§1.2.3—1。2.4空间中直线与平面、平面与平面之间的位置关系
一、教学目标:
1、知识与技能
(1)了解空间中直线与平面的位置关系;
(2)了解空间中平面与平面的位置关系;
(3)培养学生的空间想象能力。
2、过程与方法
(1)学生通过观察与类比加深了对这些位置关系的理解、掌握;
(2)让学生利用已有的知识与经验归纳整理本节所学知识。
二、教学重点、难点
重点:空间直线与平面、平面与平面之间的位置关系。
难点:用图形表达直线与平面、平面与平面的位置关系。
三、学法与教学用具
1、学法:学生借助实物,通过观察、类比、思考等,较好地完成本节课的教学目标。
2、教学用具:投影仪、投影片、长方体模型
四、教学思想
(一)创设情景、导入课题
教师以生活中的实例以及课本P28的思考题为载体,提出了:空间中直线与平面有多少种位置关系?(板书课题)
(二)研探新知
1、引导学生观察、思考身边的实物,从而直观、准确地归纳出直线与平面有三种位置关系:
(1)直线在平面内——有无数个公共点
(2)直线与平面相交——有且只有一个公共点
(3)直线在平面平行——没有公共点
指出:直线与平面相交或平行的情况统称为直线在平面外,可用aα来表示
aαa∩α=Aa∥α
例4(投影)
师生共同完成例4
例4的给出加深了学生对这几种位置关系的理解。
2、引导学生对生活实例以及对长方体模型的观察、思考,准确归纳出两个平面之间有两种位置关系:
(1)两个平面平行——没有公共点
(2)两个平面相交——有且只有一条公共直线
用类比的方法,学生很快地理解与掌握了新内容,这两种位置关系用图形表示为
α∥βα∩β=L
教师指出:画两个相互平行的平面时,要注意使表示平面的两个平行四边形的对应边平行。教材P31练习
学生独立完成后教师检查、指导
(三)归纳整理、整体认识
教师引导学生归纳,整理本节课的知识脉络,提升他们掌握知识的层次。
(四)作业
1、让学生回去整理这三节课的内容,理清脉络。
2、教材P36习题1.2第1、2题
俗话说,凡事预则立,不预则废。作为教师就需要提前准备好适合自己的教案。教案可以让学生们能够在上课时充分理解所教内容,帮助授课经验少的教师教学。你知道怎么写具体的教案内容吗?急您所急,小编为朋友们了收集和编辑了“《空间点、直线与平面之间的位置关系》教学设计”,欢迎您参考,希望对您有所助益!
《空间点、直线与平面之间的位置关系》教学设计14.4(1)空间平面与平面的位置关系
一、教学内容分析
二面角是我们日常生活中经常见到的一个图形,它是在学生学过空间异面直线所成的角、直线和平面所成角之后,研究的一种空间的角,二面角进一步完善了空间角的概念.掌握好本节课的知识,对学生系统地理解直线和平面的知识、空间想象能力的培养,乃至创新能力的培养都具有十分重要的意义.
二、教学目标设计
理解二面角及其平面角的概念;能确认图形中的已知角是否为二面角的平面角;能作出二面角的平面角,并能初步运用它们解决相关问题.
三、教学重点及难点
二面角的平面角的概念的形成以及二面角的平面角的作法.
四、教学流程设计
五、教学过程设计
一、新课引入
1.复习和回顾平面角的有关知识.
平面中的角
定义从一个顶点出发的两条射线所组成的图形,叫做角
图形
结构射线—点—射线
表示法∠AOB,∠O等
2.复习和回顾异面直线所成的角、直线和平面所成的角的定义,及其共同特征.(空间角转化为平面角)
3.观察:陡峭与否,跟山坡面与水平面所成的角大小有关,而山坡面与水平面所成的角就是两个平面所成的角.在实际生活当中,能够转化为两个平面所成角例子非常多,比如在这间教室里,谁能举出能够体现两个平面所成角的实例?(如图1,课本的开合、门或窗的开关.)从而,引出“二面角”的定义及相关内容.
二、学习新课
(一)二面角的定义
平面中的角二面角
定义从一个顶点出发的两条射线所组成的图形,叫做角课本P17
图形
结构射线—点—射线半平面—直线—半平面
表示法∠AOB,∠O等二面角α—a—β或α-AB-β
(二)二面角的图示
1.画出直立式、平卧式二面角各一个,并分别给予表示.
2.在正方体中认识二面角.
(三)二面角的平面角
平面几何中的“角”可以看作是一条射线绕其端点旋转而成,它有一个旋转量,它的大小可以度量,类似地,二面角也可以看作是一个半平面以其棱为轴旋转而成,它也有一个旋转量,那么,二面角的大小应该怎样度量?
1.二面角的平面角的定义(课本P17).
2.∠AOB的大小与点O在棱上的位置无关.
[说明]①平面与平面的位置关系,只有相交或平行两种情况,为了对相交平面的相互位置作进一步的探讨,有必要来研究二面角的度量问题.
②与两条异面直线所成的角、直线和平面所成的角做类比,用“平面角”去度量.
③二面角的平面角的三个主要特征:角的顶点在棱上;角的两边分别在两个半平面内;角的两边分别与棱垂直.
3.二面角的平面角的范围:
(四)例题分析
例1一张边长为a的正三角形纸片ABC,以它的高AD为折痕,将其折成一个的二面角,求此时B、C两点间的距离.
[说明]①检查学生对二面角的平面角的定义的掌握情况.
②翻折前后应注意哪些量的位置和数量发生了变化,哪些没变?
例2如图,已知边长为a的等边三角形所在平面外有一点P,使PA=PB=PC=a,求二面角的大小.
[说明]①求二面角的步骤:作—证—算—答.
②引导学生掌握解题可操作性的通法(定义法和线面垂直法).
例3已知正方体,求二面角的大小.(课本P18例1)
[说明]使学生进一步熟悉作二面角的平面角的方法.
(五)问题拓展
例4如图,山坡的倾斜度(坡面与水平面所成二面角的度数)是,山坡上有一条直道CD,它和坡脚的水平线AB的夹角是,沿这条路上山,行走100米后升高多少米?
[说明]使学生明白数学既来源于实际又服务于实际.
三、巩固练习
1.在棱长为1的正方体中,求二面角的大小.
2.若二面角的大小为,P在平面上,点P到的距离为h,求点P到棱l的距离.
四、课堂小结
1.二面角的定义
2.二面角的平面角的定义及其范围
3.二面角的平面角的常用作图方法
4.求二面角的大小(作—证—算—答)
五、作业布置
1.课本P18练习14.4(1)
2.在二面角的一个面内有一个点,它到另一个面的距离是10,求它到棱的距离.
3.把边长为a的正方形ABCD以BD为轴折叠,使二面角A-BD-C成的二面角,求A、C两点的距离.
六、教学设计说明
本节课的设计不是简单地将概念直接传受给学生,而是考虑到知识的形成过程,设法从学生的数学现实出发,调动学生积极参与探索、发现、问题解决全过程.“二面角”及“二面角的平面角”这两大概念的引出均运用了类比的手段和方法.教学过程中通过教师的层层铺垫,学生的主动探究,使学生经历概念的形成、发展和应用过程,有意识地加强了知识形成过程的教学.
总课题点、线、面之间的位置关系总课时第11课时
分课题直线与平面的位置关系(三)分课时第3课时
教学目标了解直线和平面所成角的概念和范围;能熟练地运用直线和平面垂直的判定定理和性质定理.
重点难点直线与平面所成角的概念.
引入新课
1.通过观察一条直线与一个平面相交,思考如何量化它们相交程度的不同.
2.平面的斜线的定义:;
叫做斜足;叫做这个点到平面的斜线段.
3.过平面外一点向平面引斜线和垂线,那么过斜足与垂足
的直线就是;
线段就是线段.
4.斜线与平面所成的角的概念
,其范围是.
指出右上图中斜线与平面所成的角是,你能证明这个角是与平面内经过点的直线所成的所有角中最小的角吗?
一条直线垂直于平面时,这条直线与平面所成的角是;
一条直线与平面平行或在平面内,我们说他们所成的角是.
思考:直线与平面所成的角的范围是.
例题剖析
例1如图:已知,分别是平面垂线和斜线,分别是垂足和斜足,,,求证:.
能用文字语言表述这个结论吗?
例2如图,∠BAC在平面内,点P,∠PAB=∠PAC.求证:点P在平面内的射影在∠BAC的平分线上.
[思考]:
(1)若∠PAB=∠PAC=60°,∠BAC=90°,则直线PA与所成角的大小__________.
(2)从平面外同一点引平面的斜线段长相等,那么它们在内射影长相等吗?反之成立吗?
(3)若将例2中条件“∠PAB=∠PAC”改为“点P到∠BAC的两边AB、AC的距离相等”,结论是否仍然成立?
(4)你能设计一个四个面都是直角三角形的四面体吗?
巩固练习
1.如图,,平面,则在的边所在直线中:
(1)与垂直的直线有:
(2)与垂直的直线有:
2.在正方体中,直线与平面
所成的角是
3.如果PA、PB、PC两两垂直,那么P在平面ABC内的射影一定是△ABC的()
A.重心B.内心C.外心D.垂心
4.如图,一块正方体木料的上底面内有一点,要经过点在上底面内画一条直线与垂直,应怎样画?
课堂小结
平面的斜线及斜线在平面内的射影的概念;直线与平面所成的角概念、范围.
课后训练
一基础题
1.若直线与平面不垂直,那么在平面内与直线垂直的直线()
只有一条有无数条是平面内的所有直线不存在
2.设PA、PB、PC是从点P引出的三条射线,每两条的夹角都等于60°,
则直线PC与平面APB所成角的余弦值是.
3.在三棱锥P-ABC中,顶点P在平面ABC内的射影是△ABC的外心,
则三条侧棱PA、PB、PC大小关系是_________________.
二提高题
4.在四棱锥中,是矩形,平面.
(1)指出图中有哪些三角形是直角三角形,并说明理由;
(2)若,试求与平面所成角的正切值.
5.求证:如果平面内的一条直线与这个平面的一条斜线垂直,那么这条直线就和这条斜线在这个平面内的射影垂直.
三能力题
6.在三棱锥P-ABC中,点P在平面ABC上的射影O是△ABC的垂心,求证:PA⊥BC.
文章来源:http://m.jab88.com/j/7966.html
更多