88教案网

高三物理上册《物体是由大量分子组成的》知识点总结人教版

作为优秀的教学工作者,在教学时能够胸有成竹,高中教师要准备好教案,这是高中教师需要精心准备的。教案可以让学生能够在教学期间跟着互动起来,帮助高中教师更好的完成实现教学目标。所以你在写高中教案时要注意些什么呢?下面是小编精心为您整理的“高三物理上册《物体是由大量分子组成的》知识点总结人教版”,相信您能找到对自己有用的内容。

高三物理上册《物体是由大量分子组成的》知识点总结人教版

1、分子的大小
自然界中所有物质都是由大量的分子组成的。此处所提出的“分子”是个广义概念,指组成物质的原子、离子或分子。
(1)分子模型
首先,可以把单个分子看做一个立方体,也可以看做是一个小球。通常情况下把分子看做小球,是对分子的简化模型。实际上,分子有着复杂的内部结构,并不真的都是小球。
其次,不同的物质形态其分子的排布也有区别,任何物质的分子间都有空隙。对固体和液体而言,分子间空隙比较小,我们通常认为分子是一个挨着一个排列的,而忽略其空隙的大小。
(2)用油膜法估测分子的大小
估测分子的大小通常采用油膜法。具体把一滴油膜滴到水面上,油酸在水面上散开形成单分子油膜,如果把分子看成球形,单分子油膜的厚度就可认为等于油膜分子的直径。最后根据1滴油酸的体积V和油膜面积S就可以算出油膜的厚度(),即油酸分子的尺寸。其线度的数量级为。用油膜法测定分子的直径时,实际是一种理想化处理过程,我们做了如下理想化处理:
①把滴在水面上的油酸层当作单分子油膜层.
②把分子看成球形.
我们可以用不同的方法估测分子的大小。用不同的方法测出的分子大小并不完全相同,但是数量级是一致的。除了一些高分子有机物之外,一般分子直径的数量级约为。
2、阿伏加德罗常数
(1)阿伏加德罗常数.
即1mol的任何物质都含有相同的粒子数,这个数就叫阿伏加德罗常数.
(2)阿伏加德罗常数的取值:
(3)阿伏加德罗常数的意义:
阿伏加德罗常数用表示,它是微观世界的—个重要常数,是联系微观物理量和宏观物理量的桥梁,它的意义:
①已知固体和液体(气体不适用)的摩尔体积vmol和一个分子的体积v,则;反之亦可估算分子的大小。
②已知物质(所有物质,无论液体、固体还是气体均适用)的摩尔质量M和一个分子的质量m,求;反之亦可估算分子的质量。
③已知固体和液体(气体不适用)的体积V和摩尔体积vmol,则物质的分子数.其中ρ是物质的密度,M是物质的质量。
④已知物质(所有物质,无论液体、固体还是气体均适用)的质量和摩尔质量,则物质的分子数.
高中是人生中的关键阶段,大家一定要好好把握高中,编辑老师为大家整理的高三物理上册第七章知识点,希望大家喜欢。

延伸阅读

物理教案物体是由大量分子组成的


教学目标
(1)知道物体是由大量分子组成的
(2)知道分子的大小,知道数量级的概念,记住分子大小的数量级.
(3)理解阿伏加德罗常数,记住它的数值和单位.
(4)会一些简单微观量的计算,如分子大小、直径等
(5)知道油膜法估测分子大小实验

教学建议

教材分析

分析一:本节简单介绍了分子动理论的第一个基本观点:物质是由大量分子组成的.要注意这里的分子与化学中提到的分子的含义是不完全相同的,这里把构成物体的分子、原子、离子等统称为分子.

分析二:油膜法估测分子大小实验是一个重要的实验,它巧妙地将微观的、不易测量的量转化为宏观的、可直接测量的量,能较好地培养学生解决问题能力,扩展学生分析问题的思路.在将解本实验时要注意实验原理的分析

分析三:阿弗加德罗常量是联系宏观和微观的重要桥梁,已知物质的体积和摩尔体积,就可以求出物质的分子数,;已知物质的质量和摩尔体积,就可以求出物质的分子数,;已知物质的摩尔体积,就可以求出该物质的单个分子体积;已知物质的摩尔质量,就可以求出该物质的单个分子质量.

教法建议

建议一:本节内容在初中已有相当好的基础,因此可以结合复习初中知识来讲解本节知识.另外还可以引入相关化学知识,使学生更易理解.

建议二:油膜法估测分子大小实验是一个重要的实验,有条件的学校最好能让学生自己动手做这个实验,以加深学生的分子大小的直观感觉.

建议三:围绕阿伏加德罗常数的计算,教师可以举几个例题,然后让学生自己动手计算几个相关题目.

教学设计方案

教学重点:分子大小的计算

教学难点:微观量与宏观量之间的联系

一、物质有大量分子构成

结合化学提出不同物体不同的分子组成,并且物理中此时提到的分子有别于化学中的分子,它包括分子、原子、离子等.

展示几个漂亮的分子模型,激发学生学习兴趣.

二、分子的大小

1、分子大小的测量方法

(1)显微镜观测

(2)实验油膜法估测分子大小
实验原理:将体积为的油滴到水面上,使其均匀地、尽可能地散开成很薄的一层,此时可以认为油分子一个挨一个紧密排成一单层油膜,油膜的厚度就是单个分子的直径,因此只需测出油膜的面积,就知道该油分子的近似直径

实验过程所用的酒精油酸溶液溶于水时,酒精溶于水,油酸形成单分子油膜.

例题:将1cm3的油酸溶于酒精,制成200cm3的油酸酒精溶液.已知1cm3溶液有50滴,一滴滴到水面上,酒精溶于水,油酸形成一单分子层,其面积为0.2m2.由此可知油酸分子大约为多少?

解:一滴油酸酒精溶液含油酸体积

油酸分子直径约为:

三、阿伏加德罗常数

阿伏加德罗常数是联系微观和宏观的一个重要桥梁,其大小为每摩尔物质含有的微粒数(或12g炭12含有的炭原子数),即6.02×1023mol-1.

已知物质的体积和摩尔体积,就可以求出物质的分子数,;已知物质的质量和摩尔体积,就可以求出物质的分子数,;已知物质的摩尔体积,就可以求出该物质的单个分子体积;已知物质的摩尔质量,就可以求出该物质的单个分子质量

例题:已知地球到月球的距离是3.84×105km,铁的摩尔质量为56g,密度为7.9×103kg/m3,如果将铁原子一个一个地排列起来,从地球到月亮需要多少个铁原子?

A、1.4×105个B、1.4×1010个

C、1.4×1018个D、1.4×1021个

答案:C

分析:本题可以先求出单个铁原子的直径:

所以需要的铁原子个数为:

另外,本题还可以从数量级上迅速判断出答案,由于地球到月亮的距离数量级为108m,而分子直径的数量级在10-10m左右,所以需要的铁原子个数在1018的数量级上,应选C选项.

四、作业

探究活动
题目:怎样测量阿伏加德罗常数
组织:分组
方案:查阅资料,设计原理,实际操作
评价:方案的可行性、科学性、可操作性

物质是由大量分子组成的


物质是由大量分子组成的教案示例(之一)
一、教学目标
1.在物理知识方面的要求:
(1)知道一般分子直径和质量的数量级;
(2)知道阿伏伽德罗常数的含义,记住这个常数的数值和单位;
(3)知道用单分子油膜方法估算分子的直径。
2.培养学生在物理学中的估算能力,会通过阿伏伽德罗常数估算固体和液体分子的质量、分子的体积(或直径)、分子数等微观量。
3.渗透物理学方法的教育。运用理想化方法,建立物质分子是球形体的模型,是为了简化计算,突出主要因素的理想化方法。
二、重点、难点分析
1.重点有两个,其一是使学生理解和学会用单分子油膜法估算分子大小(直径)的方法;其二是运用阿伏伽德罗常数估算微观量(分子的体积、直径、分子数等)的方法。
2.尽管今天科学技术已经达到很高的水平,但是在物理课上还不能给学生展现出分子的真实形状和分子的外观。这给讲授分子的知识带来一定的困难,也更突出了运用估算方法和建立理想模型方法研究固体、液体分子的体积、直径、分子数的重要意义。
三、教具
1.教学挂图或幻灯投影片:水面上单分子油膜的示意图;离子显微镜下看到钨原子分布的图样。
2.演示实验:演示单分子油膜:油酸酒精溶液(1:20O),滴管,直径约20cm圆形水槽,烧杯,画有方格线的透明塑料板。
四、主要教学过程
(一)热学内容简介
1.热现象:与温度有关的物理现象。如热胀冷缩、摩擦生热、水结冰、湿衣服晾干等都是热现象。
2.热学的主要内容:热传递、热膨胀、物态变化、固体、液体、气体的性质等。
3.热学的基本理论:由于热现象的本质是大量分子的无规则运动,因此研究热学的基本理论是分子动理论、量守恒规律。
(二)新课教学过程
1.分子的大小。分子是看不见的,怎样能知道分子的大小呢?
(1)单分子油膜法是最粗略地说明分子大小的一种方法。
介绍并定性地演示:如果油在水面上尽可能地散开,可认为在水面上形成单分子油膜,可以通过幻灯观察到,并且利用已制好的方格透明胶片盖在水面上,用于测定油膜面积。如图1所示。
提问:已知一滴油的体积V和水面上油膜面积S,那么这种油分子的直径是多少?
在学生回答的基础上,还要指出:
①介绍数量级这个数学名词,一些数据太大,或很小,为了书写方便,习惯上用科学记数法写成10的乘方数,如3×10-10m。我们把10的乘方数叫做数量级,那么1×10-10m和9×10-10m,数量级都是10-10m。
②如果分子直径为d,油滴体积是V,油膜面积为S,则d=V/S,根据估算得出分子直径的数量级为10-10m。
(2)利用离子显微镜测定分子的直径。
看物理课本上彩色插图,钨针的尖端原子分布的图样:插图的中心部分亮点直接反映钨原子排列情况。经过计算得出钨原子之间的距离是2×10-10m。如果设想钨原子是一个挨着一个排列的话,那么钨原子之间的距离L就等于钨原子的直径d,如图2所示。
(3)物理学中还有其他不同方法来测量分子的大小,用不同方法测量出分子的大小并不完全相同,但是数量级是相同的。测量结果表明,一般分子直径的数量级是10-10m。例如水分子直径是4×10-10m,氢分子直径是2.3×10-10m。
(4)指出认为分子是小球形是一种近似模型,是简化地处理问题,实际分子结构很复杂,但通过估算分子大小的数量级,对分子的大小有了较深入的认识。
2.阿伏伽德罗常数
向学生提问:在化学课上学过的阿伏伽德罗常数是什么意义?数值是多少?明确1mol物质中含有的微粒数(包括原子数、分子数、离子数……)都相同。此数叫阿伏伽德罗常数,可用符号NA表示此常数,NA=6.02×1023个/mol,粗略计算可用NA=6×1023个/mol。(阿伏伽德罗常数是一个基本常数,科学工作者不断用各种方法测量它,以期得到它精确的数值。)
再问学生,摩尔质量、摩尔体积的意义。
如果已经知道分子的大小,不难粗略算出阿伏伽德罗常数。例如,1mol水的质量是0.018kg,体积是1.8×10-5m3。每个水分子的直径是4×10-10m,它的体积是(4×10-10)m3=3×10-29m3。如果设想水分子是一个挨着一个排列的。
提问学生:如何算出1mol水中所含的水分子数?
3.微观物理量的估算
若已知阿伏伽德罗常数,可对液体、固体的分子大小进行估算。事先我们假定近似地认为液体和固体的分子是一个挨一个排列的(气体不能这样假设)。
提问学生:1mol水的质量是M=18g,那么每个水分子质量如何求?
提问学生:若已知铁的相对原子质量是56,铁的密度是7.8×103kg/m3,试求质量是1g的铁块中铁原子的数目(取1位有效数字)。又问:是否可以计算出铁原子的直径是多少来?
归纳总结:以上计算分子的数量、分子的直径,都需要借助于阿伏伽德罗常数。因此可以说,阿伏伽德罗常数是联系微观世界和宏观世界的桥梁。它把摩尔质量、摩尔体积等这些宏观量与分子质量、分子体积(直径)等这些微观量联系起来。
阿伏伽德罗常数是自然科学的一个重要常数(曾经学过的万有引力常量也是一个重要常数)。物理常数是物理世界客观规律的反映。一百多年来,物理学家想出各种办法来测量它,不断地努力,使用一次比一次更精确的测量方法。现在测定它的精确值是NA=6.022045×1023/mol。
(三)课堂练习
1.体积是10-4cm3的油滴滴于水中,若展开成一单分子油膜,则油膜面积的数量级是
A.102cm2B.104cm2C.106cm2D.108cm2
答案:B
2.已知铜的密度是8.9×103kg/m3,铜的摩尔质量是63.5×10-3kg/mol。体积是4.5cm3的铜块中,含有多少原子?并估算铜分子的大小。
答案:3.8×1023,3×10-10m
(四)课堂小结
1.物体是由体积很小的分子组成的。这一结论有坚实的实验基础。单分子油膜实验等实验是上述结论的有力依据。分子直径大约有10-10m的数量级。
2.阿伏伽德罗常数是物理学中的一个重要常数,它的意义和常数数值应该记住。
3.学会计算微观世界的物理量(如分子数目、分子质量、分子直径等)的一般方法。由于微观量是不能直接测量的,人们可以测定宏观物理量,用阿伏伽德罗常数作为桥梁,间接计算出微观量来。如分子质量m,可通过物质摩尔质量M和阿伏伽德罗常数NA,得到m=M/NA。通过物质摩尔质量M、密度ρ、阿伏伽德罗常数NA,计算出分子直径
(五)说明
1.由于课堂内时间限制,单分子油膜法测定分子直径的实验不可能在课堂上完成全过程。在课堂上让学生看到油膜散开现象和油膜面积的测量方法即可。
要想造成单分子油膜,必须选用脂肪酸类,如油酸C17H33COOH或棕榈酸C15H31COOH,这类脂肪酸分子的形状为长链形,它的羧基一端浸入水中,而烃链C17H33伸在水面上方,造成油73酸长分子在水面上垂直排列,如图3所示。

高三物理上册《分子的热运动》知识点总结人教版


高三物理上册《分子的热运动》知识点总结人教版

知识点一
扩散
1、定义
不同分子互相接触时,彼此进入对方的现象叫扩散。其实质是分子(原子)的互相渗透。
2、扩散现象表明
一切物质的分子都在做永不停息的无规则运动,也说明物质的分子间存在间隙。
3、影响因素
温度越高,扩散越快
4、理解扩散现象
扩散现象只能发生在不同的物质之间。
不同物质只有相互接触时才能发生扩散现象。
扩散现象是两种物质的分子彼此进入对方。
不同状态的物体之间也可以发生扩散现象。
知识点二
分子热运动
一切物质的分子都在不停地做无规则运动。由于分子的运动与温度有关,所以这种无规则的运动叫做分子的热运动。温度越高,热运动越剧烈。
知识点三
分子动理论
1、分子动理论内容
物质是由分子组成的,一切物质的分子都在不停地做无规则运动,分子间存在相互作用的引力和斥力。
2、分子间的作用力
分子间同时存在相互作用的引力和斥力,当分子距离很小时,引力小于斥力,表现为斥力;
当分子间距离稍大时,引力大于斥力,表现为引力;
当分子间距离很大时,分子间作用力变得十分微小,可以忽略。
3、分子间作用力与物质状态的关系
①固体中的分子距离非常小,相互作用力很大,分子只能在一定的位置附近振动,所以既有一定的体积,又有一定的形状。
②液体中分子距离较小,相互作用力较大,以分子群的形态存在,分子可以在某个位置附近振动,分子群可以互相滑过,所以液体有一定的体积,但有流动性,形状随容器而变。
③气体分子间的距离很大,相互作用力很小,每个分子几乎都可以自由运动,所以气体既没有固定的体积,也没有固定的形状,可以充满它能够达到的整个空间。
④固体物质很难被拉伸,是因为分子间存在引力的缘故;液体物质很难被压缩,是因为分子间存在斥力的原因;液体物质能保持一定的体积是因为分子间存在引力的原因。

高三物理上册《分子间的作用力》知识点总结人教版


作为优秀的教学工作者,在教学时能够胸有成竹,高中教师要准备好教案,这是老师职责的一部分。教案可以让学生更好的吸收课堂上所讲的知识点,帮助高中教师缓解教学的压力,提高教学质量。那么如何写好我们的高中教案呢?以下是小编为大家精心整理的“高三物理上册《分子间的作用力》知识点总结人教版”,仅供参考,欢迎大家阅读。

高三物理上册《分子间的作用力》知识点总结人教版

一、教学目标

1.知道分子间同时存在着相互作用的引力和斥力,表现出的分子力是引力和斥力的合力。

2.知道分子力随分子间距离变化而变化的定性规律,知道分子间距离是r0时分子力为零,知道r0的数量级。

二、重点分析

1.重点内容有两个,一是通过分子之间存在间隙和分子之间有引力和斥力的一些演示实验和事实,推理论证出分子之间存在着引力和斥力;二是分子间的引力和斥力都随分子间距离的变化而变化,而分子力是引力和斥力的合力,能正确理解分子间作用力与距离关系的曲线的物理意义。

三、教学讲解

分子动理论是在坚实的实验基础上建立起来的。我们通过单分子油膜实验、隧道扫描显微镜观察碳原子的分布等实验,知道物质是由很小的分子组成的,分子大小在10-10m数量级。我们又通过扩散现象和布朗运动等实验知道了分子是永不停息地做无规则运动的。分子动理论还告诉我们分子之间有相互作用力。

(1)演示实验:

①长玻璃管内,分别注入水和酒精,混合后总体积减小。

②U形管两臂内盛有一定量的水(不注满水),将右管上端用橡皮塞堵住,左管继续注入水,右管水面上的空气被压缩。

上述实验可以说明气体、液体的内部分子之间是有空隙的。钢铁这样坚固的固体的分子之间也有空隙,有人用两万标准大气压的压强压缩钢筒内的油,发现油可以透过筒壁溢出。

布朗运动和扩散现象不但说明分子不停地做无规则运动,同时也说明分子间有空隙,否则分子便不能运动了。

(2)一方面分子间有空隙,另一方面,固体、液体内大量分子却能聚集在一起形成固定的形状或固定的体积,这两方面的事实,使我们推理得出分子之间一定存在着相互吸引力。

分子之间还存在着斥力

固体和液体很难被压缩,即使气体压缩到了一定程度后再压缩也是很困难的;用力压缩固体(或液体、气体)时,物体内会产生反抗压缩的弹力。这些事实都是分子之间存在斥力的表现。

运用反证法推理,如果分子之间只存在着引力,分子之间又存在着空隙,那么物体内部分子都吸引到一起,造成所有物体都是很紧密的物质。但事实并不是这样的,说明必然还有斥力存在着。

分子间引力和斥力的大小跟分子间距离的关系

(1)经过研究发现分子之间的引力和斥力都随分子间距离增大而减小。但是分子间斥力随分子间距离增大而减小得更快些,如图1中两条虚线所示。

(2)由于分子间同时存在引力和斥力,两种力的合力又叫做分子力。在图1图象中实线曲线表示引力和斥力的合力(即分子力)随距离变化的情况。当两个分子间距在图象横坐标r0距离时,分子间的引力与斥力平衡,分子间作用力为零,r0的数量级为10-10m,相当于距离为r0的位置叫做平衡位置。

【课件演示】当分子间距离r<r0时,分子间引力和斥力都随距离减小而增大,但斥力增加得更快,因此分子间作用力表现为斥力。

当r>r0时,引力和斥力都随距离的增大而减小,但是斥力减小的更快,因而分子间的作用力表现为引力,但它也随距离增大而迅速减小,当分子距离的数量级大于10-9m时,分子间的作用力变得十分微弱,可以忽略不计了。图1表示分子间距离r不同的三种情况下,分子间引力斥力大小的情况。

文章来源:http://m.jab88.com/j/71364.html

更多

最新更新

更多