教案课件是老师上课做的提前准备,大家开始动笔写自己的教案课件了。只有制定教案课件工作计划,接下来的工作才会更顺利!适合教案课件的范文有多少呢?以下是小编收集整理的“高考物理考前回扣教材-力学实验”,供大家借鉴和使用,希望大家分享!
物理实验
考点要求重温
1.要求会正确使用的仪器主要有:刻度尺、游标卡尺、螺旋测微器、天平、秒表、电火花计时器或电磁打点计时器、弹簧测力计、电流表、电压表、多用电表、滑动变阻器、电阻箱等.
2.要求认识误差问题在实验中的重要性,了解误差的概念,知道系统误差和偶然误差;知道用多次测量求平均值的方法减小偶然误差;能在某些实验中分析误差的主要来源;不要求计算误差.
3.要求知道有效数字的概念,会用有效数字表达直接测量的结果,间接测量的有效数字运算不作要求.
1力学实验
要点方法回顾
1.游标卡尺和螺旋测微器的读数
(1)游标卡尺
测量大于1mm的长度时,整的毫米数从主尺上读出,毫米以下的部分从游标尺上读出,即读数=主尺读数+游标尺读数,其中“游标尺读数”就是与主尺某刻度线对齐的游标刻度的序数乘以精确度.注意游标卡尺不估读.
(2)螺旋测微器
图1
螺旋测微器又叫千分尺,“千分”就是千分之一毫米,即0.001mm.螺旋测微器的读数应是0.5mm以上的部分从固定刻度上读,并且要看其“半mm”刻度线是否露出;0.5mm以下的部分从可动刻度上读,要估读一位,再把两部分读数相加即得测量值.如图1所示的读数应该是6.700mm.
2.研究匀变速直线运动
(1)纸带处理.从打点计时器重复打下的多条纸带中选点迹清楚的一条,舍掉开始比较密集的点迹,从便于测量的地方取一个起始点O,然后每5个点取一个计数点A、B、C、…(或者说每隔4个点取一个计数点),这样做的好处是相邻计数点间的时间间隔T=0.1s,便于计算.如图2所示,测出相邻计数点间的距离x1、x2、x3、…
图2
(2)利用x1、x2、x3、…可以计算相邻相等时间内的位移差x2-x1、x3-x2、x4-x3、…,如果它们在允许的误差范围内相等,则可以判定被测物体的运动是匀变速直线运动.
(3)利用纸带可以求被测物体在任一计数点对应时刻的瞬时速度v.如vB=x2+x32T.
(4)利用纸带求被测物体的加速度a.具体来说又有两种方法:
①“逐差法”:从纸带上得到6个相邻相等时间内的位移,则a=x4+x5+x6-x1+x2+x39T2.
②利用v-t图象求a:求出A、B、C、D、E、F各点的瞬时速度,画出如图3所示的v-t图线,图线的斜率就等于加速度a.
图3
(5)注意事项
①细绳尽可能与木板平行,以确保细绳对小车的拉力不变;
②开始释放小车时,小车应尽量靠近打点计时器;
③小车的加速度应适当大一些,以能在纸带长约50cm的范围内清楚地取7~8个计数点为宜;
④正确区别打点计时器打出的点与人为选取的计数点(一般把打点计时器打出的每5个点作为1个计数点),选取的计数点不少于6个;
⑤最好不要分段测量各段位移,应尽可能地一次测量完毕.读数时估读到毫米的下一位.
3.探究弹力和弹簧伸长量的关系
(1)原理:弹簧受到拉力会伸长,平衡时弹簧产生的弹力和外力大小相等,这样弹力的大小可以通过测定外力而得出(可以用悬挂钩码的方法给弹簧施加拉力).弹簧的伸长量可用直尺测出.多测几组数据,用列表或作图的方法探究出弹力和弹簧伸长量的关系.
(2)注意事项
①悬吊弹簧时让它自然下垂,另外要记住测量弹簧的原长;
②每改变一次拉力的大小就需要做一次测量记录.为了探究弹力和弹簧伸长量的关系,要尽可能地多测几组数据,以便在坐标纸上能描出更多的点;
③实验时拉力不要太大,以免弹簧被过分拉伸,超出它的弹性限度;
④在坐标纸上尝试描画一条平滑曲线时,要顺着各点的走向来描,描出的点不一定正好在曲线上,但要注意使描出的点大致分布在曲线两侧.
4.验证力的平行四边形定则
(1)原理:如图4所示,两只弹簧测力计a、b成角度拉橡皮条AB和一只弹簧测力计c拉橡皮条AB的效果相同,这个效果就是指橡皮条的形变量(大小和方向)相同(两次必须把橡皮条拉至同一位置).
图4
(2)注意问题
①在同一实验中的两只弹簧测力计的选取方法:将两只弹簧测力计钩好对拉,若两只弹簧测力计在拉的过程中读数相同,则可选,否则不可选;
②在满足合力不超过弹簧测力计量程及橡皮条形变不超过弹性限度的条件下,应使拉力尽量大一些,以减少误差;
③画力的图示时,应该选定恰当的标度,尽量使图画得大一些,同时严格按照力的图示要求和几何作图法作出合力;
④在同一次实验中,橡皮条拉长的节点位置O一定相同;
⑤本实验误差的主要来源除了弹簧测力计外,还可能来自读数误差、作图误差,因此读数时眼睛一定要正视,按有效数字正确读数和记录,作图时须保证两力的对边一定要平行.
5.探究加速度与力、质量的关系
(1)了解该实验的系统误差的来源.
①用砂和砂桶的总重量代替小车受到的拉力.由牛顿第二定律可知,由于砂和砂桶也在做匀加速运动,因此砂和砂桶的总重量肯定大于小车受到的实际拉力.可以推导出结论:只有在小车的总质量M远大于砂和砂桶的总质量m时,才能使该系统误差足够小.
②没有考虑摩擦阻力的作用.应该用平衡摩擦力的方法来消除这个系统误差.
(2)为研究a、F、m三者的关系,要利用“控制变量法”,分别研究a与F、a与m的关系.
(3)用图象法验证a∝F、a∝1m(后者必须用a-1m图象,不能用a-m图象).
6.探究功与速度变化的关系
(1)作用在物体上的力越大,相同时间内在力的方向上发生的位移就越大,力对物体做的功就越多.力越大产生的加速度也就越大,物体通过较大的位移后获得的速度也就越大.所以力对物体做的功与速度是正相关性关系,可能与速度的一次方、二次方、三次方等成正比.
如图5所示,小车在一条橡皮筋的作用下弹出,沿木板滑行.当我们用2条、3条、…同样的橡皮筋进行第2次、第3次、…实验时,每次实验中橡皮筋拉伸的长度都保持一致,那么,第2次、第3次、…实验中橡皮筋对小车做的功就是第一次的2倍、3倍、…如果把第一次实验时橡皮筋做的功记为W,以后各次做的功就是2W、3W、…
图5
橡皮筋做功而使小车获得的速度可以由纸带和打点计时器测出,进行若干次测量,就得到若干次功和速度的数据.
(2)按图组装好实验器材,由于小车在运动中会受到阻力,平衡阻力的方法是将木板固定有打点计时器的一端垫起适当的高度,使小车缓慢匀速下滑.
(3)在处理数据时,应先对测量数据进行估计,大致判断两个量可能的关系,然后以W为纵坐标,v2(或v、v3、v)为横坐标作图.
7.验证机械能守恒定律
本实验要求验证自由下落过程中机械能守恒,如图6所示的纸带的左端是用夹子夹重物的一端.
图6
(1)原理:用刻度尺量出从0点到1、2、3、4、5各点的距离h1、h2、h3、h4、h5,利用“匀变速直线运动中间时刻的瞬时速度等于该段位移内的平均速度”,算出2、3、4各点对应的瞬时速度v2、v3、v4,验证与2、3、4各点对应的重力势能减少量mgh和动能增加量12mv2是否相等.
(2)注意事项
①实验中打点计时器的安装,重物与纸带限位孔必须在同一竖直线上,以减小摩擦阻力;
②实验时必须先接通电源,让打点计时器正常工作后才能松开纸带让重物下落;
③要多做几次实验,选点迹清晰,且第一、二两点间距离接近2mm的纸带进行测量;
④测量下落高度时,必须从起始点算起.为了减小测量值h的相对误差,选取的各个计数点要离起始点远些,纸带也不宜过长,有效长度可在60~80cm;
⑤因不需要知道动能的具体数值,因此不需要测出重物的质量m;
⑥由于摩擦和空气阻力的影响,mgh总是稍大于12mv2.
高考物理考前回扣教材-力与曲线运动
一名优秀的教师在每次教学前有自己的事先计划,准备好一份优秀的教案往往是必不可少的。教案可以让学生更好的吸收课堂上所讲的知识点,帮助教师营造一个良好的教学氛围。那么如何写好我们的教案呢?以下是小编收集整理的“高考物理考前回扣教材-力与曲线运动”,相信您能找到对自己有用的内容。
力与曲线运动
考点要求重温
考点11运动的合成与分解(Ⅱ)
考点12抛体运动(Ⅱ)
考点13匀速圆周运动、角速度、线速度、向心加速度(Ⅰ)
考点14匀速圆周运动的向心力(Ⅱ)
考点15离心现象(Ⅰ)
考点16万有引力定律及其应用(Ⅱ)
考点17环绕速度(Ⅱ)
考点18第二宇宙速度和第三宇宙速度(Ⅰ)
考点19经典时空观和相对论时空观(Ⅰ)
要点方法回顾
1.怎样分析平抛运动问题?平抛运动有哪些规律?
答案(1)平抛运动问题的分析方法:分解为水平方向上的匀速直线运动和竖直方向上的自由落体运动.即运动的合成与分解.
(2)平抛运动的运动规律:
平抛运动水平分运动竖直分运动合运动
速度大小vx=v0vy=gtv=v2x+v2y
方向x轴正方向y轴正方向tanθ=gtv0
位移大小x=v0ty=12gt2
s=x2+y2
方向x轴正方向y轴正方向tanφ=gt2v0
2.竖直平面内的圆周运动模型有哪些,各有什么特点?
答案(1)轻绳模型
如图所示,球过最高点的速度最小值vmin=rg,若v>rg,绳对球产生拉力.球紧贴圆形光滑内侧轨道的运动与此相似,球过最高点时速度最小值同样是vmin=rg,当v>rg时,轨道对球产生压力.
(2)轻杆模型
如图所示,球过最高点的速度最小值vmin=0,当0<v<rg时,FN随v增大而减小,FN为支持力;当v=rg时,FN=0;当v>rg时,FN随v增大而增大,FN为拉力.球在圆形光滑管道内的运动与此相似.
3.万有引力定律有哪些具体的应用?
答案(1)万有引力定律:F=Gm1m2r2,式中G为万有引力常量,G=6.67×10-11Nm2/kg2.
是由卡文迪许通过扭秤实验测得的.
(2)计算离地面高为h处的重力加速度g=GMR+h2.
(3)分析天体运动问题
把天体的运动看成是匀速圆周运动,其所需向心力由万有引力提供.
GMmr2=mv2r=mω2r=m(2πT)2r=m(2πf)2r
应用时可根据实际情况选用适当的公式进行分析或计算.
研究天体运动时,一般不考虑天体自转因素的影响,而认为物体在某天体表面的重力大小等于天体对物体的万有引力,即mg=GMmR2,整理得GM=gR2,此式常称为黄金代换公式.
(4)天体质量M、密度ρ的估算
测出卫星绕天体做匀速圆周运动的半径R和周期T,
由GMmR2=m4π2T2R得M=4π2R3GT2,ρ=MV=M43πR30=3πR3GT2R30(R0为天体的半径)
当卫星沿天体表面绕天体运行时,R=R0,则ρ=3πGT2.
4.卫星的运行及变轨遵循什么规律?
答案(1)卫星的绕行速度、角速度、周期与半径r的关系
①由GMmr2=mv2r得v=GMr,所以r越大,v越小.
②由GMmr2=mω2r,得ω=GMr3,所以r越大,ω越小.
③由GMmr2=m4π2T2r得T=4π2r3GM,所以r越大,T越大.
(2)卫星的变轨
阻力作用下渐变:卫星线速度v将增大,周期T将减小,向心加速度a将增大,动能Ek将增大,势能Ep将减小,该过程有部分机械能转化为内能(摩擦生热),因此卫星机械能E机将减小.
突变:要使卫星由较低的圆轨道进入较高的圆轨道,即增大轨道半径(增大轨道高度h),一定要给卫星增加能量.与在低轨道时比较,卫星在较高轨道上的动能Ek减小,势能Ep增大,机械能E机也增大.增加的机械能由化学能转化而来.
(3)同步卫星的四个“一定”
轨道平面一定轨道平面与赤道平面共面
周期一定与地球自转周期相同,即T=24h
高度一定由GMmR+h2=m4π2T2(R+h)得同步卫星离地面的高度h=
3GMT24π2-R≈3.6×107m
速率一定v=GMR+h≈3.1×103m/s
(4)双星问题
如图所示,设双星的两子星的质量分别为M1和M2,相距L,M1和M2的线速度分别为v1和v2,角速度分别为ω1和ω2,由几何关系得r1+r2=L.
由万有引力定律和牛顿第二定律得:
GM1M2L2=M1v21r1=M1r1ω21GM1M2L2=M2v22r2=M2r2ω22.
高考物理考前回扣教材-力与直线运动
力与直线运动
考点要求重温
考点1参考系、质点(Ⅰ)
考点2位移、速度和加速度(Ⅱ)
考点3匀变速直线运动及其公式、图象(Ⅱ)
考点4滑动摩擦力、动摩擦因数、静摩擦力(Ⅰ)
考点5形变、弹力、胡克定律(Ⅰ)
考点6矢量和标量(Ⅰ)
考点7力的合成与分解(Ⅱ)
考点8共点力的平衡(Ⅱ)
考点9牛顿运动定律、牛顿运动定律的应用(Ⅱ)
考点10超重和失重(Ⅰ)
要点方法回顾
1.若质点处于平衡状态,则它的受力、速度、加速度有何特点?若只从速度方面看,速度为零是否说明物体处于平衡状态?
答案质点处于平衡状态时,所受合外力为零,处于静止状态或匀速直线运动状态,即速度为零或保持恒定不变,加速度为零.若只从速度方面看,速度为零,而加速度不一定为零,物体不一定处于平衡状态.
2.在匀变速直线运动中,物体的受力、加速度、速度有什么特点?匀变速直线运动的规律和推论主要有哪些?
答案在匀变速直线运动中,物体所受合外力恒定,大小、方向不变,加速度不变,速度均匀增大或减小.
匀变速直线运动的规律和推论:
(1)速度与时间的关系式:v=v0+at.
(2)位移与时间的关系式:x=v0t+12at2.
(3)位移与速度的关系式:v2-v20=2ax.
(4)平均速度公式:v=v0+v2=(某段时间内的平均速度,等于该时间段的中间时刻的瞬时速度).
(5)任意相邻两个相等的时间内的位移之差是一个恒量,即Δx=xn+1-xn=aΔt2.
3.汽车以恒定加速度刹车与竖直上抛运动都是匀减速直线运动,它们处理起来有什么不同?竖直上抛运动有哪些特殊性?
答案汽车以恒定加速度刹车是减速到零就停止的运动,此类问题往往存在时间陷阱,要先计算从刹车到停止的时间;而竖直上抛运动是减速到零又能反向匀加速的运动,在不涉及路程时全程分析较简单.
所有与竖直上抛类似的运动,即匀减速到零,又能以相同加速度反向加速的运动,都有以下共同特点:
(1)对称性:竖直上抛运动的上升阶段和下落阶段具有时间和速度等方面的对称性.
(2)可逆性:上升过程的匀减速运动可逆向看做初速度为零的匀加速运动来研究.
(3)整体性:把上升阶段和下落阶段视为一个匀变速直线运动过程.
4.物体于处平衡状态的条件是什么?有哪些主要的推论?
答案共点力作用下物体的平衡条件是:ΣF=0,或同时满足ΣFx=0、ΣFy=0.根据平衡条件可得以下重要推论:(1)当物体处于平衡状态时,它所受的某一个力与它所受的其余力的合力等值反向;(2)当三个共点力作用于物体并处于平衡状态时,三个力的矢量组成一封闭的矢量三角形.
5.力的合成与分解遵循什么规律?处理平衡问题常用的方法有哪些?
答案遵循平行四边形定则;常用的方法主要有矢量三角形法、正交分解法、推论法.
6.相互作用力与二力平衡的联系和区别是什么?
答案(1)联系:力的大小相等、方向相反、作用在同一直线上.
(2)区别:一对平衡力作用在同一物体上,不一定是同一性质的力,一个力消失(或变化),另一个力未必消失(或变化);作用力与反作用力作用在两个相互作用的物体上,两力同性质、同时产生、同时变化、同时消失.
7.什么是超重、失重和完全失重?它们各有什么特点?
答案(1)超重:物体对支持物的压力(或对悬挂物的拉力)大于物体的重力.特点:物体具有向上的加速度.
(2)失重:物体对支持物的压力(或对悬挂物的拉力)小于物体的重力.特点:物体具有向下的加速度.
(3)完全失重:物体对支持物的压力(或对悬挂物的拉力)为零.特点:物体具有向下的加速度且大小等于重力加速度g.
高考物理考前回扣教材-电学实验
电学实验
要点方法回顾
1.多用电表
(1)正确使用
①电流的流向:由于使用多用电表时不管测量项目是什么,电流都要从电表的“+”插孔(红表笔)流入,从“-”插孔(黑表笔)流出,所以使用欧姆挡时,多用电表内部电池的正极接的是黑表笔,负极接的是红表笔.
②要区分开“机械零点”与“欧姆零点”:“机械零点”在表盘刻度左侧“0”位置,调整的是表盘下边中间的定位螺丝;“欧姆零点”在表盘刻度的右侧电阻刻度“0”位置,调整的是欧姆挡的调零旋钮.
③选倍率:测量前应根据估计的阻值选用适当的挡位.由于欧姆挡刻度的非线性,使用欧姆挡测电阻时,表头指针偏转过大或过小都有较大误差,通常只使用表盘中间一段刻度范围(14R中~4R中)为测量的有效范围,譬如,J0411型多用电表欧姆挡中的R中=15Ω,当待测电阻约为2kΩ时,则应选用×100挡.
(2)注意问题
①在使用前,应观察指针是否指向电流表的零刻度线,若有偏差,应用螺丝刀调节多用电表中间的定位螺丝,使指针指在电流表的零刻度;
②测电阻时,待测电阻须与其他元件和电源断开,不能用手接触表笔的金属杆;
③合理选择欧姆挡的量程,测量时使指针尽量指在表盘中央位置附近;
④换用欧姆挡的另一量程时,一定要重新进行欧姆调零,才能进行测量;
⑤读数时,应将表针示数乘以选择开关所指的倍率;
⑥测量完毕时,要把表笔从测试孔中拔出,选择开关应置于交流电压最高挡或“OFF”挡,若长时间不用时,应把电池取出.
2.测定金属的电阻率
(1)实验原理
用毫米刻度尺测一段金属丝的长度l,用螺旋测微器测金属丝的直径d,用伏安法金属丝的电阻R,根据电阻定律R=ρlS可求金属丝的电阻率ρ=πd24lR.
(2)电流表的内、外接法
在伏安法测电阻的实验中,若RVRx>RxRA,选用电流表外接电路;若RVRx<RxRA,选用电流表内接电路.
(3)控制电路的选择
如果滑动变阻器的额定电流够用,在下列三种情况下必须采用分压式接法(如图7所示).
图7
①用电器的电压或电流要求从零开始连续可调.
②要求用电器的电压或电流变化范围大,但滑动变阻器的阻值小.
③采用限流接法时电路中的最小电流仍超过用电器的额定电流.
在安全(I滑额够大,仪表不超量程,用电器上的电流、电压不超额定值,电源不过载)、有效(调节范围够用)的前提下,若Rx<R0,原则上两种电路均可采用,但考虑省电、电路结构简单,可优先采用限流接法(如图8所示);而若RxR0,则只能采用分压电路.
图8
(4)注意事项
①本实验中待测金属丝的电阻值较小,为了减小实验的系统误差,必须采用电流表外接法;
②实验连线时,应先从电源的正极出发,依次将电源、开关、电流表、待测金属丝、滑动变阻器连成主线路,然后再把电压表并联在待测金属丝的两端;
③闭合开关之前,一定要使滑动变阻器的滑片处在有效电阻值最大的位置;
④在用伏安法测电阻时,通过待测金属丝的电流I的值不宜过大,通电时间不宜过长,以免金属丝的温度过高,造成其电阻率在实验过程中增大;
⑤求Rx的平均值可用两种方法:第一种是算出各次的测量值,再取平均值;第二种是用U-I图线的斜率来求出.若采用图象法,在描点时要尽量使点间的距离拉大一些,连线时要让各点均匀分布在直线两侧,个别明显偏离直线较远的点不予考虑.
3.描绘小灯泡的伏安特性曲线
(1)实验原理
①定值电阻的伏安特性曲线是直线,而小灯泡灯丝的电阻随温度的升高而增大,故其伏安特性曲线为曲线.
②用电流表测出流过小灯泡的电流,用电压表测出小灯泡两端的电压,测出多组(U、I)值后,在U-I坐标系中描出对应点,用一条平滑的曲线将这些点连接起来,就得到小灯泡的伏安特性曲线.
(2)电路设计(如图9所示).
图9
①实验中,小灯泡两端的电压要求从零开始变化,滑动变阻器应采用分压式接法.
②实验中,被测小灯泡电阻一般很小(几欧或十几欧),电路采用电流表外接法.
(3)注意事项
①本实验需作出U-I图线,要求测出一组包括零在内的电压值、电流值,因此滑动变阻器要采用分压式接法;
②因被测小灯泡电阻较小,因此实验电路必须采用电流表外接法;
③开关闭合后,调节滑动变阻器滑片的位置,使小灯泡的电压逐渐增大,可在电压表读数每增加一个定值时,读取一次电流值;调节滑片时应注意电压表的示数不能超过小灯泡的额定电压;
④在坐标纸上建立坐标系,横、纵坐标所取的分度比例应该适当,尽量使测量数据画出的图线占满坐标纸.连线一定要用平滑的曲线,而不能画成折线.
4.测定电池的电动势和内阻
(1)由闭合电路欧姆定律:E=U+Ir,只要测出两组U、I值,就可以列方程求出E和r.
由于电池的内阻一般很小,为减小测量误差,常采用图10甲所示的电路,而不用图乙所示电路.
图10
(2)仪器及电路的选择
①电压表量程:根据测量电池的电动势的值选取,如测两节干电池,电压表应选0~3V量程.
②电流表量程,因要求流过电源的电流不宜过大,一般选0~0.6A量程.
③滑动变阻器的选取:阻值一般为10~20Ω.
(3)数据处理
图11
改变R的值,测出多组U、I值,作出U-I图线,如图11所示,图线与U轴交点的纵坐标即为电池电动势,图线斜率的绝对值即为电池内阻.
由于电池的内阻很小,即使电流有较大的变化,路端电压变化也很小,为充分利用图象空间,电压轴数据常从某一不为零的数开始,但U-I图象在U轴上的截距和图线斜率的意义不变.
(4)注意事项
①为了使电池的路端电压变化明显,电池的电阻宜稍大一些;
②电池在大电流放电时极化现象较严重,电动势E会明显下降,内阻r会明显增大,故长时间放电电流不宜超过0.3A,短时间放电电流不宜超过0.5A,因此实验中不要将I调得过大,读电表时要快,每次读完后应立即断电;
③测出不少于6组I、U数据,且变化范围要大,用方程组求解,分别求出E、r值再求平均值;
④画出U-I图象,要使较多的点落在这条直线上或使各点均匀分布在直线的两侧,个别偏离直线太远的点可不予考虑;
⑤计算内阻要在直线上任取两个相距较远的点,用r=|ΔU||ΔI|算出电池的内阻r.
文章来源://m.jab88.com/j/70784.html
更多