88教案网

和圆有关的比例线段

老师在新授课程时,一般会准备教案课件,大家应该开始写教案课件了。对教案课件的工作进行一个详细的计划,可以更好完成工作任务!你们会写适合教案课件的范文吗?下面是小编为大家整理的“和圆有关的比例线段”,仅供您在工作和学习中参考。

和圆有关的比例线段教学建议
1、教材分析
(1)知识结构
(2)重点、难点分析
重点:相交弦定理及其推论,切割线定理和割线定理.这些定理和推论不但是本节的重点、本章的重点,而且还是中考试题的热点;这些定理和推论是重要的工具性知识,主要应用与圆有关的计算和证实.
难点:正确地写出定理中的等积式.因为图形中的线段较多,学生轻易混淆.
2、教学建议
本节内容需要三个课时.第1课时介绍相交弦定理及其推论,做例1和例2.第2课时介绍切割线定理及其推论,做例3.第3课时是习题课,讲例4并做有关的练3.
(1)教师通过教学,组织学生自主观察、发现问题、分析解决问题,逐步培养学生研究性学习意识,激发学生的学习热情;
(2)在教学中,引导学生“观察——猜想——证实——应用”等学习,教师组织下,以学生为主体开展教学活动.
第1课时:相交弦定理
教学目标:
1.理解相交弦定理及其推论,并初步会运用它们进行有关的简单证实和计算;
2.学会作两条已知线段的比例中项;
3.通过让学生自己发现问题,调动学生的思维积极性,培养学生发现问题的能力和探索精神;
4.通过推论的推导,向学生渗透由一般到非凡的思想方法.
教学重点:
正确理解相交弦定理及其推论.
教学难点:
在定理的叙述和应用时,学生往往将半径、直径跟定理中的线段搞混,从而导致证实中发生错误,因此务必使学生清楚定理的提出和证实过程,了解是哪两个三角形相似,从而就可以用对应边成比例的结论直接写出定理.
教学活动设计
(一)设置学习情境
1、图形变换:(利用电脑使AB与CD弦变动)
①引导学生观察图形,发现规律:∠A=∠D,∠C=∠B.
②进一步得出:△APC∽△DPB.
.
③假如将图形做些变换,去掉AC和BD,图中线段PA,PB,PC,PO之间的关系会发生变化吗?为什么?
组织学生观察,并回答.
2、证实:
已知:弦AB和CD交于⊙O内一点P.
求证:PA·PB=PC·PD.
(A层学生要练习学生写出已知、求证、证实;B、C层学生在老师引导下完成)
(证实略)
(二)定理及推论
1、相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等.
结合图形让学生用数学语言表达相交弦定理:在⊙O中;弦AB,CD相交于点P,那么PA·PB=PC·PD.
2、从一般到非凡,发现结论.
对两条相交弦的位置进行适当的调整,使其中一条是直径,并且它们互相垂直如图,AB是直径,并且AB⊥CD于P.
提问:根据相交弦定理,能得到什么结论?
指出:PC2=PA·PB.
请学生用文字语言将这一结论叙述出来,假如叙述不完全、不准确.教师纠正,并板书.
推论假如弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项.
3、深刻理解推论:由于圆是轴对称图形,上述结论又可叙述为:半圆上一点C向直径AB作垂线,垂足是P,则PC2=PA·PB.
若再连结AC,BC,则在图中又出现了射影定理的基本图形,于是有:
PC2=PA·PB;AC2=AP·AB;CB2=BP·AB
(三)应用、反思
例1已知圆中两条弦相交,第一条弦被交点分为12厘米和16厘米两段,第二条弦的长为32厘米,求第二条弦被交点分成的两段的长.
引导学生根据题意列出方程并求出相应的解.
例2已知:线段a,b.
求作:线段c,使c2=ab.
分析:这个作图求作的形式符合相交弦定理的推论的形式,因此可引导学生作出以线段a十b为直径的半圆,仿照推论即可作出要求作的线段.
作法:口述作法.
反思:这个作图是作两已知线段的比例中项的问题,可以当作基本作图加以应用.同时可启发学生考虑通过其它途径完成作图.
练习1如图,AP=2厘米,PB=2.5厘米,CP=1厘米,求CD.
变式练习:若AP=2厘米,PB=2.5厘米,CP,DP的长度皆为整数.那么CD的长度是多少?
将条件隐化,增加难度,提高学生学习爱好
练习2如图,CD是⊙O的直径,AB⊥CD,垂足为P,AP=4厘米,PD=2厘米.求PO的长.
练习3如图:在⊙O中,P是弦AB上一点,OP⊥PC,PC交⊙O于C.求证:PC2=PA·PB
引导学生分析:由AP·PB,联想到相交弦定理,于是想到延长CP交⊙O于D,于是有PC·PD=PA·PB.又根据条件OP⊥PC.易证得PC=PD问题得证.
(四)小结
知识:相交弦定理及其推论;
能力:作图能力、发现问题的能力和解决问题的能力;
思想方法:学习了由一般到非凡(由定理直接得到推论的过程)的思想方法.
(五)作业
教材P132中9,10;P134中B组4(1).
第2课时切割线定理
教学目标:
1.把握切割线定理及其推论,并初步学会运用它们进行计算和证实;
2.把握构造相似三角形证实切割线定理的方法与技巧,培养学生从几何图形归纳出几何性质的能力
3.能够用运动的观点学习切割线定理及其推论,培养学生辩证唯物主义的观点.
教学重点:
理解切割线定理及其推论,它是以后学习中经常用到的重要定理.
教学难点:
定理的灵活运用以及定理与推论问的内在联系是难点.
教学活动设计
(一)提出问题
1、引出问题:相交弦定理是两弦相交于圆内一点.假如两弦延长交于圆外一点P,那么该点到割线与圆交点的四条线段PA,PB,PC,PD的长之间有什么关系?(如图1)
当其中一条割线绕交点旋转到与圆的两交点重合为一点(如图2)时,由圆外这点到割线与圆的两交点的两条线段长和该点的切线长PA,PB,PT之间又有什么关系?
2、猜想:引导学生猜想出图中三条线段PT,PA,PB间的关系为PT2=PA·PB.
3、证实:
让学生根据图2写出已知、求证,并进行分析、证实猜想.
分析:要证PT2=PA·PB,可以证实,为此可证以PA·PT为边的三角形与以PT,BP为边的三角形相似,于是考虑作辅助线TP,PB.(图3).轻易证实∠PTA=∠B又∠P=∠P,因此△BPT∽△TPA,于是问题可证.
4、引导学生用语言表达上述结论.
切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项.
(二)切割线定理的推论
1、再提出问题:当PB、PD为两条割线时,线段PA,PB,PC,PD之间有什么关系?
观察图4,提出猜想:PA·PB=PC·PD.
2、组织学生用多种方法证实:
方法一:要证PA·PB=PC·PD,可证此可证以PA,PC为边的三角形和以PD,PB为边的三角形相似,所以考虑作辅助线AC,BD,轻易证实∠PAC=∠D,∠P=∠P,因此△PAC∽△PDB.(如图4)
方法二:要证,还可考虑证实以PA,PD为边的三角形和以PC、PB为边的三角形相似,所以考虑作辅助线AD、CB.轻易证实∠B=∠D,又∠P=∠P.因此△PAD∽△PCB.(如图5)
方法三:引导学生再次观察图2,立即会发现.PT2=PA·PB,同时PT2=PC·PD,于是可以得出PA·PB=PC·PD.PA·PB=PC·PD
推论:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等.(也叫做割线定理)
(三)初步应用
例1已知:如图6,⊙O的割线PAB交⊙O于点A和B,PA=6厘米,AB=8厘米,PO=10.9厘米,求⊙O的半径.
分析:由于PO既不是⊙O的切线也不是割线,故须将PO延长交⊙O于D,构成了圆的一条割线,而OD又恰好是⊙O的半径,于是运用切割线定理的推论,问题得解.
(解略)教师示范解题.
例2已知如图7,线段AB和⊙O交于点C,D,AC=BD,AE,BF分别切⊙O于点E,F,
求证:AE=BF.
分析:要证实的两条线段AE,BF均与⊙O相切,且从A、B两点出发引的割线ACD和BDC在同一直线上,且AC=BD,AD=BC.因此它们的积相等,问题得证.
学生自主完成,教师随时纠正学生解题过程中出现的错误,如AE2=AC·CD和BF2=BD·DC等.
巩固练习:P128练习1、2题
(四)小结
知识:切割线定理及推论;
能力:结合具体图形时,应能写出正确的等积式;
方法:在证实切割线定理和推论时,所用的构造相似三角形的方法十分重要,应注重很好地把握.
(五)作业教材P132中,11、12题.
探究活动
最佳射门位置
国际足联规定法国世界杯决赛阶段,比赛场地长105米,宽68米,足球门宽7.32米,高2.44米,试确定边锋最佳射门位置(精确到l米).
分析与解如图1所示.AB是足球门,点P是边锋所在的位置.最佳射门位置应是使球员对足球门视角最大的位置,即向P上方或下方移动,视角都变小,因此点P实际上是过A、B且与边线相切的圆的切点,如图1所示.即OP是圆的切线,而OB是圆的割线.
故,又,
OB=30.347.32=37.66.
OP=(米).
注:上述解法适用于更一般情形.如图2所示.△BOP可为任意角.

延伸阅读

和圆有关的比例线段(二)


教案课件是每个老师工作中上课需要准备的东西,准备教案课件的时刻到来了。只有写好教案课件计划,才能规范的完成工作!你们会写适合教案课件的范文吗?下面是小编为大家整理的“和圆有关的比例线段(二)”,欢迎阅读,希望您能阅读并收藏。

教学目标:

1、使学生理解切割线定理及其推论;

2、使学生初步学会运用切割线定理及其推论.

3、通过对切割线定理及推论的证明,培养学生从几何图形归纳出几何性质的能力;

4、通过对切割线定理及其推论的初步运用,培养学生的分析问题能力.在上节我们曾经学到相交弦定理及其推论,它反映了圆中两弦的数量关系;我们可以用同样的方法来研究圆的一条切线和一条割线的数量关系.

教学重点:

使学生理解切割线定理及其推论,它是以后学习中经常用到的重要定理.

教学难点:

学生不能准确叙述切割线定理及其推论,针对具体图形学生很容易得到数量关系,但把它用语言表达,学生感到困难.

教学过程:

一、新课引入:

我们已经学过相交弦定理及其推论,现在我们用同样的数学思想方法来研究圆的另外的比例线段.

二、新课讲解:

现在请同学们在练习本上画⊙O,在⊙O外一点P引⊙O的切线PT,切点为T,割线PBA,以点P、B、A、T为顶点作三角形,可以作几个三角形呢?它们中是否存在着相似三角形?如果存在,你得到了怎样的比例线段?可转化成怎样的积式?现在请同学们打开练习本,按要求作⊙O的切线PT和割线PBA,后研究讨论一下.

学生动手画图,完成证明,教师巡视,当所有学生都得到数量关系式时,教师打开计算机或幻灯机用动画演示.

最终教师指导学生把数量关系转成语言叙述,完成切割线定理及其推论.

1.切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项.

关系式:PT2=PA·PB

2.切割线定理推论:从圆外一点引圆的两条割线.这一点到每条割线与圆的交点的两条线段长的积相等.

数量关系式:PA·PB=PC·PB.

切割线定理及其推论也是圆中的比例线段,在今后的学习中有着重要的意义,务必使学生清楚,真正弄懂切割线定理的数量关系后,再把握定理叙述中的“从”、“引”、“切线长”、“两条线段长”等关键字样,定理叙述并不困难.

练习一,P.128中1、选择题:如图7-86,⊙O的两条弦AB、CD相交于点E,AC和DB的延长线交于点P,下列结论成立的是[]

A.PC·CA=PB·BD

B.CE·AE=BE·ED

C.CE·CD=BE·BA

D.PB·PD=PC·PA

答案:(D),直接运用和圆有关的比例线段进行选择.

练习二,P.128中2、如图7-87,已知:Rt△ABC的两条直角边AC、BC的长分别为3cm、4cm,以AC为直径作圆与斜边AB交于点D,求BD的长.

此题已知Rt△ABC中的边AC、BC,则AB可知.容易证出BC切⊙O于C,于是产生切割线定理,BD可求.

练习三,P.128中3.如图7-88,线段AB和⊙O交于C、D,AC=BD,AE、BF分别切⊙O于E、F.

求证:AE=BF.

本题可直接运用切割线定理.

例3P.127,如图7-89,已知:⊙O的割线PAB交⊙O于点A和B,PA=6cm,AB=8cm,PO=10.9cm.

求⊙O的半径.

此题要通过计算得到⊙O的半径,必须使半径进入一个数量关系式,观察图形,可知只要延长PO与圆交于另一点,则可产生切割线定理的推论,而其中一条割线恰好经过圆心,在线段中自然可以参与进半径,从而由等式中求出半径.必须使学生清楚这种数学思想方法,结合图形,正确使用和圆有关的比例线段,则关系式中必有两条线段是半径的代数式构成,只要解关于半径的一元二次方程即可.

解:设⊙O的半径为r,PO和它的长延长线交⊙O于C、D.

(10.9-r)(10.9+r)=6×14

r=5.9(取正数解)

答:⊙O的半径为5.9.

三、课堂小结:

为培养学生阅读教材的习惯,让学生看教材P.127—P.128.总结出本课主要内容:

1.切割线定理及其推论:它是圆的重要比例线段,它反映的是圆的切线和割线所产生的数量关系.需要指出的是,只有从圆外一点,才可能产生切割线定理或推论.切割线定理是指一条切线和一条割线;推论是指两条割线,只有使学生弄清前提,才能正确运用定理.

2.通过对例3的分析,我们应该掌握这类问题的思想方法,掌握规律、运用规律.

四、布置作业:

1.教材P.132中10;2.P.132中11.

圆的有关概念


老师工作中的一部分是写教案课件,大家在着手准备教案课件了。是时候对自己教案课件工作做个新的规划了,才能使接下来的工作更加有序!你们到底知道多少优秀的教案课件呢?下面是小编为大家整理的“圆的有关概念”,供您参考,希望能够帮助到大家。

22.1圆的有关概念
教学目标:1、熟练掌握本章的基本概念
2、运用概念解决生活中的问题及简单的几何问题
教学重点:本章概念的理解与运用是本节的重点
教学方法:精讲——提问——思考——练习巩固相结合
教学过程:先安排学生讨论、复习5分钟(4人一组)
一、点和圆的关系
开场引入:提问——怎么用数学语言来描述圆呢?
(以定点为圆心,定长为半径的圆,即要说出圆的两要素:圆心、半径)
一个圆将平面分成三部分(提问:圆将平面分成几个部分呢?)
圆的外部
圆上(教师画图说明)
圆的内部
因此,点和圆的位置关系有三个(投影)
引入第一个概念:点和圆的关系
二、直线与圆的位置关系又有哪几个?(提问)
画图讲解(如图),判定圆与直线的位置关系:用圆心到直线的距离d和半径R的关系判定。归纳起来六字口诀:“找d”、“求d”、“判定”。
投影二1、直线与圆的位置关系表
2、例题
三、圆和圆的位置关系:
(第三个我们来复习一下圆和圆的位置关系。提问——圆和圆的位置关系有哪些?)
那么,怎么判断圆和圆的位置关系?
(用圆心距OO1与两个圆的半径的关系判定)
投影三:位置关系(五个)
快速抢答:判断下列情况下圆和圆的位置关系。
1、两圆没有交点2、两圆只有一个交点3、两圆有两个交点
4、两个同心圆的位置关系怎样?圆心距为多少?
5、两圆相交时为什么R-r<O1O2<R+r?
四、圆中有关弦、角的定理和性质
投影四:1、垂直于弦的直径,平分这条弦,并且平分这条弦所对的弧。
2、平分弦(不是直径)的直径垂直于这条弦,并且平分它所对的弧。(为什么加“不是直径”)
3、在同圆或等圆中,如果两个圆心角、两条弧、两条弦三组量中有一组量相等,那么其余各组量也相等。
注:1、第2定理中,为什么加“不是直径”?说明(画图)
2、有一残缺弧铁片:找弧的中点、找圆心、找一条直径、将弧四等分。
例题(投影四)
五、圆周角和圆心角的关系
1、提问:一条弧所对的圆周角与圆心角有几种情况?请分别画出。
2、那么,一条弧所对的圆周角于圆心角有什么关系?(投影)
3、例题(投影)
六、切线的判定与性质(提问:切线的性质是什么?怎样判定一条直线就是的⊙O切线?)
投影:1、判定、性质:圆的切线垂直于经过切点的直径。经过直径的一端并且垂直于这条直径的直线是圆的切线
2、分析一道题
七、三角形的内切圆和外接圆
1、作三角形的内切圆和外接圆,引出内心、外心概念。
2、内心到距离相等,外心到距离相等。
3、已知O是△ABC的外心,∠A=80°,求∠BOC的度数。
I是△ABC的内心,∠A=80°,求∠BIC的度数。
八、布置作业、家庭作业

比例线段教案


比例线段教案教学建议
知识结构
重难点分析
本节的重点是线段的比和比例线段的概念以及比例的性质.以前的平面几何主要研究线段的位置关系和相等关系,从本章开始研究线段及相关图形的比例关系――相似三角形,这些内容的研究都离不开线段的比和比例性质的应用.
本节的难点是比例性质及应用,虽然小学时已经接触过比例性质的一些知识,但由于内容比较简单,而且间隔时间较长,学生印象并不深刻,而本节涉及到的比例基本性质变式较多,合分比性质以及等比性质学生又是初次接触,内容不但多,而且轻易混淆,作题不知应用哪条性质,不知如何应用是常有的.
教法建议
1.生活中比例的例子比比皆是,在新课引入时最好从生活实例引入,可使学生感觉轻松自然,轻易产生爱好,增加学生学习的主动性
2.小学时曾学过数的比及相关概念,学习时也可以复习引入,从数的比过渡到线段的比,渗透类比思想
3.这一节概念比较多,也比较轻易混淆,教学中可设计不同层次的题组来进行巩固,非凡是要举一些反例,同时要注重对相近概念的比较
4.黄金分割的内容要求学生理解,主要体现数学美,可由学生从生活中寻找实例,激发学生的爱好和参与感
5.比例性质由于变式多,理解和应用上轻易出现错误,教学时可利用等式性质和分式性质来处理
教学设计示例1
(第1课时)
一、教学目标
1.理解线段的比的概念.
2.通过与小学知识到比较,初步培养学生“类比”的数学思想.
3.通过线段的比的有关计算,培养学习的计算能力.
4.通过“引言”及“例1”的教学,激发学生学习爱好,对学生进行热爱爱国主义教育.
二、教学设计
先学后做,启发引导
三、重点及难点
1.教学重点两条线段比的概念.
2.教学难点正确理解两条线段的比及应用.
四、课时安排
1课时
五、教具学具预备
股影仪、胶片、常用画图工具
六、教学步骤
复习提问
找学生回答小学学过的比、比的前项和后项的概念.
(两个数相除又叫做两数的比,记作或a:b,其中a叫比的前项,b叫比的后项)
讲解新课
把学生分成三组,分别以米、厘米、毫米作为长度单位,量一下几何教材的长与宽(令长为a,宽为b).再求出长与宽的比.然后找三名同学把结果写在黑板上.如:
等.
可以看出,在同一长度单位下,两条线段长度的比就是两条线段的比.
一般地:若a、b的长度分别是m、n(单位相同),那么就说这两条线段的比是,或写成,和数的比一样,a叫比的前项,b叫比的后项.
关于两条线段比的概念,教学中要揭示它的实质,即表示a是b的k倍,这是学生已有的知识,较易理解,也轻易使学生注重到求比时,长度单位要一致.另外,可组织学生举例实际生活中两条线段的比的问题,充分调动学生联系实际和积极思维的能力,对活跃课堂气氛也很有利,但教师需注重尺度.
就刚才三组学生做过的练习及问题回答,在教师启发和点拨下,让学生讨论或试述两条线段的比应注重的问题,归纳出:
(l)两条线段的比就是它们的长度的比.
(2)比与所选线段的长度单位无关,求比时,两条线段的长度单位要一致.
(3)两条线段的比值总是正数.(并不都是正数)
(4)除了a=b之外,.与互为倒数.
例1见教材P202.
讲解完例1后:
(l)提问学生AB是的多少倍,是AB的多少倍,以加深学生对线段比的逾义的理解.
(2)给出:比例尺=,就例1的图上,若图距是8cm的两地,实际距离是多少?
另外,还可鼓励学生课后根据地图上的比例尺,测量并计算出你所在省会与首都北京的直线距离,从而丰富了知识,激发了学习爱好.
例2见教材P202.
讲解完例2后:
(l)可改变线段AB的长度,或给出AC、BC的长度,再求这些比,使学生熟悉这种三角形中边的比与长度无关.
(2)常识1:有一锐角是30°的直角三角形中,三边(从小到大)的比为.
常识2:等腰直角三角形三边(从小到大)的比为1:1:.
学生把握了这些常识可有两点好处:
①知道例2中“”以及习题5.l第2题(1)中“边长为4”.(2)中的“对角线AC=a”这些条件实际上都是多余的.
②这些题目若改成“填空题”,可避免一些不必要的计算.从而提高做题速度.这样不仅培养了能力,而且在考试中也受益匪浅.
因此,今后如碰到和此常识有关的知识要反复渗透,反复给学生强调,让它扎根于学生的下意识中。
小结
1.两条线段比的概念以及应注重的问题.
2.会求两条线段的比.
七、布置作业
教材P210中2、3.
八、板书设计

文章来源:http://m.jab88.com/j/76729.html

更多

最新更新

更多