的办法,还能不能直接在黑板上画长方形的对称轴?如果学生提到先量出长方形对边的中点再连线,画出对称轴,对这种想法予以表扬,并提问:你能说一说是怎样想到先找对边中点的吗? 如果学生想不到取对边中点连线的办法,拿出长方形纸,谈话:想一想我们在把长方形纸这样对折的时候,长方形的这条边(例如指一条长边)被折痕分成了几段?这两段的长度有什么关系?你是怎么知道的?那么折痕与这条边相交的这个点是这条边的什么?同样地我们能找到折痕与这条边的对边的交点吗?找到了这两个点能不能画出长方形的对称轴? 指名到黑板上量长方形的边,取中点。学生说怎样画对称轴,教师画,画成如右形状,并指出:因为对称轴是折痕所在的直线,所以可以让对称轴延伸到图形外。
5.让学生各自在课本上画长方形的对称轴,画好后同桌检查,并提问:你能画出长方形的几条对称轴?
三、教学“试一试”。
谈话:下面我们研究正方形的对称轴。请拿出一张正方形纸, 再通过折纸研究它有几条对称轴,再在书上画出正方形的各条对称轴。尽量独立完成,如果有困难可与同桌商量,也可以在小组内研究。 先展示只画出两条对称轴的图形,提问:这两条对称轴画得对不对?还有其他对称轴吗? 再展示画出四条对称轴的图形,指着两条对角线所在的对称轴,提问:这两条线也是正方形的对称轴吗?让没画出这两条对称轴的学生折纸看一看这两条线是不是正方形的对称轴,并让他们补画出这两条对称轴。
提问:正方形有几条对称轴?
四、教学“想想做做” 。
1.做第1题。
(1)指名读题。提问:这道题让我们先做什么,再做什么,最后做什么?
(2)让学生各自按题目要求操作。
(3)提问:哪几个图形是轴对称图形,各画了几条对称轴? (可补充说明:四条边相等的四边形是菱形,它有2条对称轴)
2.做第2题。
(1)让学生自己读题。
(2)提问:题中的图形都是轴对称图形吗?第几个图形不是轴对称图形,为什么?
(3)看一看每个轴对称图形有几条对称轴,在书上画出来。 (4)展示部分学生的答案,共同评议。(从左往右三个图的对称轴分别有3、4、5条)
3.做第3题。
(1)让学生读题后自己在书上作图。
(2)展示部分学生的答案,共同评议。
(3)提问:谁能以左图为例说一下作图的步骤?(先找出三个对应的顶点再连线)
4.做第4题。
(1)谈话:先仔细观察题中的四个图形各是什么图形,谁来说一说?(指名回答) 如果学生说第一个图形是三角形,要追问:是什么样的三角形?第三个图形学生可能会说是五边形,谈话:这个图形不是一般的五边形,它的五条边都相等,五个角也都相等,它是正五边形。同样的,第四个图形是什么图形?
(2)让学生各自画每个图形的对称轴,能画几条画几条。
(3)展示部分学生的答案,共同评议。
(4)提问:每个图形各画了几条对称轴,你发现了什么?(各边相等、各角也相等的图形,对称轴的条数与边数相等)
5.做第5题。让学生自己制作,然后在小组内观赏评议,每组找出最佳作品,在班内展览。
五、全课总结
提问:这节课你对轴对称图形有了哪些新的认识?你学到了什么本领?有什么收获?还有不明白的问题吗?
课题图形的旋转
课型新授课年级四年级
学
习
目
标1、通过对实际图例的观察,了解一个简单的图形经过旋转制作复杂图的过程。
2、能在方格纸上将简单的图形旋转90°。
3、初步学会运用旋转的方法在方格纸上设计图案,发展学生的空间观念。
4、欣赏图形的旋转变换所创造出的美,培养学生的审美能力;感受旋转在生活中的应用,体会数学的价值。
学习
重点1、通过观察,使学生发现一个简单图形在旋转过程中的变化规律。
2、能在方格纸上画出一个简单图形旋转90°后的图形。
学习
难点能清楚的描述一个简单的基本图形在方格纸上的旋转过程。
预习
准备方格纸,几何图形纸片。
学习过程
环节学案导案
以
旧
引
新
(5分钟)出示一个风车实物,教师前后拉动,使得风车依次顺时针、逆时针的转动,问同学们这两个方向分别叫什么?指名学生回答后,师生共同归纳。
(9分钟)1、(课件出示教材第54页上面的图案),这些图案漂亮吗?
它们有什么特点?
2、、这两组漂亮的图案都是由很简单的小图形构成的。你能找出是由哪个小图形变换构成的吗?用彩色笔把它圈出来。
3、用自己手中的学具摆一摆,动一动,看看这个简单的图形是怎样变换的。
4、观察方格纸上所画图形位置的关系,并填空。
图形B可以看作图形A绕点O顺时针方向旋转得到。
图形C可以看作图形B绕点O顺时针方向旋转得到。
图形D可以看作图形C绕点O顺时针方向旋转得到。1、学生独立思考后,同桌互相交流,师生共同归纳。
2、引导学生自主探究:独立思考;小组交流,形成共识;小组长总结归纳。
3、教师巡视指导,关注学生自学状态及参与度。
展示
交流
(16分钟)我愿意把我的探究结果展示交流,在展示时,我会把内容说清楚;别的同学展示时,我会认真倾听,并能补充和质疑。指导交流,适当纠错、点拨。
总
结
巩
固
(7分钟)通过这节课的学习,我都知道了:
指导学生归纳叙述图形旋转的三要素,并对本节课的学习进行自我评价。
苏教版四年级下册《认识梯形》数学教案
教学目标:
1、学生在联系生活实际和动手操作的过程中认识梯形,发现梯形的基本特征,认识梯形的高。
2、学生在活动中进一步积累认识图形的学习经验,学会用不同方法做出一个梯形,会在方格纸上画梯形,能正确判断一个平面图形是不是梯形,能测量或画出梯形的高。
3、学生感受图形与生活的联系,感受平面图形的学习价值,进一步发展对“空间与图形”的学习兴趣。
教学重点:
经历梯形的认识过程,了解梯形的特征。
教学难点:
建立厅性的高的概念,画梯形的高。
教学准备:
配套教材、直尺、三角尺等。
教学流程:
一、生活导入
1、出示例1的图片,你能在这些生活场景中找到以前学过的平面图形吗?
(重点可让学生上台指一指梯形)
2、你能说说生活中还有哪些地方能看到梯形吗?
3、今天我们继续研究梯形。你还记得我们昨天是怎样研究平行四边形的吗?
根据学生回忆板书:
(1)探究特点
(2)认识高、底
(3)多种练习
有了这些研究平行四边形的经验,你想自己来进行研究活动吗?在小组里讨论一下,你们准备开展哪些活动来完成(1)和(2)。
老师的友情提醒:研究梯形时注意和平行四边形的联系与区别,将使你事半功倍。
二、小组活动
(一)探究特点
1、展示小组内制作的梯形,介绍使用的材料和方法。
2、归纳梯形的特点:梯形只有一组对边平行。
(二)认识高、底
1、介绍小组内的研究成果
2、在此基础上指导看书自学:
量出互相平行的一组对边间的距离,这就是梯形的高。这样的高有多少条?为什么? 与平行四边形不同的是,梯形各部分有自己的名称。说说什么是上底、下底、腰、等腰梯形。
3、试一试:指一指高垂直于哪条边,量出每个梯形的上底、下底和高各是多少厘米。
4、说明:第二个梯形是直角梯形。在直角梯形中有几个直角?
三、练习提高
想想做做1-5
四、课堂总结
通过这节课你有什么收获?还有哪些疑问?同桌间说说看。
苏教版四年级下册《找规律》数学教案
教学目标:
1、经历探索间隔排列的两种物体个数之间的关系,渗透“一一对应”的数学思想。
2、初步体会和认识这种关系和其中的简单规律,初步学会应用这种规律解决简单的实际问题。
教学重点:
学生经历间隔排列规律的探索过程,找到“两种物体间隔排列时,两端的物体比中间的物体多1,中间的物体比两端的物体少1”这一规律。
教学难点:
圆周问题的规律。
教学流程:
一、创设情境,探索规律。
1、设疑引入
师:我们先做一个猜谜游戏。
老师板书
师:猜测老师在三角形后会写什么图形。
学生猜测,答案不唯一。
师转身又写
部分学生有意识猜测后面是三角形。
师接着写,黑板上出现
学生会异口同声地说后面是
由学生说出规律。
师:这样一组一组的往下写(边写边板书),谁能说说这两种图形的个数有什么关系。
生:一样多。
生:因为每组里面正好是一个三角形和一个正方形。
生:正好一个三角形对着一个正方形
师:我们可以说三角形和正方形是一一对应着的。板书“一一对应”
师在省略号后继续添一个
由生说这时的个数关系。
生:三角形多一个。
生:因为前面的三角形和正方形都是一一对应着的,但最后一个三角形没有正方形和它对应了。
2、揭示课题
师:它们都是一个物体隔着另一个物体依次排列的,像这样的排列现象我们称为一一间隔排列。(板书:一一间隔排列)
二、探究规律
1、研究场景图中的三种排列。
师:现在请同学们仔细看一看,从图中找一找,能发现和黑板上一样的间隔排列吗?
学生汇报自己的发现。
师:这三组间隔排列中两种物体是怎样排列的?同桌互相研究。
指出:夹子、白兔、树桩都可以看成两端的物体(板书:两端的物体),手帕、蘑菇、篱笆都可以看成中间的另一种物体(板书:中间的另一种物体)。排在两端的物体相同。(板书:两端相同)
师:这属于两端物体相同的间隔排列。
讨论:两端物体相同的间隔排列有什么规律?你还想知道些什么呢?
小组合作研究。
小组汇报。
课件出示:
夹子比手帕多一个。
小兔比蘑菇多一个,
木桩比篱笆多一个。
在教师的引导下学生总结出“两种物体间隔排列时,两端的物体如果相同,两端的物体就比中间的多1,中间的物体比两端的少1”这一规律。
2、学生自选一组把实物图抽象成图形,并在黑板上板书。
3、进一步形成规律。
4、选中其中的任一组图形,并擦掉中间的物体。
师:你们想到了什么?
生:一个图形一个间隔,间隔数少一。
生:因为最后一个图形没有间隔和它对应,所以间隔数少了一。
三、动手操作,验证规律。
师:是不是这样间隔排列的两种物体都有这样的规律呢?下面我们动手验证一下。
课件出示要求:任意拿几根小棒和圆片,在桌上沿直线方向间隔排列成一排,数数小棒的根数与圆片的个数,看看有什么关系?
学生动手操作,集体交流。
师:谁来和大家说说你是怎样摆的?你发现了什么?
小结:其实这里的小棒就可以代表一切两端的物体,圆片就可以代表一切中间的物体。像这样排列,它们都有这样的规律:两端的物体比中间的物体多1。
四、联系实际,应用规律。
1、列举规律:
师:其实,在我们的教室中,有些事物之间的排列也具有这样的规律。你能通过自己的观察来说一说吗?(学生先观察,再回答)
2、欣赏老师找到的规律。
3、应用规律:
(1)“电线杆和广告牌”
仔细看这幅图,在这条马路边,有25根电线杆,那么中间会有多少块广告牌呢?为什么?
(2)锯木料问题:想想做做第2题
把一根木料锯3次,能锯成多少段?
引导学生结合所学的规律来分析。
(3)栽树问题
如果在河的一边栽15棵柳树,每两棵柳树中间栽一棵桃树,可以栽桃树多少棵?如果在河的一边栽15棵柳树,每两棵柳树中间栽两棵桃树,可以栽桃树多少棵
引导学生结合所学的规律来分析比较。
(4)规律延伸。
请10位女同学在讲台前站成一排。
师:请男同学站在每两个女同学之间形成一一间隔排列。
有9位男同学站在列中。
师:有请两端的两位女同学慢慢把队伍拉成一圈,你有什么新的发现。
生:这时没形成一一间隔排列了。
生:因为原来两端的女同学之间又出现了一个间隔。
生:还得在这之间站进一个男同学。
生:男女生一样多了。
(5)对比练习:
如果在圆形池塘的一周栽15棵柳树,每两棵柳树中间栽两棵桃树,可以栽桃树多少棵?
a:质疑:有的同学说14棵,有的同学说15棵,还有的说16棵,那像这样栽柳树和桃树,它们的棵数之间到底有什么关系呢?
b:发现规律
c:汇报小结,和刚才男女生站队一个道理。
小结:把桃树和柳树像这样栽成一周,桃树和柳树的棵数一样多
(5)提高练习。
小军从一楼走到三楼用了6分钟,照这样计算,他从一楼走到九楼要多少分钟?
时钟6时敲了6下,5秒敲完。那么,这只钟12时敲12下,几秒敲完?
五、总结评价
师:今天我们一起研究了一些间隔排列的规律,大家有什么收获?
今后当我们面对新的事物或者更复杂的情况时,要学会寻求方法来探索规律解决问题。
苏教版四年级下册《积的变化规律》数学教案
教学目标:
1.通过观察、讨论等数学活动,经历探索、归纳积的变化规律的过程。
2.知道扩大几倍、缩小几倍的意义,理解积的变化规律,会运用积的变化规律进行简便计算。
3.在探索、归纳积的变化规律的过程中,感受数学思考过程的条理性。
课前准备:口算卡片、小黑板。多媒体课件
教学过程:
一、创设情景
师:同学们,咱们来做几道口算题,看谁算的又对又快!
教师用卡片出示口算题,学生抢答。
56+34= 68+25= 73-42=
100-57= 3×4= 6×7=
42÷6= 81÷9=
二、扩大、缩小
1、教学扩大
师:再看下面几道口算题。不但要口算出结果,还要说一说是怎样算的。
课件出示课本第一组乘法算式:
37×10=
生:37×10=370,37乘1等于37,然后在末尾添上一个0,就是370。
教师显示结果:37×10=370
师:很好!下面看这道题:
出示37×100=
生:37×100=3700,37乘1等于37,然后在末尾添上两个0,就是3700。
师:同学们的想法都挺好的。在数学上,37×10还可以说成把37扩大10倍,37×100可以说把37扩大100倍。
教师显示:扩大几倍
师:37×10=370可以说37扩大10倍等于370,37×100=3700可以说37扩大100倍等于3700。同桌像老师这样互相说一说。
学生互相说一说。
师:谁能举出一个乘法算式,并用扩大几倍描述一下?
2、教学缩小
师:下面,我们再来口算两道除法题,说说你是怎样算的?
幻灯片出示:400 ÷10=
生1:400 ÷10=40。因为400里面有40个十。
生2:400 ÷10=40。因为40乘10等于400。
教师显示答案:400 ÷10=40。
师:在数学上,两个数相除也有另一种说法——缩小。400 ÷10可以说把400缩小10倍。
教师显示:缩小几倍
师:400 ÷10=40,可以说400缩小10倍等于40。
师: 再看这道题,计算结果是多少。
出示:400 ÷100=
生:400 ÷100=4。因为400里有4个100。
教师显示:400 ÷100=4
师:谁能用“缩小几倍”这个词描述一下400 ÷100=4?
生:400 ÷100可以说把400缩小100倍等于4。
师:谁能举出一个除法算式,并试着用“缩小几倍”描述一下?
三、探索规律:
师:同学们已经会用扩大几倍描述两个数相乘,用缩小几倍来描述除法。下面,我们就用扩大和缩小来描述乘法计算中的一些规律。请看下面这组题。
出示幻灯片:4×2=8
40×2=80
400×2=800
师:同学们,看这几个算式,请你用刚学的名词描述一下。
生1:4扩大2倍等于8。
生2:40扩大2倍等于80。
生3:400扩大2倍等于800。
师:说的很好!大家再来看这几个算式的因数,你发现了什么共同点?
生1:每个算式中有一个2。
师:就是说,三个算式中,因数2没变。观察算式中另一个因数和积,你发现了什么?
生2:第一个和第二个算式比,因数4扩大了10倍,积也扩大10倍。
师:就是说,因数2不变,因数4扩大10倍,积8也扩大10倍。
生3:第三个算式和第一个算式比较,因数4扩大100倍,积也扩大100倍。
师:观察的很认真,就是说,因数2不变,因数4扩大多少倍,积也就扩大多少倍。
生4:第三个算式和第二个算式比较,因数40扩大10倍,积也扩大10倍。
师:很好!因数2不变,另一个因数4扩大多少倍,积也扩大相同的倍数。同学们,分别找出了这几个乘法算式中因数和积的变化规律。谁能用一句话来概括一下这个规律呢?
生:因数2不变,另一个因数扩大多少倍,积也扩大相同的倍数。
教师总结归纳出规律,幻灯片显示:
在乘法里,一个因数不变,另一个因数扩大若干倍,积也扩大相同的倍数。
师:通过刚才的三个算式,我们发现了,在乘法里,一个因数不变,另一个因数扩大若干倍,积也扩大相同的倍数。再来看这组算式。
出示:25×40=1000
25×20=500
25×10=250
师:观察这组算式的因数,你发现了什么共同点?
生1:三个算式中第一个因数都是25。
生2:有一个因数不变,都是25。
师:对!这组算式中,也有一个因数不变。再看另一个因数,你发现了什么?
生1:另一个因数一个比一个小。
生2:另一个因数越来越小。
师:对!另一个因数一个比一个小。再认真看一看,它们之间有什么关系呢?
生:40除以2等于20,还可以说40缩小2倍等于20。
师:也就是说,第二个算式和第一个算式比,一个因数不变,另一个因数40缩小了2倍,对吗?
取得全班共识。
师:那请同学们比较一下,第二个算式和第一个算式的积,你发现了什么?
生1:500比1000也缩小了2倍。
生2:第二个算式的积也缩小了2倍。
师:谁能用一句完整的话,说一说第二个算式和第一个算式的变化。
生1:第二个算式和第一个算式比较,一个因数25不变,另一个因数40缩小2倍,积也缩小2倍。
生2:第二个算式和第一个算式比,一个因数不变,另一个因数缩小2倍,积也缩小2倍。
教师肯定学生的不同说法。
师:把其他算式进行比较,并说一说因数和积的变化规律。
学生可能会说:
生1:第三个算式和第二个算式比较,一个因数25不变,另一个因数20缩小2倍,积也缩小2倍。
生2:第三个算式和第一个算式比较,一个因数25不变,另一个因数40缩小4倍,积也缩小4倍。
……
师:通过这组算式同学们发现了“在乘法算式里,一个因数不变,另一个因数缩小,积也缩小”的变化规律。谁能总结一下这个缩小的变化规律?
生:在乘法里,一个因数不变,另一个因数缩小几倍,积也缩小相同的倍数。
师:(指着上面两组算式)刚才通过这两组算式我们发现了因数扩大、积也扩大,因数缩小、积也缩小的规律,这两条规律可以概括在一起。
教师边说边整理规律.
幻灯片显示:在乘法里,一个因数不变,另一个因数扩大(或缩小)若干倍,积也扩大(或缩小)相同的倍数。
请同学自己读一读。
师:刚才我们发现的规律是乘法计算中一条特别重要的性质叫做积的变化规律。
板书课题:积的变化规律
四、尝试练习
师:应用积的变化规律,可以使许多乘法计算变得简便。下面我们看,(出示幻灯片)仔细读题目的要求,并自己完成。
学生自己做,教师巡视,个别指导。
师:谁说说你是怎样想的?怎样做的?
生1:第(1)组算式中,因数15不变,第二个算式中的另一个因数24比6扩大4倍,所以积也应扩大4倍。90×4=360
生2:第(1)组算式中,第三个算式的另一个因数30比6扩大5倍,积也要扩大5倍。90×5=450
生3:第(1)组算式中,第四个算式的另一个因数60比6扩大了10倍,积也要扩大10倍。90×10=900
生4:第(2)组算式中,第二个算式和第一个算式比较,因数4不变,因数23比230缩小10倍,积也缩小10倍,920÷10=92
生5:第三个算式和第一个算式比较,因数40比4扩大10倍,积也扩大10倍,920×10=9200
生6:第四个算式和第三个算式比较,因数40不变,因数23比230缩小10倍,积也缩小10倍,9200÷10=920。
生7:第四个算式和第一个算式比较,因数230缩小10倍,因数40又扩大10倍,积不变,是920。
五、课堂练习
师:这道题同学们做得很好,现在我们来完成表格:(出示幻灯片)
教师巡视,个别指导。
交流计算的过程和结果,(出示课件)重点说一说是怎样想的。
师:我们再来当一次小法官,判断各题是否正确并说明理由。
先让学生独立思考,再全班交流。
学生根据积的变化规律判断,说对意思即可。
师:下面还有一道生活中的题,(出示课件)我们来看一看。
学生读题后,指名回答。重点说一说第(2)题是怎样想的。
生1:210÷30=7(分),小明每分钟走210米,他走路的速度不变,要走420米,比210米扩大了2倍,需要的时间也要扩大2倍。
7×2=14(分)
生2:速度不变,路程扩大2倍,时间也要扩大2倍。
六、拓展练习
师:刚才大多数的同学都非常棒,在挑战一下自己吧
课件:一种货物每包重40千克,一辆卡车最多可以运120包。如果把货物改为每包重20千克,一辆卡车最多可以运多少包?改为每包重10千克呢?(列出表格计算)
师:谁来说一说这道题。
指名读题。
师:在这道题中,什么没变?什么变化了?
生:货物总千克数没变,每包的质量变化了。
师:货物的总质量是多少?你是怎么知道的?
生:货物的总质量是4800千
克,根据每包重40千克,一辆卡车最多可拉120包计算出来的。
师:那么,如果改为每包20千克或每包10千克,这批货物有多少包呢?请同学们列出表格,并计算出结果。同学可以商量。
学生独立计算。教师巡视,对有困难的进行指导。
师:谁愿意把你列的表格和计算的结果告诉大家?
生1: 生2:
每包重 包数 总质量 总质量 每包重 包数
40 120 4800 4800 40 120
20 240 4800 4800 20 240
10 480 480 4800 10 480
师:观察表(2)中的数据,说一说在货物总重量不变的情况下,每包的质量和包数是怎样变化的?
生1:货物总质量不变,每包质量由40千克改为20千克,缩小了2倍,而包数由120包变为240包,扩大了2倍。
生2:每包质量由40千克改为10千克,缩小了4倍,包数却由120变成了480,扩大了4倍。
师:从上面的例子中,我们发现一个因数扩大若干倍,另一个因数缩小相同的倍数,它们的积不变。
师:做后看数学冲浪的题,你发现了什么?
生:第一个因数没变,都是12345678。
生:第一个算式的积是9个1。
师:利用积不变的规律自己试着写出“数学冲浪”中算式的积。并用计算器验证一下。
学生完成后,交流学生写出的结果,并说一说是怎样想的。
作为大家敬仰的人民教师,要对每一堂课认真负责。通常大家都会准备一份教案来辅助教学。这样我们可以在上课时根据不同的情况做出一定的调整,你们见过哪些优秀教师的小学教案吗?小编收集整理了一些“苏教版三年级上册《平移和旋转图形》数学教案”,仅供参考,希望能为您提供参考!
苏教版三年级上册《平移和旋转图形》数学教案
第1课时 平移和旋转图形
教学内容:
教材第P80~82页。
教学目标:
1.通过观察实例,使学生初步认识物体或图形的平移和旋转,并能在方格纸上画出平移后的图形。
2.通过联系生活经验,使学生体会平移和旋转的特点,培养空间观念。
3.通过动手操作、模拟示范以及观察图片,加深学生对平移现象和旋转现象的理解。在学习过程中培养学生善于观察的习惯以及动手实践的能力,要充分发挥学生的想象力。
教学重难点:
认识平移和旋转。数出平面图形平移和的格数,以及画平面图形平移后的图形。
教学准备:
教师准备纸飞机、溜溜球、各一个;师生都准备一个圆盘、一个指针,学生准备“动手做”的材料。
教学过程:
一、创设情境,引入新课
老师出示美丽的图形,引起学生的兴趣,从而引出今天的课题。
二、学习新知
(一)认识平移
1.出示例1图
(1)依次出示3个运动的画面(火车、电梯、和国旗的运动)。
提问:你感觉这些运动有什么共同特点?互相说一说。
学生交流,明确这些运动都是沿着直线的运动。
指出:像图中火车车厢电梯国旗这样的运动,都可以看成是平移。
(板书:平移)
举例:请小朋友说一说,你还见过哪些平移现象?
(二)认识旋转。
1、出示例2图
提问:你能看出图中表示的是哪些物体的运动吗?
引导:电风扇叶片、螺旋桨和钟面指针做的是怎样的运动呢?你能用手势表示这些运动吗?清小朋友来说一说,并且表示给大家看一看。
指名学生交流并表示运动方式。
提问:你知道这些运动有什么特点吗?这几个物体运动时,为什么它们的位置固定在那里而没有移动到另一处呢,这是什么原因?
学生交流,明确这些运动都是围绕一点转动。
指出:像图中电风扇叶片、螺旋桨、钟面指针这样的运动,都可以看成是旋转。(课题位置板书:旋转)旋转的特点是绕着一点转动。
(板书:旋转绕着一点转动)
追问:电风扇叶片绕着哪一点转动?螺旋桨和钟面指针呢?
举例:小朋友还在哪里见到过旋转现象?
2、学生“试一试”。
(1)做转盘出示“试一试”中的转盘,让学生用事先先准备的转盘面和指针,照样子做一个转盘。
提问:你是怎样做成这个转盘的?圆面中心为什么用一个掀钮固定?
(2)动手旋转
引导:请小朋友按老师的要求做一做:把指针从指向A点旋转到指向B点,再把指针旋转到指向C点或者指向D点。
提问:刚才指针是什么运动?是绕着哪一点转动的?请小朋友再把指针从指着A点开始,顺时针旋转一周回到A点。
还可以怎样旋转一周回到A点?请大家做一做。(学生逆时针旋转)
追问:怎样的运动是旋转?
(三)比较
引导:请大家用手势表示平移,再用手势表示旋转。
比较一下平移和旋转,它们有什么不同的特点?
小结:我们刚才研究了物体的运动,认识了物体运动的两种方式,这就是平移和旋转。沿着直线移动的运动,是平移,绕着一点转动的运动是旋转。
三、练习巩固
1、做“想想做做”第1题
2、做“想想做做”第2题
让学生独立观察,把通过平移能和绿色树叶重合的图上颜色。
3、做“想想做做”第3题
出示方格图,让学生说一说平面图上的方向,让学生说说两枚棋子各在原来位置的什么方向。
4、完成“动手做”
指出:不管向哪个方向旋转,只要是绕着一点的转动,就是旋转运动。
四、课堂总结
谈话:这节课学习了什么内容?能说说平移和旋转有什么不同吗?你还有哪些收获?
板书设计:
平移和旋转
在日常生活中,像火车车厢、电梯、国旗等物体的运动方式,我们称之为平移。
在日常生活中,像电风扇扇叶的运动、飞机螺旋桨的运动、时钟钟摆的运动,这些物体的运动方式是转动的,我们称这种运动方式为旋转。
教学反思:
学习任何知识的最佳途径是由学生自己去发现。因为这种发现理解最深,也最容易掌握其中的规律、性质和联系,而这种发现的最佳途径则是通过学生动手操作、动眼观察、动脑思考去获取的。所以在教学中教师为学生提供了各种有趣的活动,让学生在参与和实践中去体验、思考、讨论,在教学活动中经历、感悟、体验生活中的数学。
数学来源于生活而最终服务于生活,课程标准强调“人人学有用的数学”。因此,教师要把数学知识与生活实际结合起来,创设一切条件设计与学生生活联系紧密的素材,引导学生把所学的知识运用于生活实践中。通过与生活的联系,不但能激发学生的学习兴趣,让学生在掌握知识的同时提高实践能力,发展空间观念,同时也充分体现了数学的应用价值。
苏教版四年级下册《3的倍数的特征》数学教案
学习目标:
1. 经历观察、探究、发现、验证的过程,发现并掌握3的倍数的特征,进一步体会归纳思想。
2. 能判断一个数是不是3 的倍数。
3. 在探究发现的过程中体验成功的乐趣,增强学好数学的信心。
学习重点:
3的倍数的特征。
学习难点:
能正确判断一个数是不是3的倍数。
学习准备:
课件等。
学习过程:
一、复习导入
提问:谁来说一说什么样的数是 2 的倍数?什么样的数是5的倍数?
并出示习题。
二、新知探究
1.引导观察,调整思路。
(1)下面各数中,哪些是 3 的倍数?
21 42 63 84 15 36 57 78 99 11 32 53 74 95 26 47 68 89
(2)你能从个位上找出一个数是 3 的倍数的特征吗?从十位上呢?
(3)学生讨论发现:这两组数个位上分别为 1—9,但第一组的数均是 3 的倍数,第二组的数都不是 3 的倍数,因此,
无法从个位或十位找出是 3 的倍数的特征。
(4)通过观察发现是不是 3 的倍数,已不再取决于个位或十位上的数字了,必须探索新的解决办法。
2.组织活动,探索规律。
(1)请你从 1、2、3、4、5、6 六张数字卡片中挑出其中三张,排成是 3 的倍数的三位数,你能排出多少个?
(2)讨论:从上面这些三位数中,你能发现 3 的倍数的特征吗?
(3)一个数是否是 3 的倍数,只同所选的数字有关,而与数字的排列位置无关。选三张卡片组成是 3 的倍数的三位数,除选(1,2,3)外,还可选(1,3,5),(2,3,4),(2,4,6),(3,4,5),(4,5,6)。
(4)小结。
一个数各位上的数的和是 3 的倍数,这个数就是 3 的倍数。
3.揭示特征,加深理解。
(1)利用这一题还可进一步让学生思考:如果用这六张卡片组成一个六位数,这个六位数一定是 3 的倍数吗?
(2)谁能想出更简便的方法来判断?(把每一个数位上是 3 的倍数的数划去,全部划完,说明这个数是 3 的倍数)
三、课堂小结
本节课学习后你有什么收获?
苏教版四年级下册《素数和合数》数学教案
教学目标
1. 使学生知道素数与合数的意义,会判断一个数是素数还是合数,会将自然数按因数的个数进行分类。
2. 使学生在探究活动中,进一步培养观察、比较、分析和归纳能力,感受数学文化的魅力,培养勇于探索的精神。
教学过程
一、 创设情境,激趣引入
谈话:同学们,今天先向大家介绍一个世界数学史上著名的猜想。
课件播放:哥德巴赫是200多年前德国的数学家,他提出了一个伟大的猜想——任何一个大于4的偶数都可以表示成两个奇素数的和。另一个大数学家欧拉又补充指出:任何大于2的偶数都是两个素数之和。这一猜想被称为“哥德巴赫猜想”。虽然人们知道这一猜想是正确的,但一直没能从理论上加以证明。数学家们把这一猜想称为 “数学皇冠上的明珠”。我国数学家王元、潘承洞、陈景润先后在“哥德巴赫猜想”的证明上取得了重大进展,特别是陈景润所取得的研究成果,轰动了国内外数学界,被公认为是最具有突破性和创造性的,“是当代在哥德巴赫猜想的研究和证明方面最好的成果”。
提问:看了上面的短片,你想到了什么?有什么问题想问吗?(学生可能提出“什么样的数是素数”等问题)
谈话:大家想知道什么样的数是素数吗?我们今天就一起来研究这一问题。(板书:素数)
[评析:通过介绍哥德巴赫猜想的有关史料,很自然地把学生的注意力集中到素数的概念上,激发了学生进一步探索和发现的欲望。同时,学生能从中感受到数学的奇妙与魅力,产生对数学的兴趣。]
二、 设疑引探,自主建构
1. 操作—感受。
谈话:我们来做个实验。请同学们拿出信封里的小正方形,小组分工合作,分别用2个、3个、4个、6个、7个、11个、12个小正方形拼长方形,看看拼出的结果怎样。
学生在小组内活动,教师巡视并指导。
引导:仔细观察拼出的结果,你发现了什么?
通过比较学生会发现:用2个、3个、7个或11个小正方形拼长方形,只有一种拼法;用4个、6个或12个小正方形拼长方形,可以有两种或两种以上的拼法。
提问:为什么用2个、3个、7个或11个小正方形拼长方形只有一种拼法,而用4个、6个或12个小正方形拼长方形可以有两种或两种以上的拼法呢?(2、3、7或11只有两个因数,而4、6或12都有三个或三个以上的因数)
[评析:数学教学不仅要注重数学知识和技能的传授,更要让学生经历知识的形成过程。实验环节的设计,能引导学生在操作活动中自主发现自然数因数个数的特点,初步感知素数和合数的概念。]
2. 分类—建构。
谈话:请同学们先在自己的练习本上写出1~20,并找出每一个数的所有因数,然后根据每个数因数的个数,将它们进行分类。
学生活动,教师巡视。
反馈:根据每个数因数的个数,你把这些数分成了几类?是哪几类?(根据每个数因数的个数,可以把它们分成三类:一类是只有两个因数的;一类是有三个或三个以上因数的;1只有一个因数,分为一类)
提问:只有两个因数的数,它们的因数有什么特点?(两个因数分别是1和它本身)
提问:有三个或三个以上因数的数,它们的因数有什么特点?(除了1和它本身外,还有其他的因数)
再问:为什么把1单独分为一类?(1是一个很特殊的数,它只有1个因数)
谈话:同学们通过自己的活动把自然数分成了三类,并总结出了这三类数的不同特点,那么,它们分别叫什么数呢?打开课本第78页,把例题认真地读一读,填一填,并和同桌的同学说一说你知道了什么。
学生自学课本之后,师生共同揭示素数和合数的概念(补充板书:和合数),同时明确1既不是素数,也不是合数。
提问:在2~20各数中,哪些数是素数?哪些数是合数?
[评析:让学生写出1~20各数的所有因数,并根据每个数因数的个数进行分类,为学生的自主探索留出了足够的时间和空间,提高了学生的参与度,突出了学生的主体地位。接着通过对三个问题的讨论,引导学生深入思考,发现素数和合数的特点。自学课本,既及时准确地揭示了素数和合数的概念,又为学生进一步清晰和修正已经形成的概念提供了机会。]
3. 交流—质疑。
谈话:关于素数和合数,你还想研究哪些问题?还有哪些不懂的问题?
学生可能提出:素数有多少个?最小的素数是几?最小的合数是几?有最大的素数或合数吗?……
根据提出的问题,有选择地引导学生交流和探索,同时解答学生提出的问题。
三、 巩固练习,深化认识
1. “试一试”。
出示题目:先找出21、23、29的所有因数,再写出这三个数分别是素数还是合数。
先让学生说一说怎样找出每一个数的所有因数,再判断这三个数是素数还是合数,并说明理由。
2. 做“想想做做”第2题。
先让学生按要求划一划,再说一说哪些数是素数,哪些数是合数。练习后引导学生说一说怎样判断一个数是素数还是合数。
3. 做“想想做做”第3题。
学生独立完成判断,并说明理由。
四、 全课总结
提问:通过今天的学习,你知道了哪些知识?有什么新的收获?
五、 举例检验
谈话:我们已经认识了素数,再回过头看一看“哥德巴赫猜想”(出示“哥德巴赫猜想”),你认为这个猜想正确吗?你能举几个例子检验一下吗?
学生举例检验。
谈话:通过检验,我们发现“哥德巴赫猜想”是正确的,只是至今还没有人能从理论上完全证明它。我相信,在不久的将来,一定有人能解开“哥德巴赫猜想”之谜,让我们一起努力吧!
[评析:利用所学知识解释和检验“哥德巴赫猜想”,既巩固了本节课学习的内容,又进一步激发了学生的探索愿望。]
[总评]
在典型的数学背景材料中激发探索新知的兴趣。数学是人类的一种文化。本节课的设计,教师独具匠心地把素数与合数的教学置于数学文化的背景之中,让学生感受数学文化的魅力,激发了学生对数学的兴趣。课的开始,为学生呈现了有关“哥德巴赫猜想”的数学背景材料,这是一个200 多年来诸多数学家不能解决的问题,但中国的数学家在这方面取得了重大的突破,激发了学生的民族自豪感,数学的奇妙吸引了学生的眼球。而这一情境中素数的概念学生还不了解,解开素数的奥秘自然地成为学生的自觉需要。课的结尾,再一次提出“哥德巴赫猜想”的问题,让学生通过举例检验猜想的正确性,使课的首尾呈呼应之势。同时,通过简短的语言,引导学生树立探索数学奥秘的理想,体现了教师对促进学生持续发展的关注。
在有效的探索活动中逐步明确素数和合数的内涵。动手实践、自主探索与合作交流是学生学习的重要方式。本课中,教师寓素数与合数的概念于拼长方形的操作活动中,先让学生在操作中初步感受小正方形的个数与拼成长方形的种数之间的关系,将注意力集中到一个数的因数上来;接着,通过写出1~20的所有因数,并根据各个数因数的个数对这些数进行分类,引导学生逐步概括出素数和合数的共同点;最后,让学生自主阅读课本,明确素数和合数的内涵。学生在这一过程中,积累了丰富的数学活动经验,发展了自主探索的意识和数学思考能力,增强了学好数学的信心。
苏教版四年级下册《倍数和因数》数学教案
教学内容:苏教版(义教课标数学)四下第70-71的例题以及72页“想想做做”的1-3页。
教学目标:
1、通过操作活动得出相应的乘除法算式,帮助学生理解倍数和因数的意义;探索求—个数的倍数和因数的方法,发现一个数倍数和因数的某些特征。
2、在探索一个数的倍数和因数的过程中培养学生观察、分析、概括能力,培养有序思考能力。
3、通过倍数和因数之间的互相依存关系使学生感受数学知识的内在联系,体会到数学内容的奇妙、有趣。
教学重点:理解倍数和因数的意义。
教学难点:探索求一个数的倍数和因数的方法。
教学准备:每桌准各12个一样大小的正方形,每人准备一张自己学号的卡片。
设计理念:通过竟猜、操作、比一比谁写得多,找朋友等形式多样的活动激发学生持续的学习兴趣;学生通过独立思考、合作文流进行自主探索;教师引导学生掌握数学思考的方法。
教学过程:
一、智力竞猜 引入新课
1、让学生进行“智力竞猜”——春暖花香的季节,公园里许多人在划船,一条船上有两个父亲两个儿子,但总共只有3个人,这是怎么回事呢?(部分学生能猜出三个人分别是孙子、爸爸、和爷爷)
2、孙子、爸爸、爷爷的名字分别是韩韩,韩有才、韩广发。请学生以韩有才为中心介绍—下三个人的关系。学生可能会说出“韩有才.是爸爸”,“韩有才是儿子”的语句,这时引导学生说出“谁是谁的爸爸”“谁是准的儿子”。
3、上述“父子关系”是一种互相依存的关系,在表述时一定要完整。并向学生说明自然数中某两个数之间也有这种类似的依存关系——倍数和因数。
设计说明:“智力竞猜”走学生喜欢的形式,因为每个学生都有争强好胜之心,“竞猜”有两个作用,一是激发学生的学习兴趣,二是以此引出“相互依存”的关系,为理解倍数和因数的相互依存关系作铺垫。
二、操作发现 理解概念
1、师:“‘智慧从手指问流出’,通过操作我们能发现许多的知识。请同桌同学拿出课前准备的12个同样大小的正方形,试一试能摆出几个不同的长方形,并思考一下其中蕴涵着哪些不同的乘除法算式。”
2、请学生汇报不同的摆法,以及相应的乘除法算式。(乘法算式和除法算式分开写)再向学生说明:如果一个图形经过旋转后和另一个图形一样,我们就认为这两个图形是一样的,让学生特重复的图形和算式去掉。(板书三十乘法算式,和几十相应的除法算式)
设计说明;让学生写出蕴涵的乘除法算式符合学生的知识基础,学生有的可能用乘法表示,也有的可能用除法表示;让学生将旋转后相同的去掉,这是一次简化,很多学生并不知道,需要指导,这样可以使学生认识到事物的本质。
3、让学生一起看乘法算式4×3=12,向学生指出:12是4的倍数,12也是3的倍数,4是12的因数,3也是12的因数。
4、先请一个学生站起来说一说.然后同桌的同学再互相说一说。
5、让学生仿照说出6×2=12和12×1=12中哪个数是哪个数的倍数,哪个数是哪个数的因数。
6、学生相互出一道乘法算式,并说一说谁是谁的倍数,谁是谁的因数。学生可能会出现0×( )=0的情况,借此向学生说明我们研究因敷和倍数一般指不是0的自然数。
设计说明:倍数和因数是全新的概念,需要教师的“传授、讲解”,需要学生的适当“记忆”——重复、仿照。当然,要使学生真正理解还必须举一反三,通过互相举例可以逐步完善学生对倍数和因数的认识,同时使学生明确倍数和因数的研究范围。
7、以4×3=12与12÷3=4为例,向学生说明后面的除法算式是由前面的乘法算式得到的,根据这个除法算式可以说谁是谁的倍数,谁是谁的因数,说好后再让学生试一试其他几个除法算式中的关系。
8、练习:根据下面的算式,说说哪个数是哪个数的因数,哪个数是哪个数的倍数
5×4=20 35÷7=5 3+4=7
(1)学生回答后引发学生思考:能不能说20是倍数,4是因数。使学生进一步理解倍数是两个数之间的一种相互依存的关系,必须说哪个是哪个的倍数,因数也同样如此。
(2)通过3+4=7使学生进一步理解倍数和因数都是建立在乘法或除法的基础之上的。
设计说明:乘法和除法是一种互逆的关系,在学习中应该沟通它们之间的联系;通过三道练习可以巩固刚刚获得的对倍数和因数的认识,将融会贯通落到实处。
三、探索方法 发现特征
1、找一个数的因数。
(1)联系板书的乘除法算式观察思考12的因数有哪些,井想办法找出15的所有因数。
(2)学生独立思考,明白根据一个乘法(除法)算式可以找出15的两个因数,在学生充分交流的基础上引导学生有条理的“一对一对”说出15的因数。
(3)用“一对一对”的方法找出36的所有因数。可能有的学生根据乘法算式找的,也有的学生是根据除法算式找的,都应该给予肯定。
(4)引导学生观察12、15、36的因数,说一说有什么发现。一个数的因数个数是有限的,其中最小的因数都是1,最大的都是它本身。
设计说明:先安排学生“找一个数的因数”可以使学生利用操作得到的算式进行,观察,这样比较自然,而且为于找一个数的因数指明了方向。学生交流时突出了方法的多样性,既可以根据乘法算式想,也可以根据除法算式想,交流后引导学生“一对一对”的找是必要的,它可以培养学生的有序思考。最后引导学生观察。使学生自主发现、归纳出一个数的因数的某些特征。
2、找一个数的倍数。
(1)让学生找3的倍数,比一比谁找得多。
(2)学生汇报后,引导学生有序思考,并得出3的倍数可以用3乘连续的自然数1、2、3……,3的倍数的个数是无限的,所以写3的倍数时要借助省略号表示结果。
(3)找出2的倍数和5的倍数,并引导学生观察3、2、5的倍数情况,说一说有什么发现。一个数的倍数个数是无限的,其中最小的倍数是它本身,没有最大的倍数。
设计说明:让学生比一比谁找的倍数多,可以使学生产生认知冲突,认识到一个数的倍数个数是无限的,在学生汇报后同样需要引导学生的有序思考,需要引导学生自主发现、归纳一个数倍数的特征。
四、巩固练习
师;刚才同学们认识了倍数和因数,并且探索了求一个数因数和倍数的方法,想不想检查一下自己掌握得如何?
1、“想想做做”的第l题。学生表述后强调哪个是哪个的倍数(或因数)。
2、“想想做做”的第2题。学生填好后引导学生说一说:表中的“应付元数”其实都是什么?表格中为什么用省略号?
3、“想想做做”的第3题。学生填好后引导学生说一说:表格中所有数都是什么?这个表格中为什么没有省略号?
4、游戏——“找朋友”。让学生拿出各自的学号卡片,找出自己学号数的所有因数,使学生发现每个学号数的因数都在全班的学号数以内;再让学生找一找自己学号数的倍数,井说一说能不能在全班学号数内部找到一个,还有其他的吗?
设计说明:第l题是基础练习.可以巩固对倍数和因数的认识,2、3两题联系实际,使学生感悟到其中蕴藏着求一个数倍数和因数的方法,以及倍数和因数的某些特征。第4题通过游戏活动进一步激发学生持续的学习热情,而且可以综合应用求倍数和因数的方法,再次认识到倍数和因数的某些特征。
五、自我梳理 探索延伸
1、通过这节课的学习你有什么收获?向你的同伴介绍一下。
2、生活中许多现象与我们学习的“倍数和因数”的知识有关,课后同学们可以利用今天所学的知识探索一下“1小时等于60分”的好处。通过探索使学生明白由于60的因数是两位数中最多的,可以方便计算。
设计说明:“向同伴介绍自己的收获”可以将课堂中学到的知识进行自我梳理,同时通过探索“1小时等于60分”的好处“,可以巩固倍数和因数的相关知识,沟通知识间的联系,拓展学生的知识面,使学生认识到数学知识的应用价值。
北师大版四年级下册《图形分类》数学教案
教学内容
教材P20~21页。
教学目标
1.知识与能力
通过折、剪、拼等方法,直观的认识三角形和平行四边形,并能说出它们的名称和在生活中的应用。
2.过程与方法
通过动手实践,让学生体会图形的变换,发展学生的空间想象能力。
3.情感态度价值观
培养学生的观察、思维、合作能力,培养辩证唯物主义的观点。
教学重点
直观认识三角形和平 行四边形,知道它们的名称,并能识别这些图形,知道它们在日常生活中的应用。
教学难点
让学生动手在钉子板上围、用小棒拼平行四边形。
教学过程
一、课堂导入
(展示ppt第三张),请同学们看课本20页,说说他们都是什么图形? 是按什么方法分类的?
二、启发思维、引出新知
1.认识三角形
(1)教师出示一张正方形纸,提问:这是什么图形?
生:这是正方形。
师:很正确,那么如果把它对折,变成什么了?
生 :长方形。
师 :很好,那你知道老师 是怎么办到的吗?请小朋友们拿出你的正方形试试看。
学生活动,教师巡视,了解学生折纸的情况。组织学生交流。
师:老师发现同学们都很厉害,可老师还能折出其他的形状,你能吗?
学生活动,教师巡视,了解学生折纸的情况。
师:(展示ppt第四张)那么同学们请看,这就是另一种折纸的方法,这种图 形叫什么?谁能告诉我?
生:三角形。
师:对,就是三角形。
(板书三角形,并展示ppt第四张。)
师:那同学们谁能告诉我,这些图形都叫什么呢?
(展示ppt第五张。)
(2)提问:这样的图形好像在哪儿也看到过?想一想?
①先在小组里交流。
②每组选一个代表发言,要说别人没有说过的。学生回答。这里老师着重强调是物体的某一个“面 “ 是三角形,而不是某一物体是一个三角形。适当送礼物给举例多,说话完整的小组。
③老师带来了几个图形,请你认一认。
(3)师小结:在我们的生活中有许多物体的面是三角形面,只要小朋友多观察,就会有更多的发现。
2.认识四边形
(1)这是一张什么形状的纸?(演示长方形纸)怎样折一下,把 它折成两个完全一样的三角形?
(2)学生先想一想,然后同桌商量着试折,并与其它学生交流。教师巡视 。
(3)折好后把两个三角形剪下来。要想知道这两个三角形是不是完全一样,你能有什么办法?(把它们叠在一起)这就是完全一样。
(4)现在我们手里都有这样两个一样的三角形,用它们拼一拼,看看能拼出什么图形?小朋友将拼好的图形贴到黑板上,一一讲评。学生分组活动,教师巡视。
交流探讨。同学们可能拼出以下几种图形:三角形、长方形、四边形、平行四边形。
(5)(展示ppt第六张)同学们,你们认识这是什么图形么?你们在生活中见到过它吗?是什么样的?
①请一位拼成三角形的同学到投影仪前展示所拼出的图形。
师:他拼成了一个什么图形? 生答:三角形。
生:老师,我也拼出了三角形,但和刚刚这个同学的不一样!师:好,请你来 拼拼看。
②师:谁还拼出了其他的图形(请一位拼成长方形的同学到投影仪前展示)?
师:他拼成了一个什么图形? 生答:长方形。
④还有别的同学愿意上来么?(请一位拼成平行四边形的同学到投影仪前展示)
师:这个图形真漂亮,它叫什么名字呀?生:平行四边形。(板书:平行四边形)
师:老师,小朋友们费了很大的功夫才把长方形变成了平行四边形,老师现在也变给小朋友们看看,把眼睛擦亮了!
(师 出示一个长方形的模型,提问:“这个图形的面是一个什么图形?”学生回答后,老师将这个长方形轻轻拉动,这时出现的是一个平行四边形。提问:“现在这个图形的面变成了一个什么图形?”)
师:刚刚在老师变的过程中你发现了什么?
小结:平行四边形是可以变的。我们生活中有很多地方就利用了平行四边形可以变的特点制作了很多东西,想一想?(篱笆、楼梯、伸缩门、可拉伸的衣架等。)
(展示ppt第八张并让学生动手实践。)
三、巩固新知
让学生打开课本第21页,并展示ppt第七张,完成1、2两题。
四、全课小结
今天这节课,我们又认识了哪两位 新朋友?你有哪些收获?(展示ppt第九张、第十张。)
点击查看更多:四年级下册数学教案
提醒:
最新小升初政策、最新奥数试题、最全小学语文知识点
尽在“”微信公众号
(一) 创设情境,感知对称
本课的引入,课件展示一组美丽的轴对称图形,提出问题:这三幅图片有什么共同的特征?唤醒学生对轴对称图形的原有认识,引导学生回忆轴对称图形的概念,并板书关键词: 对折 完全重合
并揭题:图形的对称
这里多媒体演示的精美图片配以逼真的声效,是传统教学形式所达不到的,教学效果的区别也是很明显的。
(二)引导探索,研究对称
这部分我分为两个层次来教学:
1、探索长方形对称轴,指导学生画对称轴。首先第一部分探索长方形的对称轴,学生通过折一折并得出结论:长方形有2条对称轴,可以上下对折,也可以左右对折。并向学生介绍,这样的折痕在轴对称图形中是特有的,被称为对称轴。(板书:对称轴)。在学生交流的时候,教师同时课件演示折法,这样的演示,节省了大量的时间,让学生直观地感受到了长方形的两条对称轴的位置。
我把教学的重点放在了第二层次指导学生画对称轴上。教师在展示台示范用点划线画一条对称轴。并让学画对称轴。要求把另外一条也画出来。生自折自画自悟。教师深入,要是长方形在方格纸上,你还能找到别的方法画对称轴吗?(生说,师课件演示在格子图上数格子。)
教师继续深入,如果没有折痕,你能画出长方形的对称轴吗?在小组内讨论,得出取对边中点连线的方法。在交流时,课件出示用4把直尺测量找出长方形长和宽的中点,以此画出对称轴。
2、探索正方形的对称轴。
在第二层次探索正方形的对称轴过程中,我先让学生自己动手折一折,操作验证,再在书上画出结果。
展示的时候,先交流画2条对称轴的图形。
然后展示画4条对称轴的图形补充,指着两条对角线所在的对称轴,提问:为什么正方形的对角线是它的对称轴,而长方形的对角线却不是对称轴呢?
根据学生回答,教师展示课件正方形4种对折方法的动态演示。
师总结:正因为如此,正方形有4条对称轴,而长方形只有2条对称轴。(板书)
【设计意图:在整个探索过程中,多媒体起到了粉笔和板书无法代替的引导作用,它使动作直观化,理论形象化,抽象具体化,明确了长方形、正方形对称轴的位置,在格子图上呈现三维动态来数格子,让学生有身临其境的感受。配以动态演示和电脑展示台的交互功能,学生可以很好的交流自己的想法和建议。这样很好地突出本课的重点,突破本课的难点。】
(三) 探究提高,巩固对称
练习部分,我比较注重对习题的开发和利用,进行适当地顺序调整,拓展和延伸,使练习部分成为本课的亮点。主要分为3个层次来练习。
1.基础练习(想想做做第1题)
请同学们拿出6个图形,折一折,判断哪些是轴对称图形,哪些不是。是轴对称图形的,画出它的对称轴。接着学生在交流时可以使用展示平台,学生可以完全看清操作过程。
这一题是对基础知识的巩固。
2.提高练习(想想做做第4题)
题目要求学生先画出正三角形、正方形、正五边形、正六边形的对称轴,学生独立完成后,集体交流。
根据部分学生的答案,课件填表格。我适当追问,引起学生思考:按照这样推断,那正七边形会有几条对称轴? 正十边形呢? 正一百边形呢?
让学生归纳总结出规律:正多边形,对称轴的条数与边数相等。
3.综合练习
①比较复杂图案的对称轴。(想想做做第2题)
出示4个复杂图形,学生独立完成,再集体交流。(根据学生回答,课件演示对称轴)
②根据对称轴所在的位置,画出轴对称图形的另一半。(想想做做第3题)
学生独立完成,交流时让学生说说怎样找关键点最准确。配合课件和学生的回答,动态演示先找到对应的关键点,然后将这几个点相连。
【设计意图:针对所学知识重组练习,由浅入深,由易到难,使学生阶段性地提高认识。越复杂的图形学生会觉得越困难,这时课件演示是最好的教学手段,让每一条对称轴都能直观、清晰呈现在图形上。】
(四) 总结反思,升华对称
首先让学生说说你有什么新的收获 。
其次学生说说生活中的对称现象。
【设计意图:通过总结整理,梳理知识,在头脑中形成清晰地知识结构。欣赏生活中的轴对称图形,感受生活中的美。】
(五)创新设计,运用对称
请学生发挥自己的聪明才智,在方格纸上设计一个美丽的轴对称图形(课件出示方格纸)。
【设计意图:经历欣赏生活中的轴对称图形,激发学生的创作灵感。最后安排学生自主设计轴对称图形,有利于提高学生的创造能力。】
板书设计
我的板书重点突出,结合多媒体技术的辅助,起到了提纲挈领的作用,对学生有较强的指导性。
图形的对称
对称 完全重合
长方形 2条
对称轴 正方形 4条
正几边形 几条
在整堂课的教学中,我通过利用先进的多媒体技术进行有效的辅助教学,课堂气氛十分活跃,同时也优化了课堂教学,提高了课堂效率。
苏教版四年级数学下册第一单元图形的平移教案
第一课时 图形的平移
内容:课本P1的例题和P2页的试一试、练一练。
目标
1.让学生进一步认识图形的平移,能在方格纸上把简单图形先沿水平(或竖直)方向平移,再沿竖直(或水平)方向平移。
2.让学生进一步积累平移的学习经验,更充分地感受观察、操作、实验、探索等活动本身的独特价值,增强对数学的好奇心。
3.让学生在认识平移的过程中,产生对图形与变换的兴趣。
重点难点
重点:进一步掌握平移动方法,体会平移的特点。
难点:掌握两次连续平移的方法。
教学准备
多媒体课件
教学过程
一、复习铺垫
1.电脑出示图,谈话:这里有一条热带鱼,我们用虚线表示原来的图形,用实线表示移动后的图形。
这条热带鱼做的是什么运动?(平移)往哪个方向平移的?(向右)它向右平移了几格?怎么知道的?(学生自由发表意见)
2.小结。
⑴只要抓住一个点来看,数一数这个点到它所对应的点向右平移了几格,我们就可以知道热带鱼向右平移了几格。
⑵也可以抓住一条边或一个部分观察,看看把图形的一条边或一部分平移了多少格。
二、新知探究
1.出示例1,提问:小船图和金鱼图是怎样运动的?(向右平移)
2.问:它们的运动有有什么相同点和不同点?
先回忆我们过去学过的图形平移的方法,数一数,看它先向什么方向移动了几个格子,
3.学生独立思考观察。(教师巡视,对有困难的学生给以指点和帮助)
4.小组交流。
5.反馈汇报。
小船图向右平移9格。
金鱼图向右平移7格。
三、做试一试
1.判断平移的方向和距离。
2.学生尝试作图。
要求:先自己任选一题独立完成,然后在小组中交流,最后全班交流。
⑵学生独立完成,教师巡视,对有困难的学生加以指导。
⑶投影学生作品,交流平移的过程与方法。
四、做练一练
四、课堂总结
我们今天学习了什么内容?我们做了哪些事情?你对什么事印象最深?从中你明白了什么?
五、课堂作业
《补充习题》相应练习
板书设计:
图形的平移
对应点或对应线段平移
中间图形用虚线,箭头表示平移方向
《苏教版四年级下册《图形的旋转》数学教案》一文就此结束,希望能帮助您在小学教学中起到作用,如还需更多,请关注我们的“小学四年级教案数学教案”专题。
文章来源:http://m.jab88.com/j/111606.html
更多