俗话说,磨刀不误砍柴工。高中教师要准备好教案为之后的教学做准备。教案可以让讲的知识能够轻松被学生吸收,帮助高中教师提前熟悉所教学的内容。关于好的高中教案要怎么样去写呢?下面是小编帮大家编辑的《基因的自由组合定律》,欢迎阅读,希望您能阅读并收藏。
第三章遗传和染色体
第3课时基因的自由组合定律(1)
考纲要求
考点梳理
1?两对相对性状的遗传实验
(1)实验过程
(2)实验结果
中除了出现两个亲本类型(黄色圆粒和绿色皱粒)以外,还出现两个与亲本不同的类型:
和。
(3)结果分析
对每一对相对性状单独进行分析,结果每一对相对性状,无论是豌豆种子的粒形还是粒色,只看一对相对性状,依然遵循。比例均为。这说明两对性状的遗传是彼此独立,互不干扰的。
2?对自由组合现象的解释
(1)假设豌豆的圆粒和皱粒分别由基因R、r控制,黄色和绿色分别由基因Y、y控制,这样,纯种黄色圆粒和纯种绿色皱粒的基因型分别是和,它们产生的配子分别
是和。
(2)杂交产生的基因型是,表现型是。
(3)当在产生配子时,每对等位基因,非等位基因可以。产生的雌雄配子各有4种:、、、,它们之间的数量比为。
(4)受精时,雌雄配子的结合是随机的。雌雄配子的结合方式有种,基因型有种,性状表现为4种:、、、。它们之间的数量比是。
基础过关
1?孟德尔的豌豆杂交实验表明,种子黄色(Y)对绿色(y)为显性,圆粒(R)对皱粒(r)为显性。小明想重复孟德尔的实验,他用纯种黄色圆粒豌豆与纯种绿色皱粒豌豆杂交,得到自交得到的性状如下图所示。根据基因的自由组合定律判断,不正确的是()
A?①②③④都是皱粒
B?①②③④都是黄色
C?④的基因型与相同
D?①是黄色皱粒,④是绿色皱粒
2?根据基因的自由组合定律,在正常情况下,基因型为YyRr的豌豆不能产生的配子是()
A?YRB?YrC?yRD?YY
3?基因型为AaBb的个体,产生AB配子的几率是()
A?0B?1/2C?1/3D?1/4
4?下列基因型个体中属于纯合子的是()
A?YYRrB?YYrrC?YyRRD?yyRr
5?孟德尔用纯种黄色圆粒豌豆和纯种绿色皱粒豌豆进行杂交实验,产生的是黄色圆粒。将自交得到的表现型分别为黄色圆粒、黄色皱粒、绿色圆粒、绿色皱粒,它们之间的数量比是()
A?1∶1∶1∶1B?3∶1∶3∶1
C?3∶3∶1∶1D?9∶3∶3∶1
6?下列有关基因分离定律和基因自由组合定律的说法错误的是()
A?二者具有相同的细胞学基础
B?二者揭示的都是生物细胞核遗传物质的遗传规律
C?在生物性状遗传中,两个定律同时起作用
D?基因分离定律是基因自由组合定律的基础
7?让独立遗传的黄色非甜玉米(YYSS)与白色甜玉米(yyss)杂交中得到白色甜玉米80株,那么从理论上来说中表现型不同于双亲的杂合子植株约为…()
A?160株B?240株C?320株D?480株
8?已知一玉米植株的基因型为AABB,周围虽生长有其他基因型的玉米植株,但其子代不可能出现的基因?型是?()
A?AABBB?AABbC?aaBbD?AaBb
9?狗毛褐色由B基因控制,黑色由b基因控制,I和i是位于另一对同源染色体上的一对等位基因,I是抑制基因,当I存在时,B、b均不表现颜色而产生白色。现有黑色狗(bbii)和白色狗(BBII)杂交,产生的中杂合褐色∶黑色为()
A?1∶3B?2∶1C?1∶2D?3∶1
10?番茄的红果(A)对黄果(a)为显性,圆果(B)对长果(b)为显性,两对基因独立遗传。现用红色长果番茄与黄色圆果番茄杂交,从理论上分析,其后代基因型不可能出现的比例是()
A?1∶0B?1∶2∶1
C?1∶1D?1∶1∶1∶1
11?黄色圆粒豌豆自交,后代出现了绿色皱粒豌豆,从理论上,
(1)后代中黄色圆粒豌豆约占总数的;
(2)后代中纯合子占总数的;
(3)绿色圆粒的杂合子占总数的;
(4)双隐性类型占总数的;
(5)与亲本不同的性状占总数的。
冲A训练
豌豆种子子叶黄色(Y)对绿色(y)为显性,形状圆粒(R)对皱粒(r)为显性,某人用黄色圆粒和绿色圆粒进行杂交,发现后代出现4种表现型,对性状的统计结果如图所示,请回答:
(1)亲本的基因型是(黄色圆粒),(绿色圆粒)。
(2)杂交后代中的基因型有种,其中纯合子占的。
(3)中黄色圆粒豌豆的基因型是,绿色圆粒的基因型是。
第4课时基因的自由组合定律(2)
考纲要求
考点梳理
1?测交验证
(1)实验目的:测定的基因型及产生配子的和。
(2)分析:如果理论正确,则∶1Yyrr∶1yyRr∶1yyrr。
(3)实验结果:黄圆∶黄皱∶绿圆∶绿皱=。
(4)证明问题
①的基因型为YyRr;
②减数分裂产生四种配子YR∶Yr∶yR∶yr=。
2?基因的自由组合定律的实质
在进行减数分裂形成配子的过程中,一个细胞中的上的彼此分离;上的可以自由组合。
3?基因的自由组合定律的应用
(1)指导杂交育种
在育种工作中,人们用的方法,有目的地使生物不同品种间的重新组合到一起,选择出对人类有益的新品种。
(2)指导医学实践
在医学实践中,人们可以根据基因的自由组合定律来分析家族系谱图中两种遗传病的遗传情况,并且推断出后代的和及它们出现的,为遗传病的预测和诊断提供理论依据。
4?性别决定
(1)概念:指的生物决定性别的方式。性别主要是由决定的。
(2)性染色体和常染色体
①性染色体:是和紧密关联的染色体。
②常染色体:与性别决定无关的染色体。
(3)性别决定方式:主要有型和型。
5?伴性遗传
(1)概念:由上的基因决定的性状在遗传时与联系在一起。
写出下表中人类正常色觉和红绿色盲的基因型。
基础过关
1?一对夫妇生了“龙凤双胞胎”,其中男孩色盲,女孩正常,而该夫妇的双方父母中,只有一个带有色盲基因。则此夫妇的基因型为()
A?、B?、
C?、D?、
2?果蝇的灰身与黑身是一对相对性状,直毛与分叉毛为另一对相对性状。现有两只亲代果蝇杂交,子代表现型及比例如下图所示,相关叙述正确的是()
A?控制两对性状的基因分别位于常染色体和性染色体上,不遵循基因的自由组合定律
B?正常情况下,雄性亲本的一个精原细胞可产生的精子类型是四种
C?子代中表现型为灰身直毛的雌性个体中,纯合子与杂合子的比例为1∶5
D?子代中灰身雄蝇与黑身雌蝇交配,可产生黑身果蝇的比例为1/2
3?下面为基因型为AaBb的生物自交产生后代的过程,基因的自由组合定律发生于()
A?①B?②C?③D?④
4?番茄高茎(T)对矮茎(t)为显性,圆形果实(S)对梨形果实(s)为显性,这两对基因分别位于非同源染色体上。现将两个纯合亲本杂交后得到的与表现型为高茎梨形果的植株杂交,其杂交后代的性状及植株数分别为高茎圆形果120株,高茎梨形果128株,矮茎圆形果42株,矮茎梨形果38株。则杂交组合的两个亲本的基因型是()
A?B?
C?D?
5?牵牛花叶子有普通叶和枫形叶两种,种子有黑色和白色两种。现用普通叶白色种子纯种和枫形叶黑色种子纯种作为亲本进行杂交,得到的为普通叶黑色种子自交得结果符合基因的自由组合定律。下列对的描述中错误的是()
A?中有9种基因型,4种表现型
B?中普通叶与枫形叶之比为3∶1
C?中与亲本表现型相同的个体大约占3/8
D?中普通叶白色种子个体与枫形叶白色种子个体杂交将会得到两种比例相同的个体
6?黄粒(A)高秆(B)玉米与某表现型玉米杂交,后代中黄粒高秆占3/8,黄粒矮秆占3/8,白粒高秆占1/8,白粒矮秆占1/8,则双亲基因型是()
A?B?
C?D?
7?拉布拉多犬的毛色受两对等位基因控制,一对等位基因控制毛色,其中黑色(B)对棕色(b)为显性;另一对等位基因控制颜色的表达,颜色表达(E)对不表达(e)为显性。无论遗传的毛色是哪一种(黑色或棕色),颜色不表达导致拉布拉多犬的毛色为黄色。一位育种学家连续将一只棕色的拉布拉多犬与一只黄色的拉布拉多犬交配,子代小狗中有黑色和黄色两种。根据以上结果可以判断亲本最可能的基因型是…()
A?B?
C?D?
8?假定基因A是视网膜正常所必需的,基因B是视神经正常所必需的。基因型均为AaBb的双亲,其子代中视觉不正常的可能是()
A?B?C?D?
9?人的血友病属于伴性遗传,苯丙酮尿症属于常染色体遗传。一对表现型正常的夫妇生下一个既患血友病又患苯丙酮尿症的男孩。如果他们再生一个女孩,表现型正常的概率是()
A?9/16B?3/4C?3/16D?1/4
10?分析下面家族中某种单基因遗传病的系谱图,下列相关叙述中正确的是()
A?该遗传病为伴X染色体隐性遗传病
B?Ⅲ和Ⅱ基因型相同的概率为2/3
C?Ⅲ肯定有一个致病基因是由Ⅰ传来的
D?Ⅲ和Ⅲ婚配,后代子女患病概率为1/4
冲A训练
1?已知某植物开红花是由两个显性基因A和B共同决定的,否则开白花,两对等位基因独立遗传,则植株AaBb自交后代的表现型种类及比例是()
A?4种,9∶3∶3∶1B?4种,1∶1∶1∶1
C?2种,3∶1D?2种,9∶7
2?如图示一对同源染色体及其上的等位基因,下列说法中错误的是()
A?来自父方的染色单体与来自母方的染色单体之间发生了交叉互换
B?B与b的分离发生在减数第一次分裂
C?A与a的分离仅发生在减数第一次分裂
D?A与a的分离发生在减数第一次分裂和减数第二次分裂
3?(2011南通模拟)下图为某家族红绿色盲遗传系谱图,Ⅱ和Ⅱ是同卵双生(即由同一个受精卵发育而来)。分析回答:
(1)色盲基因位于染色体上,其遗传遵循定律。
(2)Ⅱ的基因型是(基因用A、a表示),Ⅱ和Ⅱ再生一个孩子患病的几率是。
(3)若Ⅲ是女孩,其基因型及比例是;若Ⅲ是男孩,患色盲的几率是。
二、基因的自由组合定律
教学目的
1、基因的自由组合定律及其在实践中的应用(C:理解)
2、孟德尔获得成功的原因(C:理解)
教学重点
1、对自由组合现象的解释
2、基因的自由组合定律的实质
3、孟德尔获得成功的原因
教学难点
对自由组合现象的解释
教学用具
豌豆粒色遗传和粒形遗传的杂交示意图、两对相对性状杂交试验分析图解,两对相对性状测交试验图
教学方法
讲授法、讨论法
课时安排
2课时
教学过程
第一课时
上一节课我们学习了基因的分离定律。下面我们来复习一下:
1、基因分离定律的实质是什么?
(基因分离定律是:在杂合子的细胞中,位于一对同源染色体上的等位基因,具有一定的独立性,生物体在进行减数分裂形成配子时,等位基因会随着同源染色体的分开而分离,分别进入两个配子中,独立地随配子遗传给后代)
2、分析孟德尔的另外两个一对相对性状的遗传试验
①豌豆粒色试验②豌豆粒形试验
P黄色X绿色P圆形X皱形
↓ ↓
F1黄色 F1圆形
F2F2
(①F1黄色豌豆自交产生两种表现型:黄色和绿色,比例为:3:1;②F1圆形豌豆自交产生F2有两种类型:圆粒和皱粒,比例为3:1)
这节课我们在学习了基因的分离定律的基础上,来学习基因的自由组合定律。首先我们来了解孟德尔的两对相对性状的遗传试验。
(一)两对相对性状的遗传试验
孟德尔的基因分离定律是在完成了对豌豆的一对相对性状的研究后得出的。那么,豌豆的相对性状很多,如果同一植株有两对或两对以上的纯合亲本性状,如:豌豆的黄色相对于绿色为显性性状,圆粒相对于皱粒为显性性状。我们将同时具有黄色、圆粒两种性状的纯亲本植株和具有绿色、皱粒两种性状的纯亲本植株放到一起来研究它们杂交情况的话,会出现什么样的现象呢?它是否还符合基因的分离规律呢?于是,孟德尔就又做了一个有趣的试验,试验的过程是这样的。
1、纯种黄色圆粒豌豆和纯种绿色皱粒豌豆的杂交试验
P黄色圆粒X绿色皱粒
↓
F1黄色圆粒
↓
F2黄色圆粒:绿色圆粒:黄色皱粒:绿色皱粒
315粒:108粒:101粒:32粒
9:3:3:1
孟德尔选用了豌豆的粒色和粒形这样两个性状来进行杂交,即纯种黄色圆粒豌豆和纯种绿色皱粒豌豆做亲本进行杂交。无论是正交还是反交,结出的种子都是黄色圆粒的。以后,孟德尔又让F1植株进行自交。产生的F2中,不仅出现了亲代原有的性状——黄色圆粒和绿色皱粒,还产生了新组合的性状——绿色圆粒和黄色皱粒。在所结的556粒种子中,有黄色圆粒的315粒、绿色圆粒的108粒、黄色皱粒的101粒、绿色皱粒32粒。四种表现型的数量比接近9:3:3:1。
2、两对相对性状的遗传试验的主要特点
(1)F1均为黄色圆粒,为显性性状;
(2)F2有四种表现型,这四种表现型的数量比接近9:3:3:1;
(3)F2中的绿色圆粒和黄色皱粒是不同相对性状间的重组新类型;
(4)正交和反交的结果相同。
(二)对自由组合现象的解释
为什么会出现以上这样的结果呢?这一试验结果又是否符合基因的分离定律呢?
我们首先从一对性状(粒色、粒形)入手,看看试验结果是否符合基因的分离定律。
1、每一对相对性状的遗传都符合基因的分离定律
粒色:黄色315+101=416
绿色108+32=140
黄色:绿色=416:140, 接近于3:1
粒形:圆粒315+108=423
皱粒101+32=133
圆粒:皱粒=423:133,接近于3:1
由此可见,从一对相对性状的角度去衡量这一试验是符合基因的分离定律的。
2、两对相对性状的分离是各自独立的
两对相对性状在共同的遗传过程中性状分离和等位基因的分离是互不干扰、各自独立的,是随机的。
那么,新组合的性状又是如何产生的呢?
通过对上述遗传试验的分析,在F2不仅出现了与亲本性状相同的后代,而且出现了两个新组合的性状即黄色皱粒和绿色圆粒,并且这两对相对性状的分离比接近3:1。这表明在F1形成配子后,配子在组合上发生了自由配对的现象。
3、不同对的相对性状之间自由组合
由于一对性状的分离是随机的、独立的,那么,两对性状在遗传的过程中必然会发生随机组合。如果我们利用概率计算的原理进行计算,能得到怎样的结果呢?
从实验结果来看,在F2中:
粒色:黄色:3/4粒形:圆形:3/4
绿色:1/4皱形:1/4
也就是说,在3/4的黄色种子中,应该有3/4是圆粒的,1/4是皱粒的;在1/4的绿色种子中,应该有3/4是圆粒的,1/4是皱粒的。反过来也一样,即在3/4的圆粒种子中,应该有3/4是黄色的,有1/4是绿色的;在1/4的皱粒种子中,应该有3/4是黄色;1/4是绿色。
因此,两对性状结合起来,在556粒种子中应出现的性状及比例为
黄色圆粒:3/4x3/4=9/16 556x9/16=313
黄色皱粒:3/4xl/4=3/16556x3/16=104
绿色圆粒:1/4x3/4=3/16 556x3/16=104
绿色皱粒:1/4xl/4=1/16556xl/16=34
杂交实验的结果也正是如此。在556粒种子中,黄色圆粒315粒,黄色皱粒101粒,绿色圆粒108粒,绿色皱粒32粒,正好接近:9/16:3/16:3/16:1/16,即:9:3:3:1。
孟德尔对上述的自由组合现象是怎样解释的呢?请同学们看课本P31以上数据表明……至P32第二自然段结束。
4、孟德尔对自由组合现象进行了解释
孟德尔对自由组合现象进行了解释,其要点是:
(1)豌豆的粒色和粒形分别由一对遗传因子(等位基因)控制,即黄色和绿色分别由遗传因子(等位基因)Y和y控制;圆粒和皱粒分别由遗传因子(等位基因)R和r控制。由于子一代表现为黄色圆粒,说明亲本中黄色相对于绿色为显性性状,圆粒相对于皱粒为显性性状。这样,两个亲本中,纯种黄色圆粒的遗传因子组成(基因型)为YYRR;纯种绿色皱粒的遗传因子组成(基因型)为yyrr。
(2)形成配子时,两个亲本YYRR产生的配子为YR,yyrr产生的配子为yr。
(3)受精后,F1的遗传因子组成(基因型)为YyRr,其表现型为黄色圆粒。
(4)F1形成配子时,每对遗传因子(等位基因)表现为分离。与此同时,在不同对的遗传因子(非等位基因)之间表现为随机自由结合,而且是彼此独立、互不干扰的。这样,F1产生的雌雄配子各有4种,即YR、Yr、yR、yr,其比例为1:l:l:1。
关于杂种F1产生配子的种类和比例是发生基因自由组合的根本原因,也是这节课的难点。现在我们一起来分析F1产生配子的过程。
杂种F1(YyRr)在减数分裂形成配子时,等位基因Y和y、R和r会随着同源染色体的分离进入不同的配子,而不同对的等位基因之间随机组合在同一配子中。
F1基因型→等位基因分离→非等位基因之间自由组合→YR Yr yR yr
1:1:1:1
由于Y与R和r组合的几率相同,R与Y和y组合的几率也相同,所以4种配子的数量相同。
(5)杂种F1形成配子后,受精作用时雌雄配子的结合是随机的,即各种类型的雌雄配子的结合机会均等。因此,F1的配子的结合方式有16种,其中有9种基因型、4种表现型,表现型数量比接近于9:3:3:1。
5、黄色圆粒豌豆和绿色皱粒豌豆杂交试验分析图解
PYYRRXyyrr
↓ ↓
配子YRyr
↓ ↓
F1YyRr
F2
基因型 1/16YYRR1/16yyRR1/16Yyrr1/16yyrr
2/16YyRR2/16yyRr2/16Yyrr
2/16YYRr
4/16YyRr
表现型9/16黄色圆粒3/16绿色圆粒 3/16黄色皱粒1/16绿色皱粒
孟德尔在完成了对豌豆一对相对性状的研究以后,没有满足已经取得的成绩,而是进一步探索两对相对性状的遗传规律,揭示出了遗传的第二个规律—基因的自由组合定律。在揭示这一规律时,他不仅很准确地把握住了两对相对性状的显隐性特点,进行了杂交试验;并在产生F1后,对F1进行自交,分析出因为在(减数分裂)形成配子时,各产生了4种雌雄配子。由于雌雄配子的自由组合,才在F2中出现了新组合性状这一规律。
板书
二、基因的自由组合定律
(一)两对相对性状的遗传试验
1、纯种黄色圆粒豌豆和纯种绿色皱粒豌豆的杂交试验
P黄色圆粒X绿色皱粒
↓
F1黄色圆粒
↓
F2黄色圆粒:绿色圆粒:黄色皱粒:绿色皱粒
315粒:108粒:101粒:32粒
9:3:3:1
2、两对相对性状的遗传试验的主要特点
(1)F1均为黄色圆粒,为显性性状;
(2)F2有四种表现型,这四种表现型的数量比接近9:3:3:1;
(3)F2中的绿色圆粒和黄色皱粒是不同相对性状间的重组新类型;
(4)正交和反交的结果相同。
(二)对自由组合现象的解释
1、每一对相对性状的遗传都符合基因的分离定律
2、两对相对性状的分离是各自独立的
3、不同对的相对性状之间自由组合
4、孟德尔对自由组合现象的解释
5、黄色圆粒豌豆和绿色皱粒豌豆杂交试验分析图解
PYYRRXyyrr
↓ ↓
配子YRyr
↓ ↓
F1YyRr
F2↓
基因型 1/16YYRR1/16yyRR1/16Yyrr1/16yyrr
2/16YyRR2/16yyRr2/16Yyrr
2/16YYRr
4/16YyRr
表现型9/16黄色圆粒3/16绿色圆粒 3/16黄色皱粒1/16绿色皱粒
反馈练习:
1、用结白色扁形果实(基因型是WwDd)的南瓜植株自交,是否能够培养出只有一种显性性状的南瓜?你能推算出具有一种显性性状南瓜的概率是多少?
2、具有两对相对性状的纯种个体杂交,按照基因的自由组合定律,F2出现的性状中:1)能够稳定遗传的个体数占总数的 。2)与F1性状不同的个体数占总数的 。
第二课时
上节课我们用实验和统计学的办法分析了性状的自由组合现象。孟德尔为了验证对自由组合现象的解释是否正确,又进行了测交试验。
根据孟德尔的解释,出现性状的自由组合主要是由于F1产生了4种雌雄配子。因此,要证明自由组合现象是正确的,就必须证明F1产生了4种配子。
(三)对自由组合现象解释的验证——测交试验
1、目的
选用双隐性的植株与F1杂交,测出F1的基因型,从而验证自由组合现象解释的正确性。
2、理论分析
根据孟德尔的解释,F1应产生4种配子YR、Yr、yR和yr,并且其比例为1:1:1:1;双隐性个体只产生一种隐性(yr)配子。所以测交结果应该产生4种类型的后代,即黄色圆粒、绿色圆粒、黄色皱粒和绿色皱粒,并且4种表现型的数量比应为1:1:l:1。
3、杂交实验
杂种子一代隐性纯合
YyRr yyrr
↓↓
YRYryRyryr
↓
YyRrYyrryyRryyrr
F1作母本31272626
F1作父本24222526
1:1:1:1
测交的结果是产生了4种后代,即黄色圆粒、绿色圆粒、绿色皱粒和黄色皱粒,并且它们数量基本相同。4种表现型的数量比接近1:1:l:1。
4、结论
测交时无论是正交还是反交,实验与分析相符,验证了对自由组合现象的解释是正确的。并且证明了F1的基因型为YyRr,既能产生4种雄配子,又能产生4种雌配子,从而证实了F1在形成配子时,不同对等位基因是自由组合的。
(四)基因自由组合定律的实质
孟德尔的杂交试验从实践的角度论证了自由组合定律的存在和规律。现在,我们从现代遗传学的角度去解释这一规律。
1、基因自由组合定律的实质
基因自由组合定律的实质是:位于非同源染色体上的非等位基因的分离或组合是互不干扰的。在细胞减数分裂形成配子的过程中,同源染色体上的等位基因彼此分离的同时,非同源染色体上的非等位基因自由组合。
2、细胞学基础
发生在减数第一次分裂的后期
3、核心内容
同源染色体上的等位基因彼此分离的同时,非同源染色体上的非等位基因自由组合。
请同学们思考(见幻灯片5、6):
(1)孟德尔所说的两对基因是指什么?
(位于1、2号同源染色体上的Y和y及位于3、4号的另一对同源染色
体上的R和r)
(2)1号染色体上的Y基因的非等位基因是那些基因?
(3、4号染色体上的R和r)
(3)非同源染色体上的非等位基因在形成配于时的结合方式是什么?
(自由组合)
(4)这种非同源染色体上的非等位基因自由组合发生在哪一过程中?
(发生在细胞减数分裂形成配子时)
(5)基因自由组合定律的实质是什么?
(位于非同源染色体上的非等位基因的分离或组合是互不干扰的。在细胞
减数分裂形成配子的过程中,同源染色体上的等位基因彼此分离的同时,
非同源染色体上的非等位基因自由组合)
(五)基因自由组合定律在实践中的应用
1、在育种中的应用
使不同亲本的优良性状的基因组合到一个个体内,创造出优良品种
基因的自由组合定律为我们的动、植物育种和医学实践开阔了广阔的前景,人类可以根据自己的需求,不断改良动植物品种,为人类造福。例如:水稻中,有芒(A)对无芒(a)是显性,抗病(R)对不抗病(r)是显性。其中,无芒和抗病是人们需要的优良性状。现有两个水稻品种,一个品种无芒、不抗病,另一个品种有芒、抗病。请你想办法培育出一个无芒、抗病的新品种。
根据自由组合定律,这样的品种占总数的3/16。
我们得到的这种具有杂种优势的品种可以代代遗传吗?
(不可以,因为其中有2/16的植株是杂合体,它的下一代会出现性状分离)
那么,如何能得到可以代代遗传的优势品种?
(要想得到可以代代遗传的优势品种,就必须对所得到的无芒、抗病品种进行自交和育种,淘汰不符合要求的植株,最后得到能够稳定遗传的无芒、抗病的类型)
2、在医学和优生优育中的应用
在现代医学上,我们也常用基因的自由组合规律来分析家族遗传病的发病规律。并且推断出其后代的基因型和表现型以及它们出现的依据。这对于遗传病的预测和诊断以及优生、优育工作都有现实意义。
例如:在一个家庭中,父亲是多指患者(由显性致病基因P控制),母亲的表现型正常,他们婚后却生了一个手指正常但先天聋哑的孩子(由隐性致病基因d控制,基因型为dd),其父母的基因型分别是什么?
这样的例子在我们日常生活中是经常遇到的,那么,我们一起来分析,双方都未表现出来先天聋哑症状的父母,为什么会生出一个先大聋哑的孩子呢?
(首先,先天聋哑一定是遗传病,其父母均未表现出来,说明其父母均是隐性基因的携带者。加之其父亲为多指,可以判定其父亲的基因型为:PpDd;其母亲表现型正常,可以判断其母的基因型为:ppDd)
根据上面的分析,其父母可能出现的配子是什么?其子女中可能出现的表现型有几种?
(其母亲可能出现的配子类型为:pD、pd,其父亲可能出现的配子类型为PD、Pd、pD、pd。)他们的后代可能出现的表现型有4种:只患多指(基因型为PpDD、PpDd),只患先天聋哑(基因型ppdd),既患多指又患先天聋哑(基因型Ppdd),表现型正常(基因型ppDD,ppDd)
由上面的例子可以看出,孟德尔发现的这两个遗传规律对于我们人类认识自然,了解人类自己有多么重要的意义。尤其在当前,我们正处于一个新世纪的开始,如何解决好我们国家发展过程中提高粮食产量,提高人口素质,特别是在计划生育政策下,进行优生优育等很多问题都有待我们利用我们所学到的遗传学知识去研究、去解决。在今后的工作中我们将面临众多的课题,这不仅需要我们掌握好现代科学知识,而且,要学习孟德尔的科学精神。
(六)孟德尔获得成功的原因
我们都知道,孟德尔并不是进行遗传学研究的第一人,在孟德尔之前,有不少学者都做过动植物的杂交试验,试图发现这其中的规律,但都未总结出规律来。孟德尔却以他的科学精神和科学方法发现了遗传的两大规律。
为什么孟德尔会取得这么大的成果呢?我们从中应该得到那些启示呢?
1、正确地选择了实验材料。
2、在分析生物性状时,采用了先从一对相对性状入手再循序渐进的方法(由单一因素到多因素的研究方法)。
3、在实验中注意对不同世代的不同性状进行记载和分析,并运用了统计学的方法处理试验结果。
4、科学设计了试验程序。
孟德尔试验的成功给了我们以很大的启示,即进行科学实验必须具备的几点精神:
1、科学的工作态度和方法:采取循序渐进的方法,由简单到复杂;并注意观察试验现象,不放过任何一个试验现象。
2、运用先进的科学成果,如孟德尔首先将统计学的方法用于生物实验的分析。
3、科学地选择试验的材料。
4、有一整套的科学工作的方法和程序。
(七)自由组合定律与分离定律的比较
分离定律
自由组合定律
研究的相对性状
一对
两对或两对以上
等位基因数量及在染色体上的位置
一对等位基因位于一对同源染色体上
两对或两对以上等位基因分别位于不同的同源染色体上
细胞学基础
减数第一次分裂中(后期)同源染色体分离
减数第一次分裂中(后期)非同源染色体随机组合
遗传实质
等位基因随同源染色体的分开而分离
非同源染色体上的非等位基因自由组合
联系
都是以减数分裂形成配子时,同源染色体的联会和分离作基础的。减数第一次分裂中(后期),同源染色体上的每对等位基因都要按分离定律发生分离;非同源染色体上的非等位基因,则发生自由组合。实际上,等位基因分离是最终实现非等位基因自由组合的先决条件。所以,分离定律是自由组合定律的基础,自由组合定律是分离定律的延伸与发展板书
(三)对自由组合现象解释的验证——测交试验
1、目的
2、理论分析
3、杂交实验
杂种子一代隐性纯合
YyRr yyrr
↓↓
YRYryRyryr
↓
YyRrYyrryyRryyrr
F1作母本31272626
F1作父本24222526
1:1:1:1
4、结论
(四)基因自由组合定律的实质
1、基因自由组合定律的实质
基因自由组合定律的实质是:位于非同源染色体上的非等位基因的分离或组合是互不干扰的。在细胞减数分裂形成配子的过程中,同源染色体上的等位基因彼此分离的同时,非同源染色体上的非等位基因自由组合。
2、细胞学基础
发生在减数第一次分裂的后期
3、核心内容
同源染色体上的等位基因彼此分离的同时,非同源染色体上的非等位基因自由组合
(五)基因自由组合定律在实践中的应用
1、在育种中的应用
2、在医学和优生优育中的应用
(六)孟德尔获得成功的原因
1、正确地选择了试验材料。
2、在分析生物性状时,采用了先从一对相对性状入手,再循序渐进的方法(由单一因
素到多因素的研究方法)。
3、在实验中注意对不同世代的不同性状进行记载和分析,并运用了统计学的方法处理
实验结果。
4、科学设计了试验程序
(七)自由组合定律与分离定律的比较反馈练习
1、基因自由组合定律的实质是( )
(A)子二代性状的分离比为9:3:3:1
(B)子二代出现与亲本性状不同的新类型
(C)测交后代的分离比为l:1:1:1
(D)在进行减数分裂形成配子时,等位基因分离的同时,非等位基因自由组合
2、一个患并指症(由显性基因S控制)而没有患白化病的父亲与一个外观正常的母亲
婚后生了一个患白化病(有隐性基因aa控制),但没有患并指症的孩子。这对夫妇
的基因型应该分别是 和 ,他们生下并指并伴随着白化病孩子的
可能性是 。
文章来源:http://m.jab88.com/j/97994.html
更多