88教案网

一名优秀的教师就要对每一课堂负责,准备好一份优秀的教案往往是必不可少的。教案可以让学生更好的消化课堂内容,帮助高中教师能够更轻松的上课教学。那么一篇好的高中教案要怎么才能写好呢?为满足您的需求,小编特地编辑了“机械振动”,仅供参考,希望能为您提供参考!

第八章机械振动

第一课时知识梳理
一、考点内容与要求
内容要求说明
弹簧振子,简谐运动,简谐运动的振幅、周期和频率,简谐运动的位移—时间图象
单摆,在小振幅条件下单摆做简谐运动,周期公式
振动中的能量转化
自由振动和受迫振动,受迫振动的振动频率,共振及其常见的应用Ⅱ



二、知识结构定义:生产振动的两个必要条件
描述振动的物理量:振幅A,频率f,周期T。
特征:F回=-kx或a=
周期:T=2π
图象:正弦(或余弦)曲线
能量转化:机械能守恒
弹簧振子:T=2π
单摆:T=2π
振动频率=策动力频率
共振条件:
分组实验:用单摆测定重力加速度

三、本章知识考查特点及高考命题趋势从近五年来的高考试题来看,直接考查本考点的题目不多,尤其是在综合能力测试中,由于题目的数量和类型的限制,涉及的更小,更多的是在物理单科的测试中,出现了考查振动图像和振动模型的题目。题型多以选择题,填空题等形式出现。
预计单独考查振动图像和振动模型的可能性不大,更多的会与波的图像结合在一起出题,或以振动的物体为物理情景对综合能力的知识进行考查。但也不排除高考中可能出现再次对单摆的周期公式的应用,对振动图像的理解类的题目。
总之,振动问题要求虽不是很高,但题目内容比较琐碎,复习中要强调细致全面,力求做到切实理解,取得实效。
四、课后练习
1、物体在附近所做的运动,叫做机械振动,通常简称为振动。力的方向跟振子偏离的位移方向相反,总指向,它的作用是使振子能返回,所以叫做回复力。
2、胡克定律:在弹簧发生弹性形变时,弹簧振子的跟振子偏离的位移成正比,这个关系在物理学中叫做胡克定律,通常用公式表示为,式中的常数叫做系数,简称。
3、简谐运动:物体在跟偏离平衡位置的成正比,并且总指向平衡位置的作用下的振动,叫做简谐运动。
4、振幅:振动物体离开平衡位置的距离,叫做振动的振幅。做简谐运动的物体完成一次
所需要的时间,叫做振动的周期,在国际单位制中,周期的单位是。单位时间内完成的全振动的,叫做振动的频率,在国际单位制中,频率的单位是,简称,符号是。
5、简谐运动的周期和频率由振动系统的性质所决定,与振动的无关,因此又称为振动系统的固有周期和固有频率。
6、简谐运动的图象通常称为振动图象,也叫振动曲线。理论和实验都证明,所有简谐运动的振动图象都是或曲线。
7、如果悬挂小球的细线的和可以忽略,线长又比球的大得多,这样的装置叫做单摆,单摆是实际单摆的的物理模型。在很小的情况下,单摆所受的与偏离平衡位置的成正比而相反,单摆做简谐运动。
8、荷兰物理学家研究了单摆的振动,发现单摆做简谐运动的周期跟的二次方根成正式,跟二次方根成反比,跟、摆球的无关,并且确定了如下的单摆周期公。
9、简谐运动的能量:对简谐运动来说,一旦供给振动系统一定的能量,使它开始振动,由于守恒,它就以一定的永不停息的振动下去,简谐运动是一种理想化的振动,实际的振动系统不可避免地要受到摩擦和其他阻力,即受到的作用,系统克服的作用做功,系统的机械能就要振动的振幅也逐渐,直到最后振动就停下来了,这种逐渐减小的振动,叫做阻尼振动。
10、用周期性的外力作用于实际的振动系统,使系统持续的振动下去,这种周期性的外力叫做,物体在外界作用下的振动叫做受迫振动,物体做受迫振动时,振动稳定后的频率等于的频率,跟物体的频率没有关系。的频率接近物体的频率时,受迫振动的增大,这种现象叫做共振,声音在共振现象通常叫做

11、弹簧振子和单摆的周期:
弹簧振子和单摆的运动都属于,但它们的周期关系式有很大的区别,弹簧振子的周期公式为即其周期只取决于弹簧的
和振子的与其振动的,放置的无关;单摆的周期公式为,即其周期只取决于单摆的和当地的,与摆球的、摆动的无关,另外需要特别注意的是公式中g值应为,与单摆所处的
有关。

第二课时机械振动及其图象
一、考点理解
(一)机械振动
1、械振动
(1)定义:物体(或物体的一部分)在平衡位置附近所做的往复运动,叫做机械振动。
(2)产生振动的必要条件:①有回复力存在;②阻力足够小。
(3)回复力的特点
回复力是使物体回到平衡位置的力,它是按力的作用效果命名的,回复力可能是一个力,也可能是一个力的分力,还可能是几个力的合力。回复力的方向始终指向平衡位置,回复力是周期性变化的力。
2、描述振动的物理量
(1)全振动
振动物体的运动状态由振动物体的速度来表征。确定的速度大小和速度方向表征确定的运动状态。振动质点经过一次全振动后其振动状态又恢复到原来的状态。实际上,经过一次全振动后不但振动物体的速度大小和方向回复到原来的状态,振动物体的加速度大小和方向、振动物体的位移大小和方向也恢复到原来的状态。
(2)位称:由平衡位置指向振动质点所在位置的有向线段,是矢量,其最大值等于振幅。
(3)振幅
即振动质点离开平衡位置的最大距离,常用符号A表示。振幅是标量,是表示质点振动强弱的物理量。
(4)周期
即振动质点经过一次全振动所需的时间,常用符号T表示。周期是表示质点振动快慢的物理量。简谐运动的周期与振幅无关。
(5)频率
即一秒钟内振动质点完成全振动的次数,常用符号f来表示。周期和频率的关系是:f=,因此,频率同样是描述质点振动快慢的物理量。
3、简谐运动
(1)物体在跟位移大小成正比,并且总是指向平衡位置的力作用下的振动叫简谐运动。
(2)回复力F和加速度a与位移x的关系:
F=-,a=
注意:①“—”号表示回复力的方向与位移方向相反,即总是指向平衡位置。
②k是比例系数,不能理解成一定是弹簧的劲度系数,只有弹簧振子,才等于劲度系数。
③判断一个振动是否为简谐运动,可从两方向考虑;a.回复力大小与位移大小成正比。
b.回复力方向与位移方向相反
④机械振动不一定是简谐运动,简谐运动是最简单、最基本的振动。
(3)简谐运动的位移、回复力F、加速度a、速度υ都随时间做正弦(或余弦)式周期性变化,变化周期为T;振子的动能Ek、系统的势能Ep也做周期性变化,周期为,但总机械能守恒。
(4)简谐运动的过程特点
物体
位置位移
回复力F加速度a
方向大小方向大小方向大小
平衡位置O零零零
最大位移处M由O指向MA由M指向OkA由M指向O

O→M由O指向M零→A由M指向O零→kA由M指向O零→

M→O由O指向MA→零由M指向OkA→零由M指向O→零

物体
位置速度υ势能
动能

方向大小
平衡位置O

最大位移处M零

O→M由O
向M→零
零→
→零

M→O由M
指向O零→
→零
零→

(5)简谐运动的对称性、多解性
①简谐运动的多解性:做简谐运动的质点,在
运动上是一个变加速度的运动,质点运动相同的路程所需的时间不一定相同;它是一个周期性的运动,若运动的时间与周期的关系存在整数倍的关系,则质点运动的路程就不会是唯一的。若是运动时间为周期的一半,运动的路程具有唯一性,若不是具备以上条件,质点运动的路程也是多解的,这是必须要注意的。
②简谐运动的对称性:做简运动的质点,在距平
衡位置等距离的两点上时,具有大小相等的速度和加速度,在O点左右相等的距离上的运动时间也是相同的。
(二)简谐运动的图象
(1)简谐运动的图象的物理意义
简谐运动的图象表示运动物体的位移随时间变化的规律,而不是运动质点的运动轨迹。
(2)简谐运动的图象的特点所有简谐运动的振动图象都是正弦(或余弦)曲线。
(3)简谐运动的图象的
作图法
用横轴表示时间,纵轴
表示位移,根据实际数据定
出坐标单位及单位长度,根据振动质点各个时刻的位移
大小和方向画出一系列的点,
再用平滑的曲线连接这些点,得到周期性变化的正弦(或余弦)曲线。如右上图所示。
(4)简谐运动的图象的应用
①从振动图象可直接读出振幅A、周期T及某时刻t对应的位移。
②判定质点在某时刻t的、a、F的方向。
③判定某段时间内振动物体的、a、F的大小变化及动能、势能的变化情况。
二、方法讲解1、计算简谐运动路程的4倍振幅法
做简谐运动的质点在振动时间为△t=(n=1、2、3……)内,质点振动通过的路程为S为:
S=4.A(A为振幅)
2、根据简谐运动图象分析简谐运动的情况的基本方法。
简谐运动图象能够反映简谐运动的规律,因此将简谐运动图象跟具体的运动过程联系起来是讨论简谐运动的一种好方法。
(1)从简谐运动图象可以直接读出不同
时刻t的位移值,从而知道位移随时间t的变化情况。
(2)在简谐运动图象中,用做曲线上某点切线的办法可确定各时刻质点的速度大小和方向,切线与轴正方向夹角小于90时,速度与选定的正方向相同,且夹角越大表明此时速度越大。当切线与x轴正方向的夹角大于90时,速度方向与选定的正方向相反,且夹角越大,表明此时的速度越小。
(3)由于a=-x,故可根据图象上各个时刻的位移变化情况确定质点加速度的变化情况,同样,只要知道了位移和速度的变化情况,也就不难判断出质点在不同时刻的动能和势能的变化情况。
三、考点应用例1:一弹簧振子做简谐运动,周期为T,则下
列说法正确的是()
A、若t时刻和(t+t)时刻振子运动位移的大小相等,方向相同,则一定等于T的整倍数
B、若t时刻和(t+t)时刻振子运动速度的大小相等,方向相反,则t一定等于的整倍数
C、若t=T,则在t时刻和(t+)时刻振子运动的加速度一定相等
D、若t=,则在t时刻和(t+)时刻弹簧的长度一定相等
分析:根据题意,画出示意图,如下图对选项A,只能说明这两个时刻振子位于同一位置,设为P,并不能说明这两个时刻振子的运动方向一定相同,t可以是振子由P向B再回到P的时间,故认为t一定等于T的整数倍是错误的。
对选项B,振子两次到P的位置时可以速度大小相等,方向相反,但并不能肯定t等于的整数倍,选项B也是错误的。
在相隔一个周期T的两个时刻,振子只能位于同一位置,其位移相同,合外力相同,加速度必相等,选项C是正桷的。
相隔的两个时刻,振子的位移大小相等,方向相反,其位置可位于处,如上图所示,在P处弹簧处于伸长状态,在处弹簧处于压缩状态,弹簧长度并不相等,选项D是错误的。
答案:C
点评:做简谐运动的弹簧振子的运动具有往复性、对称性和周期性,正确理解弹簧振子做简谐运动过程的特点,是判断此类问题的关键。
例2:如右图所示,质量为m的物体放在弹簧上,弹簧在竖直方向做简谐运动,当振幅为A时,物体对弹簧的压力最大值是物重的1.5倍,则物体对弹簧的最小压力是,欲使物体在弹簧的振动中不离开弹簧,其振幅不能超过。
分析:本题中弹簧的弹力与重力的合力充当回复力,注意应用简谐运动的对称性进行分析求解。
解答:弹簧的弹力与重力的合力充当物体做简谐运动的回复力F。在振动的最低点处,物体对弹簧压力最大为=1.5mg,设向下为正方向,对物体有:F1=mg-=-A;在振动的最高点处,物体对弹簧压力最小为,有=mg-=A则=mg-A=2mg-=0.5mg。
物体振动到最高点处,若刚好不脱离弹簧,则对弹簧压力为零,重力成为回复力,有F=mg=,又F=mg-=A,即F=0.5mg=A,得=2A。
答案:0.5mg;2A。
点评:在振动的最低点处向上的合力最大,加速度向上,物体处于超重状态,且加速度最大,所以物体对弹簧的压力最大。同理,在最高点时合力向下,加速度向下最大,且失重,所以压力最小。
振动到最高处刚好不脱离,则弹簧为原长。
例3:把弹簧振子的小球拉离平衡位置后轻轻释放,小球便在其平衡位置两侧做简谐运动,若以表示小球被拉平衡位置的距离,则()。
A、小球回到平衡位置所需的时间随的增大而增大
B、小球回到平衡位置所需的时间与无关
C、小球经过平衡位置时的速度随的增大而增大
D、小球经过平衡位置时的加速度随的增大而增大
分析:弹簧振子做简谐运动的周期T等于该装置的固有周期,只由振子的质量和回复力系数决定,与其他因素无关,从最大位移处回到平衡位置需要时间,不随而改变,选项A错误,B正确。弹簧振子做简谐运动时机械能守恒,越大,系统弹性势能越大,到达平衡位置时动能也越大,速度也越大,选项C正确,在平衡位置时回复力为零,加速度为零,选项D错误。
答案:BC
点评:小球拉离平衡位置的距离等于振幅的大小,本题振幅A=,弹簧振子的固有周期与振幅无关。
例4:某质点做简谐运动的图象如右图所示,那么在t、t、t、t时刻,质点动量相同的时刻是,动能相同的时刻是,加速度相同的时是。
分析:利用简谐运动图象的物理意义分析求解。
解答:由于四个时刻位移大小均为a,则四个位置关于平衡位置对称,质点在四个时刻速度大小相同,四个时刻的动能相同;t与t时刻质点都沿x轴正方向运动,则t1与t4时刻动量相同;t2和t3时刻质点都沿x轴负方向运动,则t与t时刻动量也相同;和t时刻及t和t时刻的位移都分别相同,则和t时刻加速度相同,t与t时刻加速度相同,但和时刻的加速度与t和t时刻加速度大小相等,方向相反。
所以,动量相同的时刻为t与t或t与t;动能相同的时刻为t、t、t和t;加速度相同的时刻为t、t(或t、t)。
点评:简谐运动图象上偏离平衡位置位移大小相同的点,振动物体具有相同的动能和势能,所受回复力和加速度的大小也相同。对于简谐运动图象题,要注意利用图象的特点进行分析。
四、课后练习
1、(2003临汾)如右图所示,是一弹簧振子,设向右方向为正,O为平衡位置,则()
A、A→O时,位移为负值,加
速度为负值
B、O→B时,位移为正值,加
速度为负值
C、B→O时,位移为负值,速度为负值
D、O→A时,位移为负值,加速度为正值
2、(2004天律)如右图所示,一轻弹簧与质量为m的物体组成弹簧振子,物体在同一条竖直线上的A、B间做简谐运动,O为平衡位置,C为AO的中点,已知OC=h,振子的周期为T,某时刻物体恰经过C点并向上运动,则从此时刻开始的半个周期时间内()
A、重力做功2mgh
B、重力的冲量大小为
C、回复力做功为零
D、回复力的冲量为零
3、(2004天津)公路上匀速行驶的货车受一扰动,车上货物随车厢底板上下振动但不脱离底板。一段时间内货物在竖直方向的振动可视为简谐运动,周期为T,取竖直向上为正方向,以某时刻作为计时起点,即t=0,其振动图象如右图所示。则()
A、t=T时,货物对车厢底板的压力最大
B、t=T时,货物对车厢底板的压力最小
C、t=T时,货物对车厢底板的压力最大
D、t=T时,货物对车厢底板的压力最小
4、(2004江苏)如下图①中,
波源S从平衡位置y=0开始振动,运动方向竖直向上(y轴的正方向),振动周期T=0.01s,产生的简谐波向左、右两个方向传播,波速均为=80m/s,经过一段时间后,P、Q两点开始振动,已知距离SP=1.2m,SQ=2.6m,若以Q点开始振动的时刻作为计时零点,则在下图②的振动图象中,能正确描述P、Q两点振动情况的是()
A、甲为Q点的振动图象B、乙为Q点的振动图象
C、丙为P点的振动图象D、丁为P点的振动图象

5、(2004湖北)如右图所示,在光滑的水平桌面上有一弹簧振子,弹簧劲度系数为k,开始时,振子被拉到平衡位置O的右侧A处,此时拉力大小为F,然后释放
振子从静止开始向左运动,经过时间t后第一次到达平衡位置O处,此时振子的速度为,在这个过程中振子的平均速度为()
A、0B、C、
D、不为零的某值,但由题设计条件无法求出

第三课时单摆受迫振动共振
考点理解(一)两种简谐运动类型
1、水平弹簧振子
(1)回复力的来源:弹簧的弹力充当回
复力,表达式为F=-kx,其中K为弹簧的劲度系数。
(2)能量转化关系:不计
阻力的情况下,振子的动能和弹簧的弹性势能相
互转化,总能量保持不变。
2、单摆
(1)单摆(理想化模型)
如右下图所示悬挂小球的细线的伸缩量和质量可以忽略。线长又比球的直径大得多,这样的装置叫单摆。
(2)当单摆的最大摆角小
于10时,单摆的振动近似为简谐运动。
(3)单摆的振动过程中,回复力由重力沿速度方向的分力提供。
如右上图所示当摆球运动到
任一点P时重力沿速度方向分力G=mgsinθ,在θ<10时,sinθ≈,所以回复力F=-。
故单摆在θ<10时振动近似为简谐运动。
(4)单摆的周期T=2
①上式中只适用于小摆角(θ<10)的情况下。
②式中的单位为m,T的单位为s。
③单摆的振动周期在振幅较小的条件下,与单摆的振幅无关,与摆球的质量也无关。(单摆的等时性)
④摆长是悬点到摆球球心之间的距离,公式中的L应理解为等效摆长。
⑤g与单摆所处物理环境有关,g为等效重力加速度。
(i)不同星球表面,g=GM/r,式中r为星球表面半径。
(ii)单摆处于超重或失重状态等效重力加速度为=±a,如在轨道上运动的卫星a=,完全失重,等效重力速度g=0.
无论悬点如何运动或还是受别的作用,等效g的取值总是单摆不振动时,摆线的拉力F与摆球质量的比例,即等效重力加速度g=F/m。
(5)应用:①测重力加速度g=4
②计时器

相关阅读

高考物理机械振动与机械波复习


第十四章机械振动与机械波

1.本章主要描述的是机械振动的公式和图象,波的图象,波长,频率,波速关系。
2.高考中以选择题形式考查为主,考查对基础知识的掌握与理解。复习时要真正搞懂振动与波的关系及两个图象的物理意义,明确振动与波的关系,注意其空间和时间上的周期性。

第一课时简谐振动和图象

【教学要求】
1.会用简谐运动的公式和图象描述简谐运动
2.掌握简谐运动各物理量的变化规律
【知识再现】
一.机械振动
1.定义:物体(或物体的一部分)在某一中心位置附近所做的往复运动.
2.回复力:使振动物体返回平衡位置的力.
①.回复力是以命名的力,时刻指向.
②.回复力可能是几个力的合力,可能是某一个力,还可能是某一个力的分力.因而回复力不一定等于物体的合外力.
3.平衡位置:振动过程中回复力为零的位置.
二.简谐运动
1.定义:物体在跟成正比,并且总是指向的回复力作用下的振动.
2.简谐运动的特征
①受力特征:回复力满足F=
②运动特征:加速度工能力
3.表达式:x=Asin(ωt+φ),其中表示初相,表示相位。
4.描述简谐运动的物理.
①位移:由指向振动质点所在位置的有向线段,它是量.
②振幅:振动物体离开平衡位置的,它是量.
③周期T和频率f:物体完成所需的时间叫周期,单位时间内完成的次数叫频率,二者的关系。
知识点一简谐振动的平衡位置
平衡位置的特点:
(1)平衡位置的回复力为零;
(2)平衡位置不一定是合力为零的位置,如单摆当摆球运动到平衡位置时受力是不平衡;
(3)同一振子在不同振动系统中平衡位置不一定相同:如弹簧振子水平放在光滑静止地面上的平衡位置,弹簧的平衡位置处于原长,在竖直方向的弹簧振子,平衡位置是其弹力等于重力的位置.
【应用1】简谐运动的平衡位置是指()
A.速度为零的位置B.回复力为零的位置
C.加速度为零的位置D.位移最大的位置

知识点二简谐运动的周期性和对称性
简谐运动的特点
1.动力学特点:F=-kx,负号表示回复力方向跟位移方向相反,k表示回复力系数。
2.运动学特征:简谐运动是变加速运动,运动物体的位移、速度、加速度的变化具有周期性和对称性.
(1)位移:振动物体的位移是物体相对平衡位置的位移;它总是由平衡位置指向物体所在位置的有向线段。
注意:区分振动物体的某时刻的位移跟某段时间内的位移,两者“起始点”的意义不同.
(2)速度:简谐运动是变加速运动.物体经平衡位置时速度最大,物体在最大位移处时速度为零,且物体的速度在最大位移处改变方向.
(3)加速度:由力与加速度的瞬时对应关系可知,加速度与回复力的变化步调相同,即物体处在最大位移处时加速度最大,物体处于平衡位里时加速度最小(为零).物体经平衡位里时,加速度方向发生变化.
【应用2】一弹簧振子做简谐运动.周期为T,下列说法正确的有()
A.若t时刻和(t+△t)时刻振子运动速度的大小相等、方向相反,则Δt一定等于T/2的整数倍
B.若t时刻和(t+△t)时刻振子运动位移的大小相等、方向相同,则△t一定等于T的整数倍
C.若△t=T/2,则在t时刻和(t-△t)时刻弹簧的长度一定相等
D.若△t=T,则在t时刻和(t+△t)时刻振子运动的加速度一定相同
导示:若△t=T/2或△t=nT-T/2,(n=1,2,3....),则在t和(t+△t)两时刻振子必在关于干衡位置对称的两位置(包括平衡位置),这两时刻振子的位移、回复力、加速度、速度等均大小相等,方向相反。但在这两时刻弹簧的长度并不一定相等(只有当振子在这两时刻均在平衡位置时,弹簧长度才相等).反过来.若在t和(t+△t),两时刻振子的位移(回复力、加速度)和速度(动量)均大小相等,方向相反,则△t一定等于△t=T/2的奇数倍。如果仅仅是振子的速度在t和(t+△t),两时刻大小相等方向相反,那么不能得出△t与T/2的关系,根据以上分析.A、C选项均错.
若t和(t+△t)时刻,振子的位移(回复力、加速度)、速度(动量)等均相同,则△t=nT(n=1,2,,3…),但仅仅根据两时刻振子的位移相同,不能得出△t=nT.所以B这项错,D选项正确。
(1)简谐运动的物体经过1个或n个周期后,能回复到原来的状态,各物理量均又相同.因此,在解题时要注意到多解的可能性或需要写出解答结果的通式.
(2)在关于平衡位置对称的两个位置,动能、势能对应相等,回复力、加速度大小相等,方向相反;速度大小相等,方向可相同,也可相反,以及运动时间的对称性。

知识点三简谐运动的图象
1.物理意义
表示振动物体偏离平衡位置的位移x随时间t的变化规律.
注意:振动图象不是质点的运动轨迹.
2.图象的特点
简谐运动的图象是正弦(或余弦)曲线.
3.振动图象的应用
(1)可直观地读取振幅A、周期T及各时刻的位移x及各时刻振动速度方向.
(2)判定回复力、加速度方向(总指向时间轴)
(3)判定某段时间内位移、回复力、加速度、速度、动能、势能的变化情况.
(4)某段时间内振子的路程.

类型一简谐振动的证明问题
【例1】证明竖直方向的弹簧振子所做的运动是简谐振动。
导示:设物体的重为G,弹簧的劲度系数为k,物体处于平衡位置时弹簧的伸长量为l1,则G=kl1
当物体偏离平衡位置的位移为l时,弹簧的伸长量为l2,则l=l2-l1
取竖直向下为正,此时弹簧振子的回复力为
F回=G-kl2=kl1-kl2=-kl
所以,竖直方向的弹簧振子所做的运动是简谐振动。
判断某振动是否属于简谐运动,关键在于受力分析.先找出回复力的来源,然后取平衡位置为坐标原点,并规定正方向,得出回复力的表达式;再对照判别式F=一kx作出判断.在判断时要注意,回复力是指振动物体在振动方向上的合外力。
类型二振动的表达式及相位考查
【例2】物体沿x轴做简谐运动,振幅为8cm,频率为0.5Hz,在t=0时,位移是4cm,且向x轴负方向运动,试写出用正弦函数表示的振动方程。
导示:A=0.08m,ω=2πf=πHz,所以x=0.08sin(πt+φ)(m),将t=0时x=0.04m代入得0.04=0.08sinφ,初相φ=π/6或5π/6,因为t=0时速度方向沿x轴负方向,即位移在减小,所以取φ=5π/6。
所以振动方程x=0.08sin(πt+5π/6)(m)
同一振动用不同函数表示时,相位不同,而且相位ωt+φ是随时间t变化的一个变量。
类型三简谐振动的图象问题
【例3】(山东省沂源一中08高三物理检测试题)劲度系数为20N/cm的弹簧振子,它的振动图象如图所示,在
A.图中A点对应的时刻,振子所受的弹力大小为0.5N,方向指向x轴的负方向
B.图中A点对应的时刻,振子的速度方向指向x轴的正方向
C.在0~4s内振子作了1.75次全振动
D.在0~4s内振子通过的路程为3cm,位移为0
导示:由图可知A在t轴上方,位移x=0.25cm,所以弹力F=-kx=-5N,即弹力大小为5N,方向指向x轴负方向,选项A不正确;由图可知过A点作图线的切线,切线斜率为正值,即振子的速度方向指向x轴的正方向,选项B正确.由图可看出,振子振动T=2s,在0~4s内完成两次全振动,选项C错误.同理在0~4s内振子的位移为零,又A=0.5cm,所以在这段时间内振子通过的路程为2×4×0.50cm=4cm,故选项D错误.
综上所述,该题的正确选项为B.
1.一质点做简谐运动的图象如图所示,该质点在t=3.5s时刻()
A.速度为正、加速度为正
B.速度为负、加速度为负
C.速度为负、加速度为正
D.速度为正、加速度为负
2.(2007年苏锡常镇四市一模)一个作简谐运动的物体,位移随时间的变化规律x=Asinωt,在1/4周期内通过的路程可能是()
A.小于AB.等于A
C.等于2AD.等于1.5A
3.一个做简谐运动的物体连续通过某一位置的时间间隔为1s,紧接着再经过0.4s到达平衡位置,则简谐运动的周期为()
A.1.2sB.2.4sC.3.6sD.4.8s

4.如下图所示的简谐运动图象中,在t1和t2时刻,运动质点相同的量为()
A.加速度
B.位移
C.速度
D.回复力

5.水平放置作简谐运动的弹簧振子,质量为m,振动过程中的最大速率为v,下列正确的有(BC)
A.任半个周期内,弹力做的功可能是0~mv2/2之间的某个值
B.任半个周期内,弹力做的功一定为零
C.任半个周期内,速度的变化量大小可能为0~2v间的某个值
D.任半个周期内,速度变化量大小一定为零

5.如图所示,一个劲度系数为k的轻弹簧竖直立在桌面上,下端固定在桌面上,上端与质量为M的金属盘固定连接,金属盘内放一个质量为m的砝码。先让砝码随金属盘一起在竖直方向做简谐运动。⑴为使砝码不脱离金属盘,振幅最大不能超过多少?
⑵振动过程中砝码对金属盘的最大压力是多少?

参考答案1.D2.ABC3.AC4.C
5.BC6.;2mg

高考物理机械振动复习教案4


每个老师需要在上课前弄好自己的教案课件,是认真规划好自己教案课件的时候了。必须要写好了教案课件计划,未来的工作就会做得更好!究竟有没有好的适合教案课件的范文?以下是小编收集整理的“高考物理机械振动复习教案4”,供您参考,希望能够帮助到大家。

第周三年级物理学科

教学通案

个案设计

§2机械波

教学目标:

1.掌握机械波的产生条件和机械波的传播特点(规律);

2.掌握描述波的物理量——波速、周期、波长;

3.正确区分振动图象和波动图象,并能运用两个图象解决有关问题

4.知道波的特性:波的叠加、干涉、衍射;了解多普勒效应

教学重点:机械波的传播特点,机械波的三大关系(波长、波速、周期的关系;空间距离和时间的关系;波形图、质点振动方向和波的传播方向间的关系)

教学难点:波的图象及相关应用

教学方法:讲练结合

教学过程:

一、机械波

1.机械波的产生条件:①波源(机械振动)②传播振动的介质(相邻质点间存在相互作用力)。2.机械波的分类:机械波可分为横波和纵波两种。

(1)质点振动方向和波的传播方向垂直的叫横波,如:绳上波、水面波等。(2)质点振动方向和波的传播方向平行的叫纵波,如:弹簧上的疏密波、声波等。

分类

质点的振动方向和波的传播方向关系

形状

举例

横波

垂直

凹凸相间;有波峰、波谷

绳波等

纵波

在同一条直线上

疏密相间;有密部、疏部

弹簧波、声波等

说明:地震波既有横波,也有纵波。3.机械波的传播

(1)在同一种均匀介质中机械波的传播是匀速的。波速、波长和频率之间满足公式:v=λf。

(2)介质质点的运动是在各自的平衡位置附近的简谐运动,是变加速运动,介质质点并不随波迁移。(3)机械波转播的是振动形式、能量和信息。(4)机械波的频率由波源决定,而传播速度由介质决定。4.机械波的传播特点(规律):(1)前带后,后跟前,运动状态向后传。即:各质点都做受迫振动,起振方向由波源来决定;且其振动频率(周期)都等于波源的振动频率(周期),但离波源越远的质点振动越滞后。(2)机械波传播的是波源的振动形式和波源提供的能量,而不是质点。5.机械波的反射、折射、干涉、衍射

一切波都能发生反射、折射、干涉、衍射。特别是干涉、衍射,是波特有的性质。(1)干涉产生干涉的必要条件是:两列波源的频率必须相同。需要说明的是:以上是发生干涉的必要条件,而不是充分条件。要发生干涉还要求两列波的振动方向相同(要上下振动就都是上下振动,要左右振动就都是左右振动),还要求相差恒定。我们经常列举的干涉都是相差为零的,也就是同向的。如果两个波源是振动是反向的,那么在干涉区域内振动加强和减弱的位置就正好颠倒过来了。干涉区域内某点是振动最强点还是振动最弱点的充要条件:①最强:该点到两个波源的路程之差是波长的整数倍,即δ=nλ

②最弱:该点到两个波源的路程之差是半波长的奇数倍,即C.a质点的振动始终是最弱的,b、c、d质点的振动始终是最强的D.再过T/4后的时刻a、b、c三个质点都将处于各自的平衡位置,因此振动最弱

解析:该时刻a质点振动最弱,b、c质点振动最强,这不难理解。但是d既不是波峰和波峰叠加,又不是波谷和波谷叠加,如何判定其振动强弱?这就要用到充要条件:“到两波源的路程之差是波长的整数倍”时振动最强,从图中可以看出,d是S1、S2连线的中垂线上的一点,到S1、S2的距离相等,所以必然为振动最强点。答案B、C点评:描述振动强弱的物理量是振幅,而振幅不是位移。每个质点在振动过程中的位移是在不断改变的,但振幅是保持不变的,所以振动最强的点无论处于波峰还是波谷,振动始终是最强的。【例2】如图所示表示两列相干水波的叠加情况,图中的实线表示波峰,虚线表示波谷。设两列波的振幅均为5cm,且图示的范围内振幅不变,波速和波长分别为1m/s和0.5m。C点是BE连线的中点,下列说法中正确的是()A.C、E两点都保持静止不动B.图示时刻A、B两点的竖直高度差为20cmC.图示时刻C点正处于平衡位置且向水面上运动D.从图示的时刻起经0.25s,B点通过的路程为20cm解析:由波的干涉知识可知图6中的质点A、B、E的连线处波峰和波峰或波谷和波谷叠加是加强区,过D、F的连线处和过P、Q的连线处波峰和波谷叠加是减弱区。C、E两点是振动的加强点,不可能静止不动。所以选项A是错误的。在图示时刻,A在波峰,B在波谷,它们振动是加强的,振幅均为两列波的振幅之和,均为10cm,此时的高度差为20cm,所以B选项正确。A、B、C、E均在振动加强区,且在同一条直线上,由题图可知波是由E处向A处传播,在图示时刻的波形图线如右图所示,由图可知C点向水面运动,所以C选项正确。波的周期T=/v=0.5s,经过0.25s,即经过半个周期。在半个周期内,质点的路程为振幅的2倍,所以振动加强点B的路程为20cm,所以D选项正确。点评:关于波的干涉,要正确理解稳定的干涉图样是表示加强区和减弱区的相对稳定,但加强区和减弱区还是在做振动,加强区里两列波分别引起质点分振动的方向是相同的,减弱区里两列波分别引起质点分振动的方向是相反的,发生变化的是振幅增大和减少的区别,而且波形图沿着波的传播方向在前进。(2)衍射。①波绕过障碍物的现象叫做波的衍射。②能够发生明显的衍射现象的条件是:障碍物或孔的尺寸比波长小,或者跟波长相差不多。(3)波的独立传播原理和叠加原理。独立传播原理:几列波相遇时,能够保持各自的运动状态继续传播,不互相影响。叠加原理:介质质点的位移、速度、加速度都等于几列波单独转播时引起的位移、速度、加速度的矢量和。波的独立传播原理和叠加原理并不矛盾。前者是描述波的性质:同时在同一介质中传播的几列波都是独立的。比如一个乐队中各种乐器发出的声波可以在空气中同时向外传播,我们仍然能分清其中各种乐器发出的不同声波。后者是描述介质质点的运动情况:每个介质质点的运动是各列波在该点引起的运动的矢量和。这好比老师给学生留作业:各个老师要留的作业与其他老师无关,是独立的;但每个学生要做的作业却是所有老师留的作业的总和。【例3】如图中实线和虚线所示,振幅、周期、起振方向都相同的两列正弦波(都只有一个完整波形)沿同一条直线向相反方向传播,在相遇阶段(一个周期内),试画出每隔T/4后的波形图。并分析相遇后T/2时刻叠加区域内各质点的运动情况。解析:根据波的独立传播原理和叠加原理可作出每隔T/4后的波形图如①②③④所示。相遇后T/2时刻叠加区域内abcde各质点的位移都是零,但速度各不相同,其中a、c、e三质点速度最大,方向如图所示,而b、d两质点速度为零。这说明在叠加区域内,a、c、e三质点的振动是最强的,b、d两质点振动是最弱的。6.多普勒效应

当波源或者接受者相对于介质运动时,接受者会发现波的频率发生了变化,这种现象叫多普勒效应。学习“多普勒效应”必须弄清的几个问题:(1)当波源以速率v匀速靠近静止的观察者A时,观察者“感觉”到的频率变大了。但不是“越来越大”。(2)当波源静止,观察者以速率v匀速靠近波源时,观察者“感觉”到的频率也变大了。(3)当波源与观察者相向运动时,观察者“感觉”到的频率变大。

(4)当波源与观察者背向运动时,观察者“感觉”到的频率变小。

【例4】(2004年高考科研测试)a为声源,发出声波;b为接收者,接收a发出的声波。a、b若运动,只限于在沿两者连线方向上,下列说法正确的是A.a静止,b向a运动,则b收到的声频比a发出的高B.a、b向同一方向运动,则b收到的声频一定比a发出的高C.a、b向同一方向运动,则b收到的声频一定比a发出的低D.a、b都向相互背离的方向运动,则b收到的声频比a发出的高答案:A二、振动图象和波的图象

1.振动图象和波的图象

振动图象和波的图象从图形上看好象没有什么区别,但实际上它们有本质的区别。(1)物理意义不同:振动图象表示同一质点在不同时刻的位移;波的图象表示介质中的各个质点在同一时刻的位移。(2)图象的横坐标的单位不同:振动图象的横坐标表示时间;波的图象的横坐标表示距离。(3)从振动图象上可以读出振幅和周期;从波的图象上可以读出振幅和波长。简谐振动图象与简谐横波图象的列表比较:

简谐振动

简谐横波

横坐标

时间

介质中各质点的平衡位置

纵坐标

质点的振动位移

各质点在同一时刻的振动位移

研究对象

一个质点

介质中的大量质点

物理意义

一个质点在不同时刻的振动位移

介质中各质点在同一时刻的振动位移

随时间的变化

原有图形不变,图线随时间而延伸

原有波形沿波的传播方向平移

运动情况

质点做简谐运动

波在介质中匀速传播;介质中各质点做简谐振动

2.描述波的物理量——波速、周期、波长:(1)波速v:运动状态或波形在介质中传播的速率;同一种波的波速由介质决定。注:在横波中,某一波峰(波谷)在单位时间内传播的距离等于波速。(2)周期T:即质点的振动周期;由波源决定。(3)波长λ:在波动中,振动位移总是相同的两个相邻质点间的距离。注:在横波中,两个相邻波峰(波谷)之间的距离为一个波长。结论:(1)波在一个周期内传播的距离恰好为波长。由此:①v=λ/T=λf;λ=vT.②波长由波源和介质决定。(2)质点振动nT(波传播nλ)时,波形不变。(3)相隔波长整数倍的两质点,振动状态总相同;相隔半波长奇数倍的两质点,振动状态总相反。3.波的图象的画法

波的图象中,波的图形、波的传播方向、某一介质质点的瞬时速度方向,这三者中已知任意两者,可以判定另一个。(口诀为“上坡下,下坡上”;或者“右上右、左上左))4.波的传播是匀速的

在一个周期内,波形匀速向前推进一个波长。n个周期波形向前推进n个波长(n可以是任意正数)。因此在计算中既可以使用v=λf,也可以使用v=s/t,后者往往更方便。5.介质质点的运动是简谐运动(是一种变加速运动)

任何一个介质质点在一个周期内经过的路程都是4A,在半个周期内经过的路程都是2A,但在四分之一个周期内经过的路程就不一定是A了。6.起振方向

介质中每个质点开始振动的方向都和振源开始振动的方向相同。

S

【例5】在均匀介质中有一个振源S,它以50HZ的频率上下振动,该振动以40m/s的速度沿弹性绳向左、右两边传播。开始时刻S的速度方向向下,试画出在t=0.03s时刻的波形。

vv

1.20.80.400.40.81.2

解析:从开始计时到t=0.03s经历了1.5个周期,波分别向左、右传播1.5个波长,该时刻波源S的速度方向向上,所以波形如右图所示。

5

0

-5

y/m

24x/m

P

【例6】如图所示是一列简谐横波在t=0时刻的波形图,已知这列波沿x轴正方向传播,波速为20m/s。P是离原点为2m的一个介质质点,则在t=0.17s时刻,质点P的:①速度和加速度都沿-y方向;②速度沿+y方向,加速度沿-y方向;③速度和加速度都正在增大;④速度正在增大,加速度正在减小。以上四种判断中正确的是A.只有①B.只有④C.只有①④D.只有②③解析:由已知,该波的波长λ=4m,波速v=20m/s,因此周期为T=λ/v=0.2s;因为波向右传播,所以t=0时刻P质点振动方向向下;0.75T0.17sT,所以P质点在其平衡位置上方,正在向平衡位置运动,位移为正,正在减小;速度为负,正在增大;加速度为负,正在减小。①④正确,选C7.波动图象的应用:

(1)从图象上直接读出振幅、波长、任一质点在该时刻的振动位移。(2)波动方向==振动方向。

y

x

0

y

x

0方法:选择对应的半周,再由波动方向与振动方向“头头相对、尾尾相对”来判断。如图:

4

5

y/cm

Q

0

x/m

P


【例7】如图是一列沿x轴正方向传播的机械波在某时刻的波形图。由图可知:这列波的振幅为5cm,波长为4m。此时刻P点的位移为2.5cm,速度方向为沿y轴正方向,加速度方向沿y轴负方向;Q点的位移为-5cm,速度为0,加速度方

5

0.2

0.4

0

x/m

y/cm

M向沿y轴正方向。【例8】如图是一列波在t1=0时刻的波形,波的传播速度为2m/s,若传播方向沿x轴负向,则从t1=0到t2=2.5s的时间内,质点M通过的路程为______,位移为_____。解析:由图:波长λ=0.4m,又波速v=2m/s,可得:周期T=0.2s,所以质点M振动了12.5T。对于简谐振动,质点振动1T,通过的路程总是4A;振动0.5T,通过的路程总是2A。所以,质点M通过的路程12×4A+2A=250cm=2.5m。质点M振动12.5T时仍在平衡位置。所以位移为0。【例9】在波的传播方向上,距离一定的P与Q点之间只有一个波谷的四种情况,如图A、B、C、D所示。已知这四列波在同一种介质中均向右传播,则质点P能首先达到波谷的是()

解析:四列波在同一种介质中传播,则波速v应相同。由T=λ/v得:TDTA=TBTC;再结合波动方向和振动方向的关系得:C图中的P点首先达到波谷。(3)两个时刻的波形问题:设质点的振动时间(波的传播时间)为t,波传播的距离为x。则:t=nT+△t即有x=nλ+△x(△x=v△t)且质点振动nT(波传播nλ)时,波形不变。①根据某时刻的波形,画另一时刻的波形。方法1:波形平移法:当波传播距离x=nλ+△x时,波形平移△x即可。方法2:特殊质点振动法:当波传播时间t=nT+△t时,根据振动方向判断相邻特殊点(峰点,谷点,平衡点)振动△t后的位置进而确定波形。

1

2

x/m

y

0②根据两时刻的波形,求某些物理量(周期、波速、传播方向等)【例10】如图是一列向右传播的简谐横波在某时刻的波形图。波速v=0.5m/s,画出该时刻7s前及7s后的瞬时波形图。解析:λ=2m,v=0.5m/s,T==4s.所以⑴波在7s内传播

0

x/m

y的距离为x=vt=3.5m=1λ⑵质点振动时间为1T。方法1:波形平移法:现有波形向右平移λ可得7s后的波形;现有波形向左平移λ可得7s前的波形。由上得到图中7s后的瞬时波形图(粗实线)和7s前的瞬时波形图(虚线)。方法2:特殊质点振动法:根据波动方向和振动方向的关系,确定两个特殊点(如平衡点和峰点)在3T/4前和3T/4后的位置进而确定波形。请读者试着自行分析画出波形。

4

x/m

y

0【例11】如图实线是某时刻的波形图象,虚线是经过0.2s时的波形图象。求:①波传播的可能距离②可能的周期(频率)③可能的波速④若波速是35m/s,求波的传播方向⑤若0.2s小于一个周期时,传播的距离、周期(频率)、波速。解析:①题中没给出波的传播方向,所以有两种可能:向左传播或向右传播。向左传播时,传播的距离为x=nλ+3λ/4=(4n+3)m(n=0、1、2…)向右传播时,传播的距离为x=nλ+λ/4=(4n+1)m(n=0、1、2…)②向左传播时,传播的时间为t=nT+3T/4得:T=4t/(4n+3)=0.8/(4n+3)(n=0、1、2…)向右传播时,传播的时间为t=nT+T/4得:T=4t/(4n+1)=0.8/(4n+1)(n=0、1、2…)③计算波速,有两种方法。v=x/t或v=λ/T向左传播时,v=x/t=(4n+3)/0.2=(20n+15)m/s.或v=λ/T=4(4n+3)/0.8=(20n+15)m/s.(n=0、1、2…)向右传播时,v=x/t=(4n+1)/0.2=(20n+5)m/s.或v=λ/T=4(4n+1)/0.8=(20n+5)m/s.(n=0、1、2…)④若波速是35m/s,则波在0.2s内传播的距离为x=vt=35×0.2m=7m=1λ,所以波向左传播。⑤若0.2s小于一个周期,说明波在0.2s内传播的距离小于一个波长。则:向左传播时,传播的距离x=3λ/4=3m;传播的时间t=3T/4得:周期T=0.267s;波速v=15m/s.向右传播时,传播的距离为λ/4=1m;传播的时间t=T/4得:周期T=0.8s;波速v=5m/s.点评:做此类问题的选择题时,可用答案代入检验法。(4)根据波的传播特点(运动状态向后传)确定某质点的运动状态问题:【例12】一列波在介质中向某一方向传播,如图是此波在某一时刻的波形图,且此时振动还只发生在M、N之间,并知此波的周期为T,Q质点速度方向在波形中是向下的。则:波源是_____;P质点的起振方向为_________;从波源起振开始计时时,P点已经振动的时间为______。解析:由Q点的振动方向可知波向左传播,N是波源。由M点的起振方向(向上)得P质点的起振方向向上。振动从N点传播到M点需要1T,传播到P点需要3T/4,所以质点P已经振动的时间为T/4.【例13】如图是一列向右传播的简谐横波在t=0时刻(开始计时)的波形图,已知在t=1s时,B点第三次达到波峰(在1s内B点有三次达到波峰)。则:①周期为________②波速为______;③D点起振的方向为_________;④在t=____s时刻,此波传到D点;在t=____s和t=___s时D点分别首次达到波峰和波谷;在t=____s和t=___s时D点分别第二次达到波峰和波谷。解析:①B点从t=0时刻开始在经过t=2.5T=1s第三次达到波峰,故周期T=0.4s.②由v=λ/T=10m/s.③D点的起振方向与介质中各质点的起振方向相同。在图示时刻,C点恰好开始起振,由波动方向可知C点起振方向向下。所以,D点起振方向也是向下。④从图示状态开始计时:此波传到D点需要的时间等于波从C点传播到D需要的时间,即:t=(45-4)/10=4.1s;D点首次达到波峰的时间等于A质点的振动状态传到D点需要的时间,即:t=(45-1)/10=4.4s;D点首次达到波谷的时间等于B质点的振动状态传到D点需要的时间,即:t=(45-3)/10=4.2s;D点第二次达到波峰的时间等于D点首次达到波峰的时间再加上一个周期,即:t=4.4s+0.4s=4.8s.D点第二次达到波谷的时间等于D点首次达到波峰的时间再加上一个周期,即:t=4.2s+0.4s=4.6s.【例14】已知在t1时刻简谐横波的波形如图中实线所示;在时刻t2该波的波形如图中虚线所示。t2-t1=0.02s。求:(1)该波可能的传播速度。(2)若已知Tt2-t12T,且图中P质点在t1时刻的瞬时速度方向向上,求可能的波速。(3)若0.01sT0.02s,且从t1时刻起,图中Q质点比R质点先回到平衡位置,求可能的波速。解析:(1)如果这列简谐横波是向右传播的,在t2-t1内波形向右匀速传播了,所以波速=100(3n+1)m/s(n=0,1,2,…);同理可得若该波是向左传播的,可能的波速v=100(3n+2)m/s(n=0,1,2,…)(2)P质点速度向上,说明波向左传播,Tt2-t12T,说明这段时间内波只可能是向左传播了5/3个波长,所以速度是唯一的:v=500m/s(3)“Q比R先回到平衡位置”,说明波只能是向右传播的,而0.01sT0.02s,也就是T0.02s2T,所以这段时间内波只可能向右传播了4/3个波长,解也是唯一的:v=400m/s三、声波

1.空气中的声波是纵波。2.空气中的声速可认为是340m/s,水中的声速是1450m/s,铁中的声速是5400m/s。3.人耳可以听到的声波的频率范围是20Hz-20000Hz。频率低于20Hz的声波叫次声波,频率高于20000Hz的声波叫超声波。4.人耳只能区分开相差0.1s以上的两个声音。5.声波也能发生反射、干涉和衍射等现象。声波的共振现象称为声波的共鸣。教学随感

机械波的传播特点,机械波的三大关系(波长、波速、周期的关系;空间距离和时间的关系;波形图、质点振动方向和波的传播方向间的关系)是考查重点,高考多以选择题出现,且每年必考,这部分复习以小题型为主。

物理高考考点:机械振动


20xx年物理高考考点归纳:机械振动

一、简谐运动
基础目标
1、回复力、平衡位置、机械振动
2、知道什么是简谐运动及物体做简谐运动的条件。
3、理解简谐运动在一次全振动过程中位移、回复力、加速度、速度的变化情况。
4、理解简谐运动的对称性及运动过程中能量的变化。
拔高目标
1、简谐运动的证明(竖直方向弹簧振子,水面上木块)。
2、简谐运动与力学的综合题型。
3、简谐运动周期公式。
【重难点】
重点:简谐运动的特征及相关物理量的变化规律。
难点:偏离平衡位置位移的概念及一次全振动中各量的变化。
一.新课引入
知识目标:引入新的运动--机械振动
前面已学过的运动:
按运动轨迹分:直线运动按速度特点分:匀变速
曲线运动非匀变速
自然界中还有一种更常见的运动:机械振动
二.机械振动
在自然界中,经常观察到一些物体来回往复的运动,如吊灯的来回摆动,树枝在微风中的摆动,下面我们就来研究一下这些运动具有什么特点。
这些运动都有一个明显的中心位置,物体或物体的一部分都在这个中心位置两侧往复运动。这样的运动称为机械振动。
当物体不再往复运动时,都停在这个位置,我们把这一位置称为平衡位置。(标出平衡位置)
平衡位置是指运动过程中一个明显的分界点,一般是振动停止时静止的位置,并不是所有往复运动的中点都是平衡位置。存在平衡位置是机械运动的必要条件,有很多运动,尽管也是往复运动,但并不存在明显的平衡位置,所以并非机械振动。
如:拍皮球、人来回走动
注意:在运动过程中,平衡位置受力并非一定平衡!如:小球的摆动
总结:机械振动的充要条件:1、有平衡位置2、在平衡位置两侧往复运动。
自然界中还有哪些机械振动?
钟摆、心脏、活塞、昆虫翅膀的振动、浮标上下浮动、钢尺的振动
三.回复力
1)回复力
机械振动的物体,为何总是在平衡位置两侧往复运动?
结论:受到一个总是指向平衡位置的力
观察:振子在平衡位置右侧时,有一个向左的力,在平衡位置左侧时,有一个向右的力,这个力总是促使物体回到平衡位置。
总结:总是指向平衡位置,它的作用是总使振子回复到平衡位置,这样的力我们称之为回复力。
(在平衡位置时,回复力应该为零)
回复力:使物体返回平衡位置的力,方向总是指向平衡位置。
特点:1.是效果力。(按效果命名的力)
2.可以是某个力,也可以是几个力的合力,还可以是某个力的分力。
2)偏离平衡位置的位移
由于振子总是在平衡位置两侧移动,如果我们以平衡位置作为参考点来研究振子的位移就更为方便。这样表示出的位移称为偏离平衡位置的位移。它的大小等于物体与平衡位置之间的距离,方向由平衡位置指向物体所在位置。(由初位置指向末位置)用x表示。
偏离平衡位置的位移与某段时间内位移的区别:偏离平衡位置的位移是以平衡位置为起点,以平衡位置为参考位置。
某段时间内的位移,是默认以这段时间内的初位置为起点。
四.简谐运动
弹簧振子。一个滑块通过一个弹簧连在底座上,底座上有许多小孔,和一个皮管相连,对着皮管吹气,底座上喷出的气流会使振子浮在底座上方,从而达到减小摩擦的作用,和前面的气垫导轨相似。
演示:弹簧振子的运动,结论:是机械振动。
树枝的振动,没有什么规律可循,而弹簧的振动具有规律性。接下来研究弹簧振子振动的规律。
对弹簧振子振动规律的研究:
1、弹簧振子运动过程中F与x之间的关系。
大小关系:根据胡克定律,F=k|x|
方向关系:F与x方向相反,取定一正方向后可得,F=-kx
总结:F=-kx
2、弹簧振子运动过程中各物理量的变化情况分析
结合右图分析振子在一次全振动中回复力F、偏离平衡位置的位移x、加速度a、速度V的大小变化情况及方向。
1)A→Ox↓,方向由O向A
F↓,方向由A向O
a↓,方向由A向O
V↑,方向由O向A
振子做加速度不断减小的加速运动A′OA
2)在O位置,x=0,F=0,a=0,V最大;
3)O→A′x↑,方向由O向A′
F↑,方向由A′向O
a↑,方向由A′向O
V↓,方向由O向A′
振子做加速度不断增大的减速运动
4)在A′位置,x最大,F最大,a最大,V=0
5)A′→Ox↓,方向由O向A′
F↓,方向由A′向O
a↓,方向由A′向O
V↑,方向由O向A′
振子做加速度不断减小的加速运动
6)在O位置,x=0,F=0,a=0,V最大;
7)O→Ax↑,方向由O向A
F↑,方向由A向O
a↑,方向由A向O
V↓,方向由O向A
振子做加速度不断增大的减速运动
8)在A位置,x最大,F最大,a最大,V=0
3、简谐运动定义
弹簧振子由于偏离平衡位置的位移和回复力具有明显的对称性,导致其速度、加速度等都具有明显的对称性,形成的运动是一种简单而和谐的运动。我们称之为简谐运动。
定义:物体在跟偏离平衡位置的位移大小成正比,方向总是指向平衡位置的平衡位置的回复力作用下的振动叫简谐运动。
条件:1.有回复力。2.F=-kx
证明竖直方向的弹簧振子的运动是简谐运动。
证明步骤:1、找平衡位置
2、找回复力
3、找F=kx
4、找方向关系
五、课堂小结
概念:机械振动、回复力、平衡位置、偏离平衡位置的位移、简谐运动、简谐运动的特点
方法:如何证明某个运动是简谐运动

高考物理机械振动复习教案3


第周三年级物理学科

教学通案

个案设计

第七章机械振动和机械波

考纲要求

1、弹簧振子,简谐运动,简谐运动的振幅,周期和频率,简谐运动的振动图象Ⅱ

2、单摆,在小振幅条件下单摆作简谐运动,周期公式Ⅱ

3、振动中的能量转化Ⅰ

4、自由振动和受迫振动,受迫振动的振动频率,共振及其常见的应用Ⅰ

5、振动在介质中的传播——波,横波和纵波,横波的图象,波长,频率和波速的关Ⅱ

6、波的叠加,波的干涉,衍射现象Ⅰ

7、声波,超声波及其应用Ⅰ8、多普勒效应Ⅰ

解析:如图所示,设振子的平衡位置为O,向下方向为正方向,此时弹簧的形变为20cm.某时刻振子处于B点.经过0.5s,振子首次到达C点.求:(1)振动的周期和频率;(2)振子在5s内通过的路程及位移大小;(3)振子在B点的加速度大小跟它距O点4cm处P点的加速度大小的比值.解析:(1)设振幅为A,由题意BC=2A=10cm,所以A=10cm.振子从B到C所用时间t=0.5s.为周期T的一半,所以T=1.0s;f=1/T=1.0Hz.(2)振子在1个周期内通过的路程为4A。故在t=5s=5T内通过的路程s=t/T×4A=200cm.5s内振子振动了5个周期,5s末振子仍处在B点,所以它偏离平衡位置的位移大小为10cm.(3)振子加速度.a∝x,所以aB:aP=xB:xp=10:4=5:2.【例5】一弹簧振子做简谐运动.周期为TA.若t时刻和(t+△t)时刻振子运动速度的大小相等、方向相反,则Δt一定等于T/2的整数倍D.若t时刻和(t+△t)时刻振子运动位移的大小相等、方向相同,则△t一定等于T的整数倍C.若△t=T/2,则在t时刻和(t-△t)时刻弹簧的长度一定相等D.若△t=T,则在t时刻和(t-△t)时刻振子运动的加速度一定相同解析:若△t=T/2或△t=nT-T/2,(n=1,2,3....),则在t和(t+△t)两时刻振子必在关于干衡位置对称的两位置(包括平衡位置),这两时刻.振子的位移、回复力、加速度、速度等均大小相等,方向相反.但在这两时刻弹簧的长度并不一定相等(只有当振子在t和(t-△t)两时刻均在平衡位置时,弹簧长度才相等).反过来.若在t和(t-△t),两时刻振子的位移(回复力、加速度)和速度(动量)均大小相等.方向相反,则△t一定等于△t=T/2的奇数倍.即△t=(2n-1)T/2(n=1,2,3…).如果仅仅是振子的速度在t和(t+△t),两时刻大小相等方向相反,那么不能得出△t=(2n一1)T/2,更不能得出△t=nT/2(n=1,2,3…).根据以上分析.A、C选项均错.若t和(t+△t)时刻,振子的位移(回复力、加速度)、速度(动量)等均相同,则△t=nT(n=1,2,,3…),但仅仅根据两时刻振子的位移相同,不能得出△t=nT.所以B这项错.若△t=T,在t和(t+△t)两时刻,振子的位移、回复力、加速度、速度等均大小相等方向相同,D选项正确。2.单摆。(1)单摆振动的回复力是重力的切向分力,不能说成是重力和拉力的合力。在平衡位置振子所受回复力是零,但合力是向心力,指向悬点,不为零。(2)当单摆的摆角很小时(小于5°)时,单摆的周期,与摆球质量m、振幅A都无关。其中l为摆长,表示从悬点到摆球质心的距离,要区分摆长和摆线长。(3)小球在光滑圆弧上的往复滚动,和单摆完全等同。只要摆角足够小,这个振动就是简谐运动。这时周期公式中的l应该是圆弧半径R和小球半径r的差。

(4)摆钟问题。单摆的一个重要应用就是利用单摆振动的等时性制成摆钟。在计算摆钟类的问题时,利用以下方法比较简单:在一定时间内,摆钟走过的格子数n与频率f成正比(n可以是分钟数,也可以是秒数、小时数……),再由频率公式可以得到:【例6】已知单摆摆长为L,悬点正下方3L/4处有一个钉子。让摆球做小角度摆动,其周期将是多大?解析:该摆在通过悬点的竖直线两边的运动都可以看作简谐运动,周期分别为和,因此该摆的周期为:【例7】固定圆弧轨道弧AB所含度数小于5°,末端切线水平。两个相同的小球a、b分别从轨道的顶端和正中由静止开始下滑,比较它们到达轨道底端所用的时间和动能:ta__tb,Ea__2Eb。

2.1

2.0

1.9

1.8

1.7

1.6

1.5

1.4

00.40.81.21.62.02.4

F/N

t/s解析:两小球的运动都可看作简谐运动的一部分,时间都等于四分之一周期,而周期与振幅无关,所以ta=tb;从图中可以看出b小球的下落高度小于a小球下落高度的一半,所以Ea2Eb。【例8】将一个力电传感器接到计算机上,可以测量快速变化的力。用这种方法测得的某单摆摆动过程中悬线上拉力大小随时间变化的曲线如右图所示。由此图线提供的信息做出下列判断:①t=0.2s时刻摆球正经过最低点;②t=1.1s时摆球正处于最高点;③摆球摆动过程中机械能时而增大时而减小;④摆球摆动的周期约是T=0.6s。上述判断中正确的是A.①③B.②④C.①②D.③④解析:注意这是悬线上的拉力图象,而不是振动图象。当摆球到达最高点时,悬线上的拉力最小;当摆球到达最低点时,悬线上的拉力最大。因此①②正确。从图象中看出摆球到达最低点时的拉力一次比一次小,说明速率一次比一次小,反映出振动过程摆球一定受到阻力作用,因此机械能应该一直减小。在一个周期内,摆球应该经过两次最高点,两次最低点,因此周期应该约是T=1.2s。因此答案③④错误。本题应选C。三、简谐运动的图象

1.简谐运动的图象:以横轴表示时间t,以纵轴表示位移x,建立坐标系,画出的简谐运动的位移——时间图象都是正弦或余弦曲线.2.振动图象的含义:振动图象表示了振动物体的位移随时间变化的规律.3.图象的用途:从图象中可以知道:(1)任一个时刻质点的位移(2)振幅A.(3)周期T(4)速度方向:由图线随时间的延伸就可以直接看出(5)加速度:加速度与位移的大小成正比,而方向总与位移方向相反.只要从振动图象中认清位移(大小和方向)随时间变化的规律,加速度随时间变化的情况就迎刃而解了点评:关于振动图象的讨论

(1)简谐运动的图象不是振动质点的轨迹.做简谐运动质点的轨迹是质点往复运动的那一段线段(如弹簧振子)或那一段圆弧(如下一节的单摆).这种往复运动的位移图象。就是以x轴上纵坐标的数值表示质点对平衡位置的位移。以t轴横坐标数值表示各个时刻,这样在x—t坐标系内,可以找到各个时刻对应质点位移坐标的点,即位移随时间分布的情况——振动图象.

(2)简谐运动的周期性,体现在振动图象上是曲线的重复性.简谐运动是一种复杂的非匀变速运动.但运动的特点具有简单的周期性、重复性、对称性.所以用图象研究要比用方程要直观、简便.简谐运动的图象随时间的增加将逐渐延伸,过去时刻的图形将永远不变,任一时刻图线上过该点切线的斜率数值代表该时刻振子的速度大小。正负表示速度的方向,正时沿x正向,负时沿x负向.

【例9】劲度系数为20N/cm的弹簧振子,它的振动图象如图所示,在图中A点对应的时刻A.振子所受的弹力大小为0.5N,方向指向x轴的负方向B.振子的速度方向指向x轴的正方向C.在0~4s内振子作了1.75次全振动D。在0~4s内振子通过的路程为0.35cm,位移为0解析:由图可知A在t轴上方,位移x=0.25cm,所以弹力F=-kx=-5N,即弹力大小为5N,方向指向x轴负方向,选项A不正确;由图可知过A点作图线的切线,该切线与x轴的正方向的夹角小于90°,切线斜率为正值,即振子的速度方向指向x轴的正方向,选项B正确.由图可看出,t=0、t=4s时刻振子的位移都是最大,且都在t轴的上方,在0~4s内完成两次全振动,选项C错误.由于t=0时刻和t=4s时刻振子都在最大位移处,所以在0~4s内振子的位移为零,又由于振幅为0.5cm,在0~4s内振子完成了2次全振动,所以在这段时间内振子通过的路程为2×4×0.50cm=4cm,故选项D错误.综上所述,该题的正确选项为B.【例10】摆长为L的单摆做简谐振动,若从某时刻开始计时,(取作t=0),当振动至时,摆球具有负向最大速度,则单摆的振动图象是图中的()解析:从t=0时经过时间,这段时间为,经过摆球具有负向最大速度,说明摆球在平衡位置,在给出的四个图象中,经过具有最大速度的有C、D两图,而具有负向最大速度的只有D。所以选项D正确。四、受迫振动与共振

1.受迫振动物体在驱动力(既周期性外力)作用下的振动叫受迫振动。⑴物体做受迫振动的频率等于驱动力的频率,与物体的固有频率无关。⑵物体做受迫振动的振幅由驱动力频率和物体的固有频率共同决定:两者越接近,受迫振动的振幅越大,两者相差越大受迫振动的振幅越小。2.共振当驱动力的频率跟物体的固有频率相等时,受迫振动的振幅最大,这种现象叫共振。要求会用共振解释现象,知道什么情况下要利用共振,什么情况下要防止共振。(1)利用共振的有:共振筛、转速计、微波炉、打夯机、跳板跳水、打秋千……(2)防止共振的有:机床底座、航海、军队过桥、高层建筑、火车车厢……【例11】把一个筛子用四根弹簧支起来,筛子上装一个电动偏心轮,它每转一周,给筛子一个驱动力,这就做成了一个共振筛。不开电动机让这个筛子自由振动时,完成20次全振动用15s;在某电压下,电动偏心轮的转速是88r/min。已知增大电动偏心轮的电压可以使其转速提高,而增加筛子的总质量可以增大筛子的固有周期。为使共振筛的振幅增大,以下做法正确的是A.降低输入电压B.提高输入电压C.增加筛子质量D.减小筛子质量解析:筛子的固有频率为f固=4/3Hz,而当时的驱动力频率为f驱=88/60Hz,即f固f驱。为了达到振幅增大,应该减小这两个频率差,所以应该增大固有频率或减小驱动力频率。本题应选AD。【例12】一物体做受迫振动,驱动力的频率小于该物体的固有频率。当驱动力的频率逐渐增大时,该物体的振幅将:()A.逐渐增大B.先逐渐减小后逐渐增大C.逐渐减小D.先逐渐增大后逐渐减小解析:此题可以由受迫振动的共振曲线图来判断。受迫振动中物体振幅的大小和驱动力频率与系统固有频率之差有关。驱动力的频率越接近系统的固有频率,驱动力与固有频率的差值越小,作受迫振动的振子的振幅就越大。当外加驱动力频率等于系统固有频率时,振动物体发生共振,振幅最大。由共振曲线可以看出,当驱动力的频率小于该物体的固有频率时,增大驱动力频率,振幅增大,直到驱动力频率等于系统固有频率时,振动物体发生共振,振幅最大。在此之后若再增大驱动力频率,则振动物体的振幅减小。所以本题的正确答案为D。【例13】如图所示,在一根张紧的水平绳上,悬挂有a、b、c、d、e五个单摆,让a摆略偏离平衡位置后无初速释放,在垂直纸面的平面内振动;接着其余各摆也开始振动。下列说法中正确的有:()A.各摆的振动周期与a摆相同B.各摆的振幅大小不同,c摆的振幅最大C.各摆的振动周期不同,c摆的周期最长D.各摆均做自由振动解析:a摆做的是自由振动,周期就等于a摆的固有周期,其余各摆均做受迫振动,所以振动周期均与a摆相同。c摆与a摆的摆长相同,所以c摆所受驱动力的频率与其固有频率相等,这样c摆产生共振,故c摆的振幅最大。此题正确答案为A、B。教学随感

内容简单,学生掌握好,两种典型模型,单摆和弹簧镇子是高考重点,注意培养学生建模能力和知识迁移能力是本节的首要任务。执教人;刘万强

文章来源:http://m.jab88.com/j/70780.html

更多

最新更新

更多