88教案网

立体几何新题型的解题技巧

一名合格的教师要充分考虑学习的趣味性,作为教师就要在上课前做好适合自己的教案。教案可以保证学生们在上课时能够更好的听课,帮助教师提高自己的教学质量。教案的内容具体要怎样写呢?下面是小编精心收集整理,为您带来的《立体几何新题型的解题技巧》,供您参考,希望能够帮助到大家。

【命题趋向】
在高考中立体几何命题有如下特点:
1.线面位置关系突出平行和垂直,将侧重于垂直关系.
2.多面体中线面关系论证,空间角与距离的计算常在解答题中综合出现.
3.多面体及简单多面体的概念、性质多在选择题,填空题出现.
4.有关三棱柱、四棱柱、三棱锥的问题,特别是与球有关的问题将是高考命题的热点.
此类题目分值一般在17---22分之间,题型一般为1个选择题,1个填空题,1个解答题.
【考点透视】
(A)版.掌握两条直线所成的角和距离的概念,对于异面直线的距离,只要求会计算已给出公垂线时的距离.掌握斜线在平面上的射影、直线和平面所成的角、直线和平面的距离的概念.掌握二面角、二面角的平面角、两个平行平面间的距离的概念.
(B)版.
①理解空间向量的概念,掌握空间向量的加法、减法和数乘.
②了解空间向量的基本定理,理解空间向量坐标的概念,掌握空间向量的坐标运算.
③掌握空间向量的数量积的定义及其性质,掌握用直角坐标计算空间向量数量积公式.
④理解直线的方向向量、平面的法向量,向量在平面内的射影等概念.
⑤了解多面体、凸多面体、正多面体、棱柱、棱锥、球的概念.
⑥掌握棱柱、棱锥、球的性质,掌握球的表面积、体积公式.
⑦会画直棱柱、正棱锥的直观图.
空间距离和角是高考考查的重点:特别是以两点间距离,点到平面的距离,两异面直线的距离,直线与平面的距离以及两异面直线所成的角,直线与平面所成的角,二面角等作为命题的重点内容,高考试题中常将上述内容综合在一起放在解答题中进行考查,分为多个小问题,也可能作为客观题进行单独考查.考查空间距离和角的试题一般作为整套试卷的中档题,但也可能在最后一问中设置有难度的问题.
不论是求空间距离还是空间角,都要按照一作,二证,三算的步骤来完成,即寓证明于运算之中,正是本专题的一大特色.
求解空间距离和角的方法有两种:一是利用传统的几何方法,二是利用空间向量。
【例题解析】
考点1点到平面的距离
求点到平面的距离就是求点到平面的垂线段的长度,其关键在于确定点在平面内的垂足,当然别忘了转化法与等体积法的应用.
典型例题
例1(2007年福建卷理)如图,正三棱柱的所有棱长都为,为中点.
(Ⅰ)求证:平面;
(Ⅱ)求二面角的大小;
(Ⅲ)求点到平面的距离.
考查目的:本小题主要考查直线与平面的位置关系,二面角的
大小,点到平面的距离等知识,考查空间想象能力、逻辑思维
能力和运算能力.
解答过程:解法一:(Ⅰ)取中点,连结.
为正三角形,.
正三棱柱中,平面平面,
平面.
连结,在正方形中,分别为
的中点,,.
在正方形中,,平面.
(Ⅱ)设与交于点,在平面中,作于,连结,由(Ⅰ)得平面.
,为二面角的平面角.
在中,由等面积法可求得,
又,.
所以二面角的大小为.
(Ⅲ)中,,.
在正三棱柱中,到平面的距离为.
设点到平面的距离为.
由,得,
.
点到平面的距离为.
解法二:(Ⅰ)取中点,连结.
为正三角形,.
在正三棱柱中,平面平面,
平面.
取中点,以为原点,,,的方向为轴的正方向建立空间直角坐标系,则,,,,,
,,.
,,
,.
平面.
(Ⅱ)设平面的法向量为.
,.,,
令得为平面的一个法向量.
由(Ⅰ)知平面,
为平面的法向量.
,.
二面角的大小为.
(Ⅲ)由(Ⅱ),为平面法向量,
.
点到平面的距离.
小结:本例中(Ⅲ)采用了两种方法求点到平面的距离.解法二采用了平面向量的计算方法,把不易直接求的B点到平面的距离转化为容易求的点K到平面的距离的计算方法,这是数学解题中常用的方法;解法一采用了等体积法,这种方法可以避免复杂的几何作图,显得更简单些,因此可优先考虑使用这一种方法.

精选阅读

数列与探索性新题型的解题技巧


【命题趋向】
1.等差(比)数列的基本知识是必考内容,这类问题既有选择题、填空题,也有解答题;难度易、中、难三类皆有.
2.数列中an与Sn之间的互化关系也是高考的一个热点.
3.函数思想、方程思想、分类讨论思想等数学思想方法在解决问题中常常用到,解答试题时要注意灵活应用.
4.解答题的难度有逐年增大的趋势,还有一些新颖题型,如与导数和极限相结合等.
因此复习中应注意:
1.数列是一种特殊的函数,学习时要善于利用函数的思想来解决.如通项公式、前n项和公式等.
2.运用方程的思想解等差(比)数列,是常见题型,解决此类问题需要抓住基本量a1、d(或q),掌握好设未知数、列出方程、解方程三个环节,常通过设而不求,整体代入来简化运算.
3.分类讨论的思想在本章尤为突出.学习时考虑问题要全面,如等比数列求和要注意q=1和q≠1两种情况等等.
4.等价转化是数学复习中常常运用的,数列也不例外.如an与Sn的转化;将一些数列转化成等差(比)数列来解决等.复习时,要及时总结归纳.
5.深刻理解等差(比)数列的定义,能正确使用定义和等差(比)数列的性质是学好本章的关键.
6.解题要善于总结基本数学方法.如观察法、类比法、错位相减法、待定系数法、归纳法、数形结合法,养成良好的学习习惯,定能达到事半功倍的效果.
7.数列应用题将是命题的热点,这类题关键在于建模及数列的一些相关知识的应用.
【考点透视】
1.理解数列的概念,了解数列通项公式的意义,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项.
2.理解等差数列的概念,掌握等差数列的通项公式与前n项和公式,并能运用公式解答简单的问题.
3.理解等比数列的概念,掌握等比数列的通项公式与前n项和公式,并能运用公式解决简单的问题.
4.数列是高中数学的重要内容,又是学习高等数学的基础,所以在高考中占有重要的地位.高考对本章的考查比较全面,等差数列,等比数列的考查每年都不会遗漏.解答题多为中等以上难度的试题,突出考查考生的思维能力,解决问题的能力,试题大多有较好的区分度.有关数列的试题经常是综合题,经常把数列知识和指数函数、对数函数和不等式的知识综合起来,试题也常把等差数列、等比数列,求极限和数学归纳法综合在一起。探索性问题是高考的热点,常在数列解答题中出现。本章中还蕴含着丰富的数学思想,在主观题中着重考查函数与方程、转化与化归、分类讨论等重要思想,以及配方法、换元法、待定系数法等基本数学方法.应用问题考查的重点是现实客观事物的数学化,常需构造数列模型,将现实问题转化为数学问题来解决.
【例题解析】
考点1正确理解和运用数列的概念与通项公式
理解数列的概念,正确应用数列的定义,能够根据数列的前几项写出数列的通项公式.
典型例题
例1.(2006年广东卷)在德国不来梅举行的第48届世乒赛期间,某商店橱窗里用同样的乒乓球堆成若干堆正三棱锥形的展品,其中第1堆只有1层,就一个球;第2,3,4,…堆最底层(第一层)分别按图4所示方式固定摆放,从第二层开始,每层的小球自然垒放在下一层之上,第n堆第n层就放一个乒乓球,以f(n)表示第n堆的乒乓球总数,则;(答案用n表示).
思路启迪:从图中观察各堆最低层的兵乓球数分别是12,3,4,…推测出第n层的球数。
解答过程:显然.
第n堆最低层(第一层)的乒乓球数,,第n堆的乒乓球数总数相当于n堆乒乓球的低层数之和,即
所以:

09年高考英语新题型阅读表达题的解题技巧


一名合格的教师要充分考虑学习的趣味性,教师要准备好教案,这是教师需要精心准备的。教案可以让学生更容易听懂所讲的内容,帮助教师在教学期间更好的掌握节奏。所以你在写教案时要注意些什么呢?为满足您的需求,小编特地编辑了“09年高考英语新题型阅读表达题的解题技巧”,仅供参考,欢迎大家阅读。

高考英语新题型阅读表达题的解题技巧

阅读表达题是2007年山东省出现的新题型。该题是一种综合性的题型,既考查学生的阅读理解能力,又考查书面表达能力,真可谓"一箭双雕"!同时,这类题目不但选材新颖、时代性强,而且体裁多样、结构严谨、层次分明,是一种不错的试题。然而,同学们对这一新题型却感到束手无策,不知从何下笔。针对这一情况,我们应在平时的训练中要不断总结做题方法,探索答题规律,掌握这类题目的解题技巧。下面让我们一起对这个新题型来个"庖丁解牛",全面剖析一下它的内部结构。

通过对近2年高考试题的研究,我们不难发现这类试题的设题题型有以下几种:主旨概括题、句子替换题、句子填空题、翻译句子题、封闭性问题和开放性问题等。为了易于掌握,我们分别进行分析。

点击下载:http://files.eduu.com/down.php?id=49207

立体几何


一、平行关系与垂直
[基础自测]
1.空间三条直线互相平行,由每两条平行线确定一个平面,则可确定平面的个数为B
A.3B.1或3C.1或2D.2或3
2.若为异面直线,直线c∥a,则c与b的位置关系是D
A.相交B.异面C.平行D.异面或相交
3.下面表述正确的是(C)
A、空间任意三点确定一个平面B、分别在不同的三条直线上的三点确定一个平面
C、直线上的两点和直线外的一点确定一个平面D、不共线的四点确定一个平面
4.直线与垂直,又垂直于平面,则与的位置关系是(D)
A、B、C、D、或
5.若表示直线,表示平面,则下列命题中,正确命题的个数为(C)
①;②;③;④
A、1个B、2个C、3个D、4个
6.若a,b是异面直线,P是a,b外的一点,有以下四个命题:
①过P点可作直线k与a,b都相交;②过P点可作平面与a,b都平行;
③过P点可作直线与a,b都垂直;④过P点可作直线k与a,b所成角都等于50.
这四个命题中正确命题的序号是(D)
A.①、②、③B.②、③、④C.②D.③、④
7.直线,直线,且,则a与b的位置关系为平行或异面。
8.设α、β、γ为平面,给出下列条件:
(1)a,b为异面直线,aα,bβ,a∥β,b∥α;
(2)α内距离为d的平行直线在β内的射线仍为两条距离为d的平行线;
(3)α内不共线的三点到β的距离相等;
(4)α⊥γ,β⊥γ
其中,能使α∥β成立的条件个数为:A
A.1个B.2个C.3个D.0个
9.直线是异面直线是指⑴且与不平行;⑵面,面,且;⑶面,面且;⑷不存在平面能使面且面成立。上述结论正确的有(C)
、⑶⑷、⑴⑶、⑴⑷、⑵⑷
10、已知直线⊥平面,直线,有下列四个命题:
①∥⊥,⊥∥,③∥⊥,④⊥∥,
其中正确命题的序号为__1.3______。
[典例分析]
例1:.已知PA⊥平面ABCD,四边形ABCD是矩形,M、N分别是AB、PC的中点.
(1)求证:MN∥平面PAD;
(2)求证:MN⊥CD;

例2、已知PA⊥矩形ABCD所在平面,M、N分别是AB、PC的中点.
(1)求证:MN⊥AB;
(2)设平面PDC与平面ABCD所成的二面角为锐角θ,问能否确定θ使直线MN是异
面直线AB与PC的公垂线?若能,求出相应θ的值;若不能,说明理由.

.例3(12分)如图,正方形ABCD所在平面外一点P,底面ABCD,,E是PC的中点,作交PB于点F.
(1)证明平面;
(2)证明平面EFD;

例4在几何体中,△是等腰直角三角形,,和都垂直于平面,且,点是的中点。
(1)求证:∥平面;
(2)求与平面所成角的大小。

[巩固练习]
1.)如图,在棱长为1的正方体ABCD—A1B1C1D1中,AC与BD交于点E,CB与CB1交于点F.
(I)求证:A1C⊥平BDC1;
(II)求二面角B—EF—C的大小(结果用反三角函数值表示).

2.如图,直三棱柱ABC-A1B1C1的底面ABC为等腰直角三角形,∠ACB=900,AC=1,C点到AB1的距离为CE=,D为AB的中点.
(1)求证:AB1⊥平面CED;
(2)求异面直线AB1与CD之间的距离;
(3)求二面角B1—AC—B的平面角.

3.如图,几何体ABCDE中,△ABC是正三角形,EA和DC
都垂直于平面ABC,且EA=AB=2a,DC=a,F、G分别为
EB和AB的中点.
(1)求证:FD∥平面ABC;
(2)求证:AF⊥BD;
(3)求二面角B—FC—G的正切值.

4.如图,已知正方形ABCD和矩形ACEF所在的平面互相垂直,
AB=,AF=1,M是线段EF的中点.
(Ⅰ)求证AM∥平面BDE;
(Ⅱ)求证AM⊥平面BDF;
(Ⅲ)求二面角A—DF—B的大小;
二、空间角与距离
1、一条直线与平面所成的角为30°,则它和平面内所有直线所成的角中最大的角是B
、30°、90°、150°、180°
2.在正方体中,面对角线与(B).
A.10条B.8条C.6条D.4条
3、将正方形ABCD沿对角线BD折成一个120°的二面角,点C到达点C1,这时异面直线AD与BC1所成角的余弦值是(D)
A.B.C.D.
4.已知二面角为锐角,点,到的距离,到棱的距离,则到的距离是(A)
、、、、
5.在正方体A1B1C1D1—ABCD中,AC与B1D所成的角的大小为(D)
A.B.C.D.
6.正三棱锥的相邻两侧面所成的角为α,则α的取值范围B。
A.(,π)B.(,π)C.(,)D.(,)
7、在棱长为在正方体中,过的平面与底面的交线为,则直线与的距离为。
8.在三棱锥P—ABC中,∠APB=∠APC=∠BPC=60°,则侧棱PA与侧面PBC所成的角的大小是arccos.
9.如图,矩形ABCD中,AB=3,BC=4,沿对角线BD将⊿ABD折起,使A点在内的
射影落在BC边上,若二面角C—AB—D的平面角大小为,
则sin的值等于(A).
A.B.C.D.
10.如图,AO⊥平面α,点O为垂足,BC平面α,
BC⊥OB;若,则cos的值是。
[典型例题]
例1、如图1,设ABC-ABC是直三棱柱,F是AB的中点,且
(1)求证:AF⊥AC;(2)求二面角C-AF-B的大小.

2.(2007全国Ⅰ文)四棱锥中,底面ABCD为平行四边形,侧面底面ABCD,已知,,,.
(Ⅰ)证明:;
(Ⅱ)求直线SD与平面SBC所成角的大小.

3.(2007安徽文)如图,在三棱锥中,,,是的中点,且,.
(I)求证:平面平面;
(II)试确定角的值,使得直线与平面所成的角为.
4.四棱锥的底面是边长为1的正方形,图(1)
SD垂直于底面ABCD,SB=√3。
(I)求证;
(II)求面ASD与面BSC所成二面角的大小;
(III)设棱SA的中点为M,求异面直线DM与SB所成角的大小。
(Ⅳ)求SD与面SAB所成角的大小。

[巩固练习]
1.(文)正方体ABCD—A1B1C1D1中,M、N、P分别为棱AB、BC、DD1的中点.
(1)求证:PB⊥平面MNB1;
(2)设二面角M—B1N—B为α,求cosα的值.

2.(本小题满分14分)如图,在长方体ABCD─A1B1C1D1中,E、P分别是BC、A1D1的中点,M、N分别是AE、CD1的中点,AD=AA1=a,AB=2a.
(1)求证:MN∥面ADD1A1;
(2)求二面角P─AE─D的大小;
(3)求三棱锥P─DEN的体积.

3.(2006年湖南卷)如图4,已知两个正四棱锥P-ABCD与Q-ABCD的高分别为1和2,AB=4.
(Ⅰ)证明PQ⊥平面ABCD;
(Ⅱ)求异面直线AQ与PB所成的角;
(Ⅲ)求点P到平面QAD的距离.

4.(2004福建卷)在三棱锥S—ABC中,△ABC是边长为4的正三角形,平面SAC⊥平面ABC,SA=SC=2,M、N分别为AB、SB的中点.
(Ⅰ)证明:AC⊥SB;
(Ⅱ)求二面角N—CM—B的大小;
(Ⅲ)求点B到平面CMN的距离.

三、体积面积与球
1.一个四面体共一个顶点的三条棱两两相互垂直,其长分别为,且四面体的四个顶点在一个球面上.则这个球的表面积为(A).
A.16B.32C.36D.64
2.已知正方体外接球的体积是,那么正方体的棱长等于(D)
(A)(B)(C)(D)
3.一个与球心距离为1的平面截球所得的圆面面积为,则球的表面积为B
(A)(B)(C)(D)
4.设三棱柱ABC—A1B1C1的体积为V,P、Q分别是侧棱AA1、CC1上的点,且PA=QC1,则四棱锥B—APQC的体积为(C)
A.B.C.D.
5.(2007全国Ⅱ文)一个正四棱柱的各个顶点在一个直径为2cm的球面上.如果正四棱柱的底面边长为1cm,那么该棱柱的表面积为cm
6、设地球半径为,在北纬圈上有、两地,它们的纬度圈上的弧长等于,则、两地的球面距离为(B)
、、、、
7、(2007江西文)四面体的外接球球心在上,且,,在外接球面上两点间的球面距离是(C)
A.B.C.D.
8、在半径为的一个半球内有一个内接正方体,则这个正方体的棱长为。
9.(2007全国Ⅰ文)正四棱锥的底面边长和各侧棱长都为,点S,A,B,C,D都在同一个球面上,则该球的体积为_________.
10.把边长为的正方形ABCD沿对角线AC折成直二面角,折成直二面角后,在A,B,C,D四点所在的球面上,B与D两点之间的球面距离为(C)
(A)(B)(C)(D)

向量与三角函数创新题型的解题技巧


【命题趋向】
1.三角函数的性质、图像及其变换,主要是的性质、图像及变换.考查三角函数的概念、奇偶性、周期性、单调性、有界性、图像的平移和对称等.以选择题或填空题或解答题形式出现,属中低档题,这些试题对三角函数单一的性质考查较少,一道题所涉及的三角函数性质在两个或两个以上,考查的知识点来源于教材.
2.三角变换.主要考查公式的灵活运用、变换能力,一般要运用和角、差角与二倍角公式,尤其是对公式的应用与三角函数性质的综合考查.以选择题或填空题或解答题形式出现,属中档题.
3.三角函数的应用.以平面向量、解析几何等为载体,或者用解三角形来考查学生对三角恒等变形及三角函数性质的应用的综合能力.特别要注意三角函数在实际问题中的应用和跨知识点的应用,注意三角函数在解答有关函数、向量、平面几何、立体几何、解析几何等问题时的工具性作用.这类题一般以解答题的形式出现,属中档题.
4.在一套高考试题中,三角函数一般分别有1个选择题、1个填空题和1个解答题,或选择题与填空题1个,解答题1个,分值在17分-22分之间.
5.在高考试题中,三角题多以低档或中档题目为主,一般不会出现较难题,更不会出现难题,因而三角题是高考中的得分点.
【考点透视】
1.理解任意角的概念、弧度的意义,能正确地进行弧度与角度的换算.
2.掌握任意角的正弦、余弦、正切的定义,了解余切、正割、余割的定义,掌握同解三角函数的基本关系式,掌握正弦、余弦的诱导公式,理解周期函数与最小正周期的意义.
3.掌握两角和与两角差的正弦、余弦、正切公式,掌握二倍角的正弦、余弦、正切公式.
4.能正确运用三角公式,进行简单三角函数式的化简、求值和恒等式证明.
5.了解正弦函数、余弦函数、正切函数的图象和性质,会用五点法画正弦函数、余弦函数和函数y=Asin(ωxψ)的简图,理解A、ω、ψ的物理意义.
6.会由已知三角函数值求角,并会用符号arcsinx,arcosx,arctanx表示.
7.掌握正弦定理、余弦定理,并能初步运用它们解斜三角形,能利用计算器解决解三角形的计算问题.
8.掌握向量与三角函数综合题的解法.
常用解题思想方法
1.三角函数恒等变形的基本策略。
(1)常值代换:特别是用1的代换,如1=cos2θsin2θ=tanx·cotx=tan45°等。
(2)项的分拆与角的配凑。如分拆项:sin2x2cos2x=(sin2xcos2x)cos2x=1cos2x;配凑角:α=(αβ)-β,β=-等。
(3)降次与升次。即倍角公式降次与半角公式升次。
(4)化弦(切)法。将三角函数利用同角三角函数基本关系化成弦(切)。
(5)引入辅助角。asinθbcosθ=sin(θ),这里辅助角所在象限由a、b的符号确定,角的值由tan=确定。
(6)万能代换法。巧用万能公式可将三角函数化成tan的有理式。
2.证明三角等式的思路和方法。
(1)思路:利用三角公式进行化名,化角,改变运算结构,使等式两边化为同一形式。
(2)证明方法:综合法、分析法、比较法、代换法、相消法、数学归纳法。
3.证明三角不等式的方法:比较法、配方法、反证法、分析法,利用函数的单调性,利用正、余弦函数的有界性,利用单位圆三角函数线及判别法等。
4.解答三角高考题的策略。
(1)发现差异:观察角、函数运算间的差异,即进行所谓的差异分析。
(2)寻找联系:运用相关公式,找出差异之间的内在联系。
(3)合理转化:选择恰当的公式,促使差异的转化。
【例题解析】
考点1.三角函数的求值与化简
此类题目主要有以下几种题型:
⑴考查运用诱导公式和逆用两角和的正弦、余弦公式化简三角函数式能力,以及求三角函数的值的基本方法.
⑵考查运用诱导公式、倍角公式,两角和的正弦公式,以及利用三角函数的有界性来求的值的问题.
⑶考查已知三角恒等式的值求角的三角函数值的基本转化方法,考查三角恒等变形及求角的基本知识.

文章来源:http://m.jab88.com/j/56577.html

更多

最新更新

更多