教案课件是老师工作中的一部分,大家在着手准备教案课件了。将教案课件的工作计划制定好,这样我们接下来的工作才会更加好!你们知道适合教案课件的范文有哪些呢?下面的内容是小编为大家整理的等腰梯形的性质定理和判定定理及其证明,欢迎阅读,希望您能够喜欢并分享!
32.4等腰梯形的性质定理和判定定理及其证明
教学目标:
知识目标:理解和掌握等腰梯形的性质定理的内容及简单的应用;
能力目标:通过动手操作,探索等腰梯形的性质及其证明方法,初步培养学生探索问题和研究问题的能力;
情感目标:营造一个相互协作的课堂气氛,引领学生自主探究、集体讨论,激发学生的学习热情;
教学重点与难点:
1、等腰梯形性质的探究及证明;
2、等腰梯形性质定理的简单应用。
教学过程:
1、复习旧知,引入新课
填空(1)的四边形是平行四边形;
(2)的四边形是平行四边形;
(3)的四边形是平行四边形;
(4)的四边形是平行四边形;
(5)的四边形是平行四边形;
(6)一组对边平行,一组对边相等的四边形是平行四边形;
用举反例的方法举出有一组对边平行,一组对边相等但并不是平行四边形的图形即等腰梯形,从而由这个错误的判定引出梯形、等腰梯形、直角梯形的定义;我们这节课就来研究等腰梯形的性质。
2、自主探索、提出猜想
把学生分成以四个人一组的若干小组,提供给每个小组一个等腰梯形的模型,让同学们用各种数学工具通过各种数学方法,如翻折、旋转等来探索等腰梯形有哪些性质?
同学们可能会得出下面一些结论:
(1)两腰相等;
(2)两个底角相等;
(3)等腰梯形是轴对称图形,不是中心对称图形;
(4)两条对角线相等;
…………
3、交流反馈、共同论证
结论(1)由等腰梯形的定义可以得到而不用证明;
结论(2)的证明探索:(学生讨论交流,提出各自的证明思路)
(如果学生没有思路,教师可以引导证明两个角相等
的两种思路:)
一是把两个角转化到同一个三角形中,用“等边对等角”证明;
二是把两个角转化到两个全等三角形中,用“全等三角形的对应角相等”证明;
完善结论后得到:
等腰梯形的性质定理等腰梯形的同一条底边上的两个内角相等。
结论(3):
观察翻折、旋转的动画演示后,由轴对称图形和中心对称图形的定义可以直接得到:
等腰梯形是轴对称图形,经过两底中点的直线是它的对称轴。
等腰梯形不是中心对称图形!
结论(4)的证明可以让学生独立完成,请一个同学上黑板板书,其他同学自己在课堂练习本上完成。
4、运用新知、学为己用
例1:(1)如图,在等腰梯形ABCD中,∠B=600,求其它三个角的度数。(口答)
(2)如图,延长等腰梯形ABCD的两腰BA与CD,相交于点E。已知:EA=6,求ED的长度。
教师板演,规范学生几何计算题的书写格式。
例2:已知等腰梯形的一个底角为600,它的两底分别是16cm、30cm。求它的腰长。
(两种添线方法)
例3:如图,已知腰梯形ABCD中,AD∥BC,AB=DC,对角线AC⊥BD,垂足为O,AD=5,BC=9,求梯形的高。
要求:学生分成几个小组,小组讨论,协作完成;
5、反思小结、体味新知
通过本节课的学习:
我掌握了:一个定理…
我学会了:一种数学方法…
我经历了:一次探索研究…
我发现了:………
………
要求:学生思考、口答;
6、分层作业、自主发展
1、同步练习
2、思考题:
你能把上底与两腰的长度都为2,下底为4的等腰梯形(如下图)分成四个全等的等腰梯形吗?
§1.4等腰梯形的性质和判定
一、学习目标
1.探索等腰梯形的性质和判定定理的证明过程,并灵活应用等腰梯形的性质和判定定理解决问题;
2.通过添加辅助线,把梯形的问题转化成平行四边形或三角形等问题,体会转化的思想方法;
二、学习重点
在探索等腰梯形性质和判定方法的过程,体会等腰梯形与三角形、平行四边形等其他几何图形之间转化关系;
三、学习难点
掌握等腰梯形的性质定理和判定方法及常用的辅助线的作法.
四、学习过程
(一)回顾思考:
想一想:判定梯形的方法有哪些?
(二)互动探究
如何判断梯形是等腰梯形呢?说说你的理由。
等腰梯形有什么性质,向小组的同学说说证明的思路?
(三)精讲点拨
例:课本P29习题2
如图,在△ABC中,AC=BC,点BD、AE是角平分线,相交于O点,
(1)求证:四边形ABED是等腰梯形;
(2)若AB=3DE,△DCE的面积为2,求四边形ABED的面积
思考:①你有哪些证明的思路(或途径)?②在研究解决梯形问题时常用的辅助线有哪几种?
(四)巩固反馈《学习指导》第12课时
(五)拓展提升:
1.如图,在梯形ABCD中,AD∥BC,AD=6,BC=16,E是BC的中点.点P以每秒1个单位长度的速度从点A出发,沿AD向点D运动;点Q同时以每秒2个单位长度的速度从点C出发,沿CB向点B运动.点P停止运动时,点Q也随之停止运动.当运动时间t=秒时,以点P,Q,E,D为顶点的四边形是平行四边形.
为了促进学生掌握上课知识点,老师需要提前准备教案,又到了写教案课件的时候了。只有规划好教案课件计划,就可以在接下来的工作有一个明确目标!你们了解多少教案课件范文呢?以下是小编为大家精心整理的“等腰三角形的性质和判定”,欢迎您阅读和收藏,并分享给身边的朋友!
§1.1等腰三角形的性质和判定
学习目标:
1.能证明等腰三角形性质定理和判定定理;
2.了解分析的思考方法;
3.经历思考、猜想,并对操作活动的合理性进行证明的过程,不断感受证明的必要性,感受合情推理和演绎推理都是人们正确认识的事物的重要途径.
学习重点:了解分析的思考方法;
学习难点:合理添加辅助线。
学习过程:
一、回顾旧知:
文字命题的几何证明一般步骤是:
①;②;③。
二、情境创设:
1、什么叫做等腰三角形?
2、等腰三角形有哪些性质?
3、上述性质你是怎么得到的?你能否用从基本事实出发,对它们进行证明?(不妨动手操作做一做)
三、合作探究:
活动一:1、证明:等腰三角形的两个底角相等.
2、思考:由上面的证明过程,你能否得出“等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合”的结论?请用符号语言表示.
3、通过上面两个问题的证明,我们得到了等腰三角形的性质定理.
定理:_______________________________________,(简称:________________)
定理:_______________________________________,(简称:________________)
活动二:如何证明“等腰三角形的两个底角相等”的逆命题是正确的?
要求:(1)写出它的逆命题:如果,那么。
(2)画出图形,写出已知、求证,并进行证明.
活动三:
例:已知:如图∠EAC是△ABC的外角,AD平分∠EAC,且AD∥BC.
求证:AB=AC
拓展:在下图中,如果AB=AC,AD∥BC,那么AD平分∠EAC吗?为什么?
四、反馈检测:
1.若等腰三角形的周长为12,一边长为5,那么另两边长分别为;
2.若等腰三角形有两边长为2和5,那么周长为;
3.若等腰三角形有一个角等于50°,那么另两个角为;
4.若等腰三角形有一个角等于120°,那么另两个角为;
五、总结反思:
六、布置作业:必做题:课本P8第1、2、4题;
选做题:课本P8第3题.
七、课外拓展:
已知:如图,AB=AC.
(1)若CE=BD,求证:GE=GD;
(2)若CE=mBD(m为正数),试猜想GE与GD有何关系。
(只写结论,不证明).
文章来源:http://m.jab88.com/j/90315.html
更多