教学目标
(1)知道物体是由大量分子组成的
(2)知道分子的大小,知道数量级的概念,记住分子大小的数量级.
(3)理解阿伏加德罗常数,记住它的数值和单位.
(4)会一些简单微观量的计算,如分子大小、直径等
(5)知道油膜法估测分子大小实验
教学建议
教材分析
分析一:本节简单介绍了分子动理论的第一个基本观点:物质是由大量分子组成的.要注意这里的分子与化学中提到的分子的含义是不完全相同的,这里把构成物体的分子、原子、离子等统称为分子.
分析二:油膜法估测分子大小实验是一个重要的实验,它巧妙地将微观的、不易测量的量转化为宏观的、可直接测量的量,能较好地培养学生解决问题能力,扩展学生分析问题的思路.在将解本实验时要注意实验原理的分析
分析三:阿弗加德罗常量是联系宏观和微观的重要桥梁,已知物质的体积和摩尔体积,就可以求出物质的分子数,;已知物质的质量和摩尔体积,就可以求出物质的分子数,;已知物质的摩尔体积,就可以求出该物质的单个分子体积;已知物质的摩尔质量,就可以求出该物质的单个分子质量.
教法建议
建议一:本节内容在初中已有相当好的基础,因此可以结合复习初中知识来讲解本节知识.另外还可以引入相关化学知识,使学生更易理解.
建议二:油膜法估测分子大小实验是一个重要的实验,有条件的学校最好能让学生自己动手做这个实验,以加深学生的分子大小的直观感觉.
建议三:围绕阿伏加德罗常数的计算,教师可以举几个例题,然后让学生自己动手计算几个相关题目.
教学设计方案
教学重点:分子大小的计算
教学难点:微观量与宏观量之间的联系
一、物质有大量分子构成
结合化学提出不同物体不同的分子组成,并且物理中此时提到的分子有别于化学中的分子,它包括分子、原子、离子等.
展示几个漂亮的分子模型,激发学生学习兴趣.
二、分子的大小
1、分子大小的测量方法
(1)显微镜观测
(2)实验油膜法估测分子大小
实验原理:将体积为的油滴到水面上,使其均匀地、尽可能地散开成很薄的一层,此时可以认为油分子一个挨一个紧密排成一单层油膜,油膜的厚度就是单个分子的直径,因此只需测出油膜的面积,就知道该油分子的近似直径
实验过程所用的酒精油酸溶液溶于水时,酒精溶于水,油酸形成单分子油膜.
例题:将1cm3的油酸溶于酒精,制成200cm3的油酸酒精溶液.已知1cm3溶液有50滴,一滴滴到水面上,酒精溶于水,油酸形成一单分子层,其面积为0.2m2.由此可知油酸分子大约为多少?
解:一滴油酸酒精溶液含油酸体积
油酸分子直径约为:
三、阿伏加德罗常数
阿伏加德罗常数是联系微观和宏观的一个重要桥梁,其大小为每摩尔物质含有的微粒数(或12g炭12含有的炭原子数),即6.02×1023mol-1.
已知物质的体积和摩尔体积,就可以求出物质的分子数,;已知物质的质量和摩尔体积,就可以求出物质的分子数,;已知物质的摩尔体积,就可以求出该物质的单个分子体积;已知物质的摩尔质量,就可以求出该物质的单个分子质量
例题:已知地球到月球的距离是3.84×105km,铁的摩尔质量为56g,密度为7.9×103kg/m3,如果将铁原子一个一个地排列起来,从地球到月亮需要多少个铁原子?
A、1.4×105个B、1.4×1010个
C、1.4×1018个D、1.4×1021个
答案:C
分析:本题可以先求出单个铁原子的直径:
所以需要的铁原子个数为:
另外,本题还可以从数量级上迅速判断出答案,由于地球到月亮的距离数量级为108m,而分子直径的数量级在10-10m左右,所以需要的铁原子个数在1018的数量级上,应选C选项.
四、作业
探究活动
题目:怎样测量阿伏加德罗常数
组织:分组
方案:查阅资料,设计原理,实际操作
评价:方案的可行性、科学性、可操作性
高三物理上册《分子的热运动》知识点总结人教版
知识点一
扩散
1、定义
不同分子互相接触时,彼此进入对方的现象叫扩散。其实质是分子(原子)的互相渗透。
2、扩散现象表明
一切物质的分子都在做永不停息的无规则运动,也说明物质的分子间存在间隙。
3、影响因素
温度越高,扩散越快
4、理解扩散现象
扩散现象只能发生在不同的物质之间。
不同物质只有相互接触时才能发生扩散现象。
扩散现象是两种物质的分子彼此进入对方。
不同状态的物体之间也可以发生扩散现象。
知识点二
分子热运动
一切物质的分子都在不停地做无规则运动。由于分子的运动与温度有关,所以这种无规则的运动叫做分子的热运动。温度越高,热运动越剧烈。
知识点三
分子动理论
1、分子动理论内容
物质是由分子组成的,一切物质的分子都在不停地做无规则运动,分子间存在相互作用的引力和斥力。
2、分子间的作用力
分子间同时存在相互作用的引力和斥力,当分子距离很小时,引力小于斥力,表现为斥力;
当分子间距离稍大时,引力大于斥力,表现为引力;
当分子间距离很大时,分子间作用力变得十分微小,可以忽略。
3、分子间作用力与物质状态的关系
①固体中的分子距离非常小,相互作用力很大,分子只能在一定的位置附近振动,所以既有一定的体积,又有一定的形状。
②液体中分子距离较小,相互作用力较大,以分子群的形态存在,分子可以在某个位置附近振动,分子群可以互相滑过,所以液体有一定的体积,但有流动性,形状随容器而变。
③气体分子间的距离很大,相互作用力很小,每个分子几乎都可以自由运动,所以气体既没有固定的体积,也没有固定的形状,可以充满它能够达到的整个空间。
④固体物质很难被拉伸,是因为分子间存在引力的缘故;液体物质很难被压缩,是因为分子间存在斥力的原因;液体物质能保持一定的体积是因为分子间存在引力的原因。
作为优秀的教学工作者,在教学时能够胸有成竹,高中教师要准备好教案,这是老师职责的一部分。教案可以让学生更好的吸收课堂上所讲的知识点,帮助高中教师缓解教学的压力,提高教学质量。那么如何写好我们的高中教案呢?以下是小编为大家精心整理的“高三物理上册《分子间的作用力》知识点总结人教版”,仅供参考,欢迎大家阅读。
高三物理上册《分子间的作用力》知识点总结人教版
一、教学目标
1.知道分子间同时存在着相互作用的引力和斥力,表现出的分子力是引力和斥力的合力。
2.知道分子力随分子间距离变化而变化的定性规律,知道分子间距离是r0时分子力为零,知道r0的数量级。
二、重点分析
1.重点内容有两个,一是通过分子之间存在间隙和分子之间有引力和斥力的一些演示实验和事实,推理论证出分子之间存在着引力和斥力;二是分子间的引力和斥力都随分子间距离的变化而变化,而分子力是引力和斥力的合力,能正确理解分子间作用力与距离关系的曲线的物理意义。
三、教学讲解
分子动理论是在坚实的实验基础上建立起来的。我们通过单分子油膜实验、隧道扫描显微镜观察碳原子的分布等实验,知道物质是由很小的分子组成的,分子大小在10-10m数量级。我们又通过扩散现象和布朗运动等实验知道了分子是永不停息地做无规则运动的。分子动理论还告诉我们分子之间有相互作用力。
(1)演示实验:
①长玻璃管内,分别注入水和酒精,混合后总体积减小。
②U形管两臂内盛有一定量的水(不注满水),将右管上端用橡皮塞堵住,左管继续注入水,右管水面上的空气被压缩。
上述实验可以说明气体、液体的内部分子之间是有空隙的。钢铁这样坚固的固体的分子之间也有空隙,有人用两万标准大气压的压强压缩钢筒内的油,发现油可以透过筒壁溢出。
布朗运动和扩散现象不但说明分子不停地做无规则运动,同时也说明分子间有空隙,否则分子便不能运动了。
(2)一方面分子间有空隙,另一方面,固体、液体内大量分子却能聚集在一起形成固定的形状或固定的体积,这两方面的事实,使我们推理得出分子之间一定存在着相互吸引力。
分子之间还存在着斥力
固体和液体很难被压缩,即使气体压缩到了一定程度后再压缩也是很困难的;用力压缩固体(或液体、气体)时,物体内会产生反抗压缩的弹力。这些事实都是分子之间存在斥力的表现。
运用反证法推理,如果分子之间只存在着引力,分子之间又存在着空隙,那么物体内部分子都吸引到一起,造成所有物体都是很紧密的物质。但事实并不是这样的,说明必然还有斥力存在着。
分子间引力和斥力的大小跟分子间距离的关系
(1)经过研究发现分子之间的引力和斥力都随分子间距离增大而减小。但是分子间斥力随分子间距离增大而减小得更快些,如图1中两条虚线所示。
(2)由于分子间同时存在引力和斥力,两种力的合力又叫做分子力。在图1图象中实线曲线表示引力和斥力的合力(即分子力)随距离变化的情况。当两个分子间距在图象横坐标r0距离时,分子间的引力与斥力平衡,分子间作用力为零,r0的数量级为10-10m,相当于距离为r0的位置叫做平衡位置。
【课件演示】当分子间距离r<r0时,分子间引力和斥力都随距离减小而增大,但斥力增加得更快,因此分子间作用力表现为斥力。
当r>r0时,引力和斥力都随距离的增大而减小,但是斥力减小的更快,因而分子间的作用力表现为引力,但它也随距离增大而迅速减小,当分子距离的数量级大于10-9m时,分子间的作用力变得十分微弱,可以忽略不计了。图1表示分子间距离r不同的三种情况下,分子间引力斥力大小的情况。
文章来源:http://m.jab88.com/j/71364.html
更多