88教案网

作为老师的任务写教案课件是少不了的,大家在用心的考虑自己的教案课件。只有规划好了教案课件新的工作计划,才能促进我们的工作进一步发展!你们会写多少教案课件范文呢?为了让您在使用时更加简单方便,下面是小编整理的“黄金分割”,欢迎您参考,希望对您有所助益!

§4.2黄金分割
●教学目标
(一)教学知识点
1.知道黄金分割的定义.2.会找一条线段的黄金分割点.
3.会判断某一点是否为一条线段的黄金分割点.
(二)能力训练要求
通过找一条线段的黄金分割点,培养学生的理解与动手能力.
(三)情感与价值观要求
理解黄金分割的意义,并能动手找到和制作黄金分割点和图形,让学生认识数学与人类生活的密切联系对人类历史发展的作用.
●教学重点了解黄金分割的意义,并能运用.
●教学难点找黄金分割点和画黄金矩形.
●教学过程
Ⅰ.创设问题情境,引入新课
P109中的五角星图案,如何找点C把AB分成两段AC和BC,使得画出的图形匀称美观呢?本节课就研究这个问题.

Ⅱ.讲授新课
讨论:在五角星图案中,大家用刻度尺分别度量线段AC、BC的长度,然后计算、,它们的值相等吗?()
1.黄金分割的定义
在线段AB上,点C把线段AB分成两条线段AC和BC,如果,那么称线段AB被点C黄金分割(goldensection),点C叫做线段AB的黄金分割点,AC与AB的比叫做黄金比.其中≈0.618.
2.作一条线段的黄金分割点.
P110,学生讨论作法和理由根据。
证明:∵AB=1,AC=x,BD=AB=∴AD=x+在Rt△ABD中,由勾股定理,得
(x+)2=12+()2∴x2+x+=1+
∴x2=1-x∴x2=1(1-x)∴AC2=ABBC
即:即点C是线段AB的一个黄金分割点,
在x2=1-x中整理,得x2+x-1=0∴x=
∵AC为线段长,只能取正∴AC=≈0.618
∴≈0.618∴黄金比约为0.618.
3.想一想
图4-8
古希腊时期的巴台农神庙(ParthenomTemple).把它的正面放在一个矩形ABCD中,以矩形ABCD的宽AD为边在其内部作正方形AEFD,那么我们可以惊奇地发现,,点E是AB的黄金分割点吗?矩形ABCD的宽与长的比是黄金比吗?
Ⅲ.随堂练习P111
Ⅳ.课时小结
1.黄金分割点的定义及黄金比.
2.如何找一条线段的黄金分割点,以及会画黄金矩形.
3.能根据定义判断某一点是否为一条线段的黄金分割点.
Ⅴ.课后作业习题4.3

相关知识

黄金分割点教学案


老师工作中的一部分是写教案课件,大家在仔细设想教案课件了。写好教案课件工作计划,我们的工作会变得更加顺利!你们知道适合教案课件的范文有哪些呢?下面是由小编为大家整理的“黄金分割点教学案”,欢迎大家与身边的朋友分享吧!

10.2.1黄金分割点
学习目标;
了解黄金分割、黄金分割点、黄金比的概念以及判断点是否是黄金分割点。
重难点:
黄金分割、黄金分割点、黄金比的概念以及判断点是否是黄金分割点。
一预习展示:
1、如图的五角星中,与的关系是()
A、相等B、C、D、不能确定
2、(1)如图,若点C是AB的黄金分割点,AB=1,则AC=_______,BC=______.
(2)一条线段的黄金分割点有个。
二探究学习:
点C把线段AB分成两条线段AC和BC,如果,那么称线段被点C黄金分割(goldensection),点C叫做线段AB的黄金分割点,AC与AB的比叫做黄金比,AC∶AB=∶1≈0.681∶1。
例题
1、若线段AB=4cm,点C是线段AB的一个黄金分割点,则AC的长为多少?

2、如图的五角星中,AD=BC,且C、D两点都是AB的黄金分割点,AB=1,
求CD的长.
三盘点
黄金分割、黄金分割点、黄金比的概念以及判断点是否是黄金分割点的方法。

四当堂练习:
一、选择题:
1、如图,点C把线段AB分成两条线段AC和BC,如果,那么下列说法错误的是()
A、线段AB被点C黄金分割B、点C叫做线段AB的黄金分割点
C、AB与AC的比叫做黄金比D、AC与AB的比叫做黄金比
2、黄金分割比是()
A、B、C、D、0.618
3、如图,点C是AB的黄金分割点,那么与的值分别是()
A、,B、,
C、,D、,
二、填空题:
4、据有关实验测定,当气温处于人体正常体温(37oC)的黄金比值时,人体感到最舒适。这个气温约为_______oC(精确到1oC)。
5、如图,点C是AB的黄金分割点,AB=4,则AC2=________.
(结果保留根号)
6、以长为2的定线段为边,作正方形ABCD,取AB的中点P,在BA的延长线上取点F,使PF=PD.以AF为边长作正方形AFEM,点M落在AD上。
(1)试求AM、DM的长;
(2)点M是线段AD的黄金分割点吗?

7、将正方形纸片ABCD折叠,使点B落在CD边上一点E(不与点CD重合),压平后得到折痕MN。当CE/CD=1/2时,求AM/BN的值。

黄金分割(第2课时)导学案


教案课件是老师上课中很重要的一个课件,大家静下心来写教案课件了。只有规划好了教案课件新的工作计划,这样我们接下来的工作才会更加好!你们会写教案课件的范文吗?急您所急,小编为朋友们了收集和编辑了“黄金分割(第2课时)导学案”,相信能对大家有所帮助。

第二课时黄金分割
【教学目标】1、经历探索黄金分割、黄金矩形、黄金三角形的过程,了解黄金分割在生活的各个领域有价值的运用;
2、会找一条线段的黄金分割点;
3、在应用中进一步理解线段的比、成比例线段,并在实际操作、思考、交流等过程中进一步感悟数学与生活的密切联系;
4、通过建筑、艺术等生活实例使学生体会黄金分割的文化价值,提高学生的审美意识。
【教学重点】了解黄金分割、黄金矩形、黄金三角形的意义;
【教学难点】怎样做一条线段的黄金分割点
【教学过程】
一、复习:
前面一节课我们探讨了成比例线段,以及比例的性质,什么叫成比例线段?比例有哪些性质?什么叫比例中项?
二、情境创设:

1、P85欣赏芭蕾舞演员身体各部分之间适当的比例给人以匀称、协调的美感,请量出图中线段AB、AC的长度,并求出线段AB与AC的比值;
2、上海东方明珠电视设计巧妙,整个塔体的挺拔秀丽,请量出图中线段AB、AC的长度,并求出线段AB与AC的比值;
3、观察P84“你最喜欢的矩形”的调查结果,看看多数同学选择是哪一个矩形,在此矩形中,宽与长的比值约是多少?
二、探索活动:
活动一、计算(或)的值,引入黄金分割的概念.
把矩形ABCD的长AB与宽BC画在同一条直线上,此时点B把线段AB分成两部分,如果,那么线段AC被点B黄金分割。(有一种通俗的说法是:较小的线段与较大的线段的比等于较大的线段与整个线段之比)
解:设AC=x,AB=1,则由AC2=BCAB得:x2=(1—x)1,∴x2+x—1=0,∴x2+x+=,
∴(x+)2=,∴……,∴,又∵<1,∴x=≈0.618
BC与AC(或AC与AB)的比值约为0.168,这个比值称为黄金比.
注意:(1)一条线段的黄金分割点有两个,它们关于中点中心对称;
(2)若矩形的两条邻边长度的比值约为0.618,这种矩形称为黄金矩形.
(3)若在黄金矩形中截取一个正方形,那么剩余的矩形是黄金矩形吗?

解:,由,得,所以,即矩形EFBC是黄金矩形;
活动二、认识黄金分割在几何中的一些应用.(如黄金三角形)
1、作顶角为36°的等腰△ABC;
2、分别量出底边BC与腰AB的长度;
3、作∠B的平分线,交AC于点D,量出△BCD的底边CD的长度;
最后,分别求出△ABC与△BCD的底边与腰的长度的比值(精确到0.001)
问:比值是多少?学生:大约是0.618
所以我们把顶角为36°的三角形称为黄金三角形,它具有如下的性质:
(1);
(2)设BD是△ABC的底角的平分线,则△BCD也是黄金三角形,且点D是线段AC的黄金分割点;
(3)如再作∠C的平分线,交BD于点E,则△CDE也是黄金三角形,如此继续下去,可得到一串黄金三角形;
活动三、如图,五边形ABCDE的5条边相等,5个内角也相等,
(1)找出图中的黄金三角形;
(2)图中的点F、G、H、M、N分别是那些线段的黄金分割点?你能说明理由吗?
解:(1)△ACD、△BDE、△CAE、△DAB、△EBC、△AGD、△ABN、△BCF、
△BAH、△CMB、△CDG、△DNC、△DEH、△EDF、△EMA;
(2)点F是线段CG、CE、DN、BD的黄金分割点,……………
三、例题讲解:

例1、若线段AB=4cm,点C是线段AB的一个黄金分割点,则AC的长为多少?
变题:电视节目主持人在主持节目时,站在舞台的黄金分割点处最自然得体,若舞台AB长为20米,试计算主持人应走到离A点至少多少米处是比较得体的位置?(结果精确到0.1米)
解:如图1,若AC是BC与AB的比例中项:则AC≈0.618×4cm=2.472cm;
如图2,若BC是AC与AB的比例中项:则BC≈0.618×4cm=2.472cm;∴AC≈1.528cm
例2、据有关实验测定,当气温处于人体正常体温(37oC)的黄金比值时,人体感到最舒适。这个气温约为_______oC(精确到1oC)。
例3、如图,点C是AB的黄金分割点,AB=4,则AC2=________;(结果保留根号)
例4、我们知道古希腊时期的巴台农神庙(ParthenomTemple)的正面是一个黄金矩形,若已知黄金矩形的长等于6,则这个黄金矩形的宽等于_________;(结果保留根号)

例5、如图的五角星中,AD=BC,且C、D两点都是AB的黄金分割点,AB=1,求CD的长;
解:∵点C、D是AB的黄金分割点,
∴AC=BD≈0.618AB=0.618,
∴BC≈1—0.618=0.382
∴CD≈0.618—0.382=0.236
答:CD的长约为0.236
例6、科学研究表明,当人的下肢与身高比为0.618时,看起来最美,某成年女士身高为153cm,下肢长为92cm,该女士穿的高跟鞋鞋跟的最佳高度约为cm(精确到0.1cm);
解:设该女士穿的高跟鞋鞋跟的高度为xcm,
根据黄金分割的概念知:92+x≈0.618(153+x),解得:x≈6.7

四、黄金分割的应用:
(1)据有关测定,当气温处于人体正常体温的黄金比值时,人体感到最舒适。因此夏天使用空调时室内温度调到什么温度最适合?(人的正常体温36.2℃~37.2℃)
“人体舒适指数”----36.5℃×0.618≈23℃,“人体舒适指数”为22℃∽24℃;
(2)二胡的“千斤”放在琴弦的金分割点处,音色最佳;
(3)维纳斯雕像、雅典娜女神象、海姑娘---阿曼达雕塑等肚脐之下的长度与身高之比接近0.618,芭蕾舞演员的比值只有0.618,所以要踮起脚尖!
(4)植物茎的顶端向下,上下层的两片叶子间大约成137.50,这个角度对植物叶子采光、通风、光合作用最为有利,这是因为:137.5︰(360—137.5)≈0.618;
(5)自然界的花瓣数目从里到外排列为:2、3、5、8、13、21、34、55、……,相邻两个数的比值越来越接近于0.618……;
(6)你知道芭蕾舞演员跳舞时为什么要掂起脚尖吗?芭蕾舞演员的身段是苗条的,但下半身与身高的比值也只有0.58左右,演员在表演时掂起脚尖,身高就可以增加6-8cm.这时比值就接近0.618了,给人以更为优美的艺术形象;

初二数学知识点归纳:黄金分割数2


初二数学知识点归纳:黄金分割数2

黄金分割数:
把一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比。其比值是一个无理数,取其前三位数字的近似值是0.618。由于按此比例设计的造型十分美丽,因此称为黄金分割,也称为中外比。
黄金分割:
黄金分割又称黄金律,是指事物各部分间一定的数学比例关系,即将整体一分为二,较大部分与较小部分之比等于整体与较大部分之比,其比值约为1∶0.618或1.618∶1,即长段为全段的0.618。0.618被公认为最具有审美意义的比例数字。上述比例是最能引起人的美感的比例,因此被称为黄金分割。
黄金分割线:
黄金分割线是一种古老的数学方法。黄金分割的创始人是古希腊的毕达哥拉斯,他在当时十分有限的科学条件下大胆断言:
一条线段的某一部分与另一部分之比,如果正好等于另一部分同整个线段的比即0.618,那么,这样比例会给人一种美感。
后来,这一神奇的比例关系被古希腊著名哲学家、美学家柏拉图誉为“黄金分割律”。黄金分割线的神奇和魔力,在数学界上还没有明确定论,但它屡屡在实际中发挥着意想不到的作用。
黄金分割线的最基本公式,是将1分割为0.618和0.382,它们有如下一些特点:
(1)数列中任一数字都是由前两个数字之和构成。
(2)前一数字与后一数字之比例,趋近于一固定常数,即0.618。
(3)后一数字与前一数字之比例,趋近于1.618。
(4)1.618与0.618互为倒数,其乘积则约等于1。
(5)任一数字如与前面第二个数字相比,其值趋近于2.618;如与后面第二个数字相比,其值则趋近于0.382。
理顺下来,上列奇异数字组合除能反映黄金分割的两个基本比值0.618和0.382以外,尚存在下列两组神秘比值。
即:(1)0.191、0.382、0.5、0.618、0.809(2)1、1.382、1.5、1.618、2、2.382、2.618
黄金分割点:
把一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比。其比值是一个无理数,用分数表示为(√5-1)/2,取其前三位数字的近似值是0.618。由于按此比例设计的造型十分美丽,因此称为黄金分割,也称为中外比。这个分割点就叫做黄金分割点(goldensectionratio通常用φ表示)这是一个十分有趣的数字,我们以0.618来近似表示,通过简单的计算就可以发现:(1-0.618)/0.618=0.6一条线段上有两个黄金分割点。
无限不循环小数
a,b
a:b=(a+b):a
通常用希腊字母Ф表示这个值。
黄金分割奇妙之处,在于其比例与其倒数是一样的。例如:1.618的倒数是0.618,而1.618:1与1:0.618是一样的。
确切值为(√5-1)/2(x^2+x-1=0的一个根)
黄金分割数前面的32位为:0.61803398874989484820458683436565
黄金分割三角形:
正五边形对角线连满后出现的所有三角形,都是黄金分割三角形。
黄金分割三角形有一个特殊性,所有的三角形都可以用四个与其本身全等的三角形来生成与其本身相似的三角形,但黄金分割三角形是唯一一种可以用5个而不是4个与其本身全等的三角形来生成与其本身相似的三角形的三角形。由于五角形的顶角是36度,这样也可以得出黄金分割的数值为2sin18°(即2*sin(π/10))。
将一个正五边形的所有对角线连接起来,所产生的五角星里面的所有三角形都是黄金分割三角形。
黄金矩形:
若矩形的宽与长的比等于(√5-1)/2≈0.618,那么这个矩形称为黄金矩形(又称根号矩形)。
黄金分割线:
由黄金分割点联想到“黄金分割线”,并类似地给出“黄金分割线”的定义:直线L将一个面积为S的图形分成两部分,这两部分的面积分别为S1、S2,如果S1:S=S2:S1,那么称直线L为该图形的黄金分割线。
与数列的关系:
让我们首先从一个数列开始,它的前面两个数是:1、1,后面的每个数都是它前面的两个数之和。
例如:1、1、2、3、5、8、13、21、34、55、89、144…..这个数列的名字叫做“斐波那契数列”,这些数被称为“斐波那契数”
斐波那契数列与黄金分割有什么关系呢?经研究发现,相邻两个菲波那契数的比值是随序号的增加而逐渐趋于黄金分割比的。
即f(n)/f(n+1)-→0.618…。由于斐波那契数都是整数,两个整数相除之商是有理数,所以只是逐渐逼近黄金分割比这个无理数。
但是当我们继续计算出后面更大的斐波那契数时,就会发现相邻两数之比确实是非常接近黄金分割比的。
一个很能说明问题的例子是五角星/正五边形。五角星是非常美丽的,中国的国旗上就有五颗,还有不少国家的国旗也用五角星,因为在五角星中可以找到的所有线段之间的长度关系都是符合黄金分割比的。
分数与根式:
有限段的黄金比1/X=X/(1-X),有X2=1-X,X(1+X)=1,得X=1/(1+X)。
有限式=无限式
对等式右边分母中的X又以1/(1+X)代替,可得X=1/(1+1/(1+X));
以此类推,可得无穷连分数:X=1/(1+1/(1+1/(1+1/(1+...。
对等式进行类似的代替,可得:X=√(1+√(1+√(1+√(1+...。
这样一个简洁的无穷连分式和无穷套根式给人以有序而无穷的印象,使人具有言而不喻的美感。

文章来源:http://m.jab88.com/j/63222.html

更多
上一篇:锐角三角函数 下一篇:声声慢教案

最新更新

更多