88教案网

八年级数学上册期末试卷分析

八年级数学上册期末试卷分析

本次考试数学命题,能根据本县教学的实际情况,以《数学课程标准》的精神为指导,以教材为依据来进行。注重对“三基”即基础知识、基本技能和基本思想方法的考查,关注学生发展,充分体现基础教育的性质和要求,使命题有利于激发学生的创新意识和创新精神,有利于素质教育;注重数学核心内容和重要数学思想方法的考查;考查学生用数学的意识。能立足学生发展和实际生活需要设计应用题(如第22题);关注学生获取数学信息,认识数学对象的基本过程和方法,突出教育价值,促进教师教学方式的改革,促进学生学习方式的转变;努力为学生创造探索思考的机会和空间,为学生的可持续发展创造良好的条件。下面就学生答卷中出现的情况分析如下:

一、试题分析

(一)选择题

5题,考查分解因式,重点考查分解因式的定义、完全平方公式;

7题,考查三角形的外角和的知识,属掌握层次,学生答题正确率较高,今后教学中应加强知识点之间联系,用简单的例子呈现。

9题,考查正方形面积,属掌握层次,因此图已经在教材中出现,学生答题正确率较高,教学中应该充分利用教材,并注意各知识点之间的衔接;

10题,考察分式运算问题,从得分情况看,前段时间课题组的研究有了一定的成效,针对学生单项运算能力的训练起到了很好的作用。

(二)填空题

17题,考查全等三角形性质和线段垂直平分线的性质,存在问题是审题不清,即没有找到对应边,出现了16这个答案,正确填为19;

18题,是一道开放性的问题,学生需要添加一个条件,大部分学生都很好地完成了本题,但也有少数学生错误填成了SSA的条件。

(三)解答题

20题,主要考察了图形的轴对称变换、坐标表示点,学生根据所学知识在网格中分别作图,存在的问题是:书写坐标时漏了括号及逗号,横纵坐标混淆,变换时方向弄错,坐标变化的理解不深刻;后期研究应加强学生的操作能力培养,知识要细化,养成学生规范作图的习惯;

23题,本题重点考察等边三角形和解决实际问题的能力,要求达到掌握和运用程度,同时也考察了学生的运算能力,学生普遍存在以下问题:(1)运算过程过于复杂,不会言简意赅;(2)运用数学思想进行运算的意识薄弱;(3)数学问题运算结合理解的意识不够;(4)学生阅读理解能力普遍低下,导致不能准确快捷的把握题意。

二、课题研究得失分析

从本次期末考试的情况可以看出,学生整体素质还不容乐观。出现了失误,低分的学生也不少,一些基础题目还是有学生做错,这些反映了学生还没有真正掌握基础知识,数学能力不够强。今后的研究可以从以下几个方面来改进:

1.立足教材,扎根于生活。教材是我们的教学之本,在教学中,我们既要以教材为本,扎扎实实地渗透教材的重点,难点,不忽视有些自己以为无关紧要的知识;又要在教材的基础上,紧密联系生活,让学生多了解生活中的数学。

2.教学中要注重学生的学习过程,培养学生的分析能力。在平时的教学中,作为教师,应尽可能地为学生提供学习材料,创造自主学习的机会。尤其是在解答题的教学中,要让学生的思维得到充分地展示,让他们自己来分析题目,设计解题的策略,多做分析或编题等训练,培养良好的解题习惯。平时要注重基础,注重知识的形成过程,注重在课堂教学中让学生真正参与而学得知识,从而学会分析,学会学习。

3.多做精练,切实培养和提高学生的计算能力和表达能力。要学生说出题目的分析过程,也许做的不错,但有时他们是凭自己的直觉做题,不讲道理,不想原因,特别是“会想”,而不会写或写不好。

4.关注过程,引导探究创新。数学教学不仅要使学生获得基础知识、基本技能和基本思想方法,而且要着力引导学生进行自主探索,培养自觉发现新知、发现规律的能力。这样既能使学生对知识有深层次的理解,又能让学生在探索的过程中学会探索的科学方法。让学生的学习不仅知其然,还能知其所以然。

5.在教学中教师要时时有换位意识,假如我是学生,我会遇到什么问题,教师要明白学生是第一次学,而我们老师是教了好多遍,教学中设身处地的为学生多想。

“数学来源于生活”,让数学从生活中来,到生活中去是数学课程改革的重要内容,要把学生的学习真正引向生活,引向社会,使每一个学生都能在不断获得成功喜悦的同时,唤起对学习的兴趣和人生的自信。

精选阅读

八年级数学上册期末复习提纲


作为老师的任务写教案课件是少不了的,是认真规划好自己教案课件的时候了。只有规划好了教案课件新的工作计划,新的工作才会如鱼得水!你们清楚有哪些教案课件范文呢?以下是小编为大家收集的“八年级数学上册期末复习提纲”供大家借鉴和使用,希望大家分享!

八年级数学上册期末复习提纲

第一章勾股定理

1.勾股定理:直角三角形两直角边的平方和等于斜边的平方;即。

2.勾股定理的证明:用三个正方形的面积关系进行证明(两种方法)。

3.勾股定理逆定理:如果三角形的三边长,,满足,那么这个三角形是直角三角形。满足的三个正整数称为勾股数。

第二章实数

1.平方根和算术平方根的概念及其性质:

(1)概念:如果,那么是的平方根,记作:;其中叫做的算术平方根。

(2)性质:①当≥0时,≥0;当<0时,无意义;②=;③。

2.立方根的概念及其性质:

(1)概念:若,那么是的立方根,记作:;

(2)性质:①;②;③=

3.实数的概念及其分类:

(1)概念:实数是有理数和无理数的统称;

(2)分类:按定义分为有理数可分为整数的分数;按性质分为正数、负数和零。无理数就是无限不循环小数;小数可分为有限小数、无限循环小数和无限不循环小数;其中有限小数和无限循环小数称为分数。

4.与实数有关的概念:在实数范围内,相反数,倒数,绝对值的意义与有理数范围内的意义完全一致;在实数范围内,有理数的运算法则和运算律同样成立。每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数,即实数和数轴上的点是一一对应的。因此,数轴正好可以被实数填满。

5.算术平方根的运算律:(≥0,≥0);(≥0,>0)。

第三章图形的平移与旋转

1.平移:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。平移不改变图形大小和形状,改变了图形的位置;经过平移,对应点所连的线段平行且相等;对应线段平行且相等,对应角相等。

2.旋转:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转。这点定点称为旋转中心,转动的角称为旋转角。旋转不改变图形大小和形状,改变了图形的位置;经过旋转,图形点的每一个点都绕旋转中心沿相同方向转动了相同和角度;任意一对对应点与旋转中心的连线所成的角都是旋转角;对应点到旋转中心的距离相等。

3.作平移图与旋转图。

第四章四边形性质的探索

1.多边形的分类:

特殊

菱形

矩形

特殊

正方形

三角形

等腰三角形、直角三角形

四边形

特殊

梯形

特殊

等腰梯形

边数多于4的多边形

特殊

正多边形

平行四边形

特殊

文本框:多边形

2.平行四边形、菱形、矩形、正方形、等腰梯形的定义、性质、判别:

(1)平行四边形:两组对边分别平行的四边形叫做平行四边形。平行四边形的对边平行且相等;对角相等,邻角互补;对角线互相平分。两条对角线互相平分的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形;两组对边分别相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形。

(2)菱形:一组邻边相等的平行四边形叫做菱形。菱形的四条边都相等;对角线互相垂直平分,每一条对角线平分一组对角。四条边都相等的四边形是菱形;对角线互相垂直的平行四边形是菱形;一组邻边相等的平行四边形是菱形;对角线互相平分且垂直的四边形是菱形。菱形的面积等于两条对角线乘积的一半(面积计算,即S菱形=L1*L2/2)。

(3)矩形:有一个内角是直角的平行四边形叫做矩形。矩形的对角线相等;四个角都是直角。对角线相等的平行四边形是矩形;有一个角是直角的平行四边形是矩形。直角三角形斜边上的中线等于斜边长的一半;在直角三角形中30°所对的直角边是斜边的一半。

(4)正方形:一组邻边相等的矩形叫做正方形。正方形具有平行四边形、菱形、矩形的一切性质。

(5)等腰梯形同一底上的两个内角相等,对角线相等。同一底上的两个内角相等的梯形是等腰梯形;对角线相等的梯形是等腰梯形;对角互补的梯形是等腰梯形。

(6)三角形中位线:连接三角形相连两边重点的线段。性质:平行且等于第三边的一半

3.多边形的内角和公式:(n-2)*180°;多边形的外角和都等于。

4.中心对称图形:在平面内,一个图形绕某个点旋转,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形。

第五章位置的确定

1.直角坐标系及坐标的相关知识。

2.点的坐标间的关系:如果点A、B横坐标相同,则∥轴;如果点A、B纵坐标相同,则∥轴。

3.将图形的纵坐标保持不变,横坐标变为原来的倍,所得到的图形与原图形关于轴对称;将图形的横坐标保持不变,纵坐标变为原来的倍,所得到的图形与原图形关于轴对称;将图形的横、纵坐标都变为原来的倍,所得到的图形与原图形关于原点成中心对称。

第六章一次函数

1.一次函数定义:若两个变量间的关系可以表示成(为常数,)的形式,则称是的一次函数。当时称是的正比例函数。正比例函数是特殊的一次函数。

2.作一次函数的图象:列表取点、描点、连线,标出对应的函数关系式。

3.正比例函数图象性质:经过;>0时,经过一、三象限;<0时,经过二、四象限。

4.一次函数图象性质:

(1)当>0时,随的增大而增大,图象呈上升趋势;当<0时,随的增大而减小,图象呈下降趋势。

(2)直线与轴的交点为,与轴的交点为。

(3)在一次函数中:>0,>0时函数图象经过一、二、三象限;>0,<0时函数图象经过一、三、四象限;<0,>0时函数图象经过一、二、四象限;<0,<0时函数图象经过二、三、四象限。

(4)在两个一次函数中,当它们的值相等时,其图象平行;当它们的值不等时,其图象相交;当它们的值乘积为时,其图象垂直。

4.已经任意两点求一次函数的表达式、根据图象求一次函数表达式。

5.运用一次函数的图象解决实际问题。

第七章二元一次方程组

1.二元一次方程及二元一次方程组的定义。

2.解方程组的基本思路是消元,消元的基本方法是:①代入消元法;②加减消元法;③图象法。

3.方程组解应用题的关键是找等量关系。

4.解应用题时,按设、列、解、答四步进行。

5.每个二元一次方程都可以看成一次函数,求二元一次方程组的解,可看成求两个一次函数图象的交点。

第八章数据的代表

1.算术平均数与加权平均数的区别与联系:算术平均数是加权平均数的一种特殊情况,(它特殊在各项的权相等),当实际问题中,各项的权不相等时,计算平均数时就要采用加权平均数,当各项的权相等时,计算平均数就要采用算术平均数。

2.中位数和众数:中位数指的是n个数据按大小顺序(从大到小或从小到大)排列,处在最中间位置的一个数据(或最中间两个数据的平均数)。众数指的是一组数据中出现次数最多的那个数据。

八年级数学上册期末总复习资料


老师会对课本中的主要教学内容整理到教案课件中,大家开始动笔写自己的教案课件了。是时候对自己教案课件工作做个新的规划了,这样接下来工作才会更上一层楼!你们了解多少教案课件范文呢?下面是小编精心收集整理,为您带来的《八年级数学上册期末总复习资料》,欢迎大家与身边的朋友分享吧!

八年级数学上册期末总复习资料

几何A级概念:(要求深刻理解、熟练运用、主要用于几何证明)
1.三角形的角平分线定义:
三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.(如图)
八年级数学上册期末复习提纲
几何表达式举例:
(1)∵AD平分∠BAC
∴∠BAD=∠CAD
(2)∵∠BAD=∠CAD
∴AD是角平分线
2.三角形的中线定义:
在三角形中,连结一个顶点和它的对边的中点的线段叫做三角形的中线.(如图)
八年级数学上册期末复习提纲
几何表达式举例:
(1)∵AD是三角形的中线
∴BD=CD
(2)∵BD=CD
∴AD是三角形的中线
3.三角形的高线定义:
从三角形的一个顶点向它的对边画垂线,顶点和垂足间的线段叫做三角形的高线.
(如图)
八年级数学上册期末复习提纲
几何表达式举例:
(1)∵AD是ΔABC的高
∴∠ADB=90°
(2)∵∠ADB=90°
∴AD是ΔABC的高
※4.三角形的三边关系定理:
三角形的两边之和大于第三边,三角形的两边之差小于第三边.(如图)
八年级数学上册期末复习提纲
几何表达式举例:
(1)∵AB+BC>AC
∴……………
(2)∵AB-BC<AC
∴……………
5.等腰三角形的定义:
有两条边相等的三角形叫做等腰三角形.(如图)
八年级数学上册期末复习提纲
几何表达式举例:
(1)∵ΔABC是等腰三角形
∴AB=AC
(2)∵AB=AC
∴ΔABC是等腰三角形
6.等边三角形的定义:
有三条边相等的三角形叫做等边三角形.(如图)
八年级数学上册期末复习提纲
几何表达式举例:
(1)∵ΔABC是等边三角形
∴AB=BC=AC
(2)∵AB=BC=AC
∴ΔABC是等边三角形
7.三角形的内角和定理及推论:
(1)三角形的内角和180°;(如图)
(2)直角三角形的两个锐角互余;(如图)
(3)三角形的一个外角等于和它不相邻的两个内角的和;(如图)
※(4)三角形的一个外角大于任何一个和它不相邻的内角.
八年级数学上册期末复习提纲八年级数学上册期末复习提纲八年级数学上册期末复习提纲
(1)(2)(3)(4)
几何表达式举例:
(1)∵∠A+∠B+∠C=180°
∴…………………
(2)∵∠C=90°
∴∠A+∠B=90°
(3)∵∠ACD=∠A+∠B
∴…………………
(4)∵∠ACD>∠A
∴…………………
8.直角三角形的定义:
有一个角是直角的三角形叫直角三角形.(如图)
八年级数学上册期末复习提纲
几何表达式举例:
(1)∵∠C=90°
∴ΔABC是直角三角形
(2)∵ΔABC是直角三角形
∴∠C=90°
9.等腰直角三角形的定义:
两条直角边相等的直角三角形叫等腰直角三角形.(如图)
八年级数学上册期末复习提纲
几何表达式举例:
(1)∵∠C=90°CA=CB
∴ΔABC是等腰直角三角形
(2)∵ΔABC是等腰直角三角形
∴∠C=90°CA=CB
10.全等三角形的性质:
(1)全等三角形的对应边相等;(如图)
(2)全等三角形的对应角相等.(如图)
八年级数学上册期末复习提纲
几何表达式举例:
(1)∵ΔABC≌ΔEFG
∴AB=EF………
(2)∵ΔABC≌ΔEFG
∴∠A=∠E………
11.全等三角形的判定:
“SAS”“ASA”“AAS”“SSS”“HL”.(如图)
八年级数学上册期末复习提纲
(1)(2)
八年级数学上册期末复习提纲
(3)
几何表达式举例:
(1)∵AB=EF
∵∠B=∠F
又∵BC=FG
∴ΔABC≌ΔEFG
(2)………………
(3)在RtΔABC和RtΔEFG中
∵AB=EF
又∵AC=EG
∴RtΔABC≌RtΔEFG
12.角平分线的性质定理及逆定理:
(1)在角平分线上的点到角的两边距离相等;(如图)
(2)到角的两边距离相等的点在角平分线上.(如图)
八年级数学上册期末复习提纲
几何表达式举例:
(1)∵OC平分∠AOB
又∵CD⊥OACE⊥OB
∴CD=CE
(2)∵CD⊥OACE⊥OB
又∵CD=CE
∴OC是角平分线
13.线段垂直平分线的定义:
垂直于一条线段且平分这条线段的直线,叫做这条线段的垂直平分线.(如图)
八年级数学上册期末复习提纲
几何表达式举例:
(1)∵EF垂直平分AB
∴EF⊥ABOA=OB
(2)∵EF⊥ABOA=OB
∴EF是AB的垂直平分线、
14.线段垂直平分线的性质定理及逆定理:
(1)线段垂直平分线上的点和这条线段的两个端点的距离相等;(如图)
(2)和一条线段的两个端点的距离相等的点,在这条线段的垂直平分线上.(如图)
八年级数学上册期末复习提纲
几何表达式举例:
(1)∵MN是线段AB的垂直平分线
∴PA=PB
(2)∵PA=PB
∴点P在线段AB的垂直平分线上
15.等腰三角形的性质定理及推论:
(1)等腰三角形的两个底角相等;(即等边对等角)(如图)
(2)等腰三角形的“顶角平分线、底边中线、底边上的高”三线合一;(如图)
(3)等边三角形的各角都相等,并且都是60°.(如图)
八年级数学上册期末复习提纲(1)八年级数学上册期末复习提纲(2)八年级数学上册期末复习提纲(3)
几何表达式举例:
(1)∵AB=AC
∴∠B=∠C
(2)∵AB=AC
又∵∠BAD=∠CAD
∴BD=CD
AD⊥BC
………………
(3)∵ΔABC是等边三角形
∴∠A=∠B=∠C=60°
16.等腰三角形的判定定理及推论:
(1)如果一个三角形有两个角都相等,那么这两个角所对边也相等;(即等角对等边)(如图)
(2)三个角都相等的三角形是等边三角形;(如图)
(3)有一个角等于60°的等腰三角形是等边三角形;(如图)
(4)在直角三角形中,如果有一个角等于30°,那么它所对的直角边是斜边的一半.(如图)
八年级数学上册期末复习提纲(1)八年级数学上册期末复习提纲(2)(3)八年级数学上册期末复习提纲(4)
几何表达式举例:
(1)∵∠B=∠C
∴AB=AC
(2)∵∠A=∠B=∠C
∴ΔABC是等边三角形
(3)∵∠A=60°
又∵AB=AC
∴ΔABC是等边三角形
(4)∵∠C=90°∠B=30°
∴AC=八年级数学上册期末复习提纲AB
17.关于轴对称的定理
(1)关于某条直线对称的两个图形是全等形;(如图)
(2)如果两个图形关于某条直线对称,那么对称轴是对应点连线的垂直平分线.(如图)
八年级数学上册期末复习提纲
几何表达式举例:
(1)∵ΔABC、ΔEGF关于MN轴对称
∴ΔABC≌ΔEGF
(2)∵ΔABC、ΔEGF关于MN轴对称∴OA=OEMN⊥AE

人教版八年级数学上册教案


老师工作中的一部分是写教案课件,大家在仔细设想教案课件了。写好教案课件工作计划,我们的工作会变得更加顺利!你们知道适合教案课件的范文有哪些呢?下面是由小编为大家整理的“人教版八年级数学上册教案”,欢迎大家与身边的朋友分享吧!

12.3.1.1等腰三角形(一)
教学目标
1.等腰三角形的概念.2.等腰三角形的性质.3.等腰三角形的概念及性质的应用.
教学重点:1.等腰三角形的概念及性质.2.等腰三角形性质的应用.
教学难点:等腰三角形三线合一的性质的理解及其应用.
教学过程
Ⅰ.提出问题,创设情境
在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,并且能够作出一个简单平面图形关于某一直线的轴对称图形,还能够通过轴对称变换来设计一些美丽的图案.这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形.来研究:①三角形是轴对称图形吗?②什么样的三角形是轴对称图形?
有的三角形是轴对称图形,有的三角形不是.
问题:那什么样的三角形是轴对称图形?
满足轴对称的条件的三角形就是轴对称图形,也就是将三角形沿某一条直线对折后两部分能够完全重合的就是轴对称图形.
我们这节课就来认识一种成轴对称图形的三角形──等腰三角形.
Ⅱ.导入新课:要求学生通过自己的思考来做一个等腰三角形.
作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连结AB、BC、CA,则可得到一个等腰三角形.
等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角.
思考:
1.等腰三角形是轴对称图形吗?请找出它的对称轴.
2.等腰三角形的两底角有什么关系?
3.顶角的平分线所在的直线是等腰三角形的对称轴吗?
4.底边上的中线所在的直线是等腰三角形的对称轴吗?底边上的高所在的直线呢?
结论:等腰三角形是轴对称图形.它的对称轴是顶角的平分线所在的直线.因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线.
要求学生把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系.
沿等腰三角形的顶角的平分线对折,发现它两旁的部分互相重合,由此可知这个等腰三角形的两个底角相等,而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高.
由此可以得到等腰三角形的性质:
1.等腰三角形的两个底角相等(简写成“等边对等角”).
2.等腰三角形的顶角平分线,底边上的中线、底边上的高互相重合(通常称作“三线合一”).
由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质.同学们现在就动手来写出这些证明过程).
如右图,在△ABC中,AB=AC,作底边BC的中线AD,因为
所以△BAD≌△CAD(SSS).
所以∠B=∠C.
]如右图,在△ABC中,AB=AC,作顶角∠BAC的角平分线AD,因为
所以△BAD≌△CAD.
所以BD=CD,∠BDA=∠CDA=∠BDC=90°.
[例1]如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,
求:△ABC各角的度数.
分析:根据等边对等角的性质,我们可以得到
∠A=∠ABD,∠ABC=∠C=∠BDC,
再由∠BDC=∠A+∠ABD,就可得到∠ABC=∠C=∠BDC=2∠A.
再由三角形内角和为180°,就可求出△ABC的三个内角.
把∠A设为x的话,那么∠ABC、∠C都可以用x来表示,这样过程就更简捷.
解:因为AB=AC,BD=BC=AD,
所以∠ABC=∠C=∠BDC.
∠A=∠ABD(等边对等角).
设∠A=x,则∠BDC=∠A+∠ABD=2x,
从而∠ABC=∠C=∠BDC=2x.
于是在△ABC中,有
∠A+∠ABC+∠C=x+2x+2x=180°,
解得x=36°.在△ABC中,∠A=35°,∠ABC=∠C=72°.
[师]下面我们通过练习来巩固这节课所学的知识.
Ⅲ.随堂练习:1.课本P51练习1、2、3.2.阅读课本P49~P51,然后小结.
Ⅳ.课时小结
这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用.等腰三角形是轴对称图形,它的两个底角相等(等边对等角),等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高.
我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们.
Ⅴ.作业:课本P56习题12.3第1、2、3、4题.
板书设计
12.3.1.1等腰三角形
一、设计方案作出一个等腰三角形
二、等腰三角形性质:1.等边对等角2.三线合一
12.3.1.1等腰三角形(二)
教学目标
1、理解并掌握等腰三角形的判定定理及推论
2、能利用其性质与判定证明线段或角的相等关系.
教学重点:等腰三角形的判定定理及推论的运用
教学难点:正确区分等腰三角形的判定与性质,能够利用等腰三角形的判定定理证明线段的相等关系.
教学过程:
一、复习等腰三角形的性质
二、新授:
I提出问题,创设情境
出示投影片.某地质专家为估测一条东西流向河流的宽度,选择河流北岸上一棵树(B点)为B标,然后在这棵树的正南方(南岸A点抽一小旗作标志)沿南偏东60°方向走一段距离到C处时,测得∠ACB为30°,这时,地质专家测得AC的长度就可知河流宽度.
学生们很想知道,这样估测河流宽度的根据是什么?带着这个问题,引导学生学习“等腰三角形的判定”.
II引入新课
1.由性质定理的题设和结论的变化,引出研究的内容——在△ABC中,苦∠B=∠C,则AB=AC吗?
作一个两个角相等的三角形,然后观察两等角所对的边有什么关系?
2.引导学生根据图形,写出已知、求证.
2、小结,通过论证,这个命题是真命题,即“等腰三角形的判定定理”(板书定理名称).
强调此定理是在一个三角形中把角的相等关系转化成边的相等关系的重要依据,类似于性质定理可简称“等角对等边”.
4.引导学生说出引例中地质专家的测量方法的根据.
III例题与练习
1.如图2
其中△ABC是等腰三角形的是[]
2.①如图3,已知△ABC中,AB=AC.∠A=36°,则∠C______(根据什么?).
②如图4,已知△ABC中,∠A=36°,∠C=72°,△ABC是______三角形(根据什么?).
③若已知∠A=36°,∠C=72°,BD平分∠ABC交AC于D,判断图5中等腰三角形有______.
④若已知AD=4cm,则BC______cm.
3.以问题形式引出推论l______.
4.以问题形式引出推论2______.
例:如果三角形一个外角的平分线平行于三角形的一边,求证这个三角形是等腰三角形.
分析:引导学生根据题意作出图形,写出已知、求证,并分析证明.
练习:5.(l)如图6,在△ABC中,AB=AC,∠ABC、∠ACB的平分线相交于点F,过F作DE//BC,交AB于点D,交AC于E.问图中哪些三角形是等腰三角形?
(2)上题中,若去掉条件AB=AC,其他条件不变,图6中还有等腰三角形吗?
练习:P53练习1、2、3。
IV课堂小结
1.判定一个三角形是等腰三角形有几种方法?
2.判定一个三角形是等边三角形有几种方法?
3.等腰三角形的性质定理与判定定理有何关系?
4.现在证明线段相等问题,一般应从几方面考虑?
V布置作业:P56页习题12.3第5、6题
12.3.2等边三角形(一)
教学目的
1.使学生熟练地运用等腰三角形的性质求等腰三角形内角的角度。
2.熟识等边三角形的性质及判定.
2.通过例题教学,帮助学生总结代数法求几何角度,线段长度的方法。
教学重点:等腰三角形的性质及其应用。
教学难点:简洁的逻辑推理。
教学过程
一、复习巩固
1.叙述等腰三角形的性质,它是怎么得到的?
等腰三角形的两个底角相等,也可以简称“等边对等角”。把等腰三角形对折,折叠两部分是互相重合的,即AB与AC重合,点B与点C重合,线段BD与CD也重合,所以∠B=∠C。
等腰三角形的顶角平分线,底边上的中线和底边上的高线互相重合,简称“三线合一”。由于AD为等腰三角形的对称轴,所以BD=CD,AD为底边上的中线;∠BAD=∠CAD,AD为顶角平分线,∠ADB=∠ADC=90°,AD又为底边上的高,因此“三线合一”。
2.若等腰三角形的两边长为3和4,则其周长为多少?
二、新课
在等腰三角形中,有一种特殊的情况,就是底边与腰相等,这时,三角形三边都相等。我们把三条边都相等的三角形叫做等边三角形。
等边三角形具有什么性质呢?
1.请同学们画一个等边三角形,用量角器量出各个内角的度数,并提出猜想。
2.你能否用已知的知识,通过推理得到你的猜想是正确的?
等边三角形是特殊的等腰三角形,由等腰三角形等边对等角的性质得到∠A=∠B=C,又由∠A+∠B+∠C=180°,从而推出∠A=∠B=∠C=60°。
3.上面的条件和结论如何叙述?
等边三角形的各角都相等,并且每一个角都等于60°。
等边三角形是轴对称图形吗?如果是,有几条对称轴?
等边三角形也称为正三角形。
例1.在△ABC中,AB=AC,D是BC边上的中点,∠B=30°,求∠1和∠ADC的度数。
分析:由AB=AC,D为BC的中点,可知AB为BC底边上的中线,由“三线合一”可知AD是△ABC的顶角平分线,底边上的高,从而∠ADC=90°,∠l=∠BAC,由于∠C=∠B=30°,∠BAC可求,所以∠1可求。
问题1:本题若将D是BC边上的中点这一条件改为AD为等腰三角形顶角平分线或底边BC上的高线,其它条件不变,计算的结果是否一样?
问题2:求∠1是否还有其它方法?
三、练习巩固
1.判断下列命题,对的打“√”,错的打“×”。
a.等腰三角形的角平分线,中线和高互相重合()
b.有一个角是60°的等腰三角形,其它两个内角也为60°()
2.如图(2),在△ABC中,已知AB=AC,AD为∠BAC的平分线,且∠2=25°,求∠ADB和∠B的度数。
3.P54练习1、2。
四、小结
由等腰三角形的性质可以推出等边三角形的各角相等,且都为60°。“三线合一”性质在实际应用中,只要推出其中一个结论成立,其他两个结论一样成立,所以关键是寻找其中一个结论成立的条件。
五、作业:1.课本P57第7,9题。
2、补充:如图(3),△ABC是等边三角形,BD、CE是中线,求∠CBD,∠BOE,∠BOC,∠EOD的度数。
12.3.2等边三角形(二)
教学目标
1.掌握等边三角形的性质和判定方法.2.培养分析问题、解决问题的能力.
教学重点:等边三角形的性质和判定方法.
教学难点:等边三角形性质的应用
教学过程
I创设情境,提出问题
回顾上节课讲过的等边三角形的有关知识
1.等边三角形是轴对称图形,它有三条对称轴.
2.等边三角形每一个角相等,都等于60°
3.三个角都相等的三角形是等边三角形.
4.有一个角是60°的等腰三角形是等边三角形.
其中1、2是等边三角形的性质;3、4的等边三角形的判断方法.
II例题与练习
1.△ABC是等边三角形,以下三种方法分别得到的△ADE都是等边三角形吗,为什么?
①在边AB、AC上分别截取AD=AE.
②作∠ADE=60°,D、E分别在边AB、AC上.
③过边AB上D点作DE∥BC,交边AC于E点.
2.已知:如右图,P、Q是△ABC的边BC上的两点,,并且PB=PQ=QC=AP=AQ.求∠BAC的大小.
分析:由已知显然可知三角形APQ是等边三角形,每个角都是60°.又知△APB与△AQC都是等腰三角形,两底角相等,由三角形外角性质即可推得∠PAB=30°.
3.P56页练习1、2
III课堂小结:1.等腰三角形和性质;等腰三角形的条件
V布置作业:1.P58页习题12.3第ll题.
2.已知等边△ABC,求平面内一点P,满足A,B,C,P四点中的任意三点连线都构成等腰三角形.这样的点有多少个?
12.3.2等边三角形(三)
教学过程
一、复习等腰三角形的判定与性质
二、新授:
1.等边三角形的性质:三边相等;三角都是60°;三边上的中线、高、角平分线相等
2.等边三角形的判定:
三个角都相等的三角形是等边三角形;有一个角是60°的等腰三角形是等边三角形;
在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半
注意:推论1是判定一个三角形为等边三角形的一个重要方法.推论2说明在等腰三角形中,只要有一个角是600,不论这个角是顶角还是底角,就可以判定这个三角形是等边三角形。推论3反映的是直角三角形中边与角之间的关系.
3.由学生解答课本148页的例子;
4.补充:已知如图所示,在△ABC中,BD是AC边上的中线,DB⊥BC于B,
∠ABC=120o,求证:AB=2BC
分析由已知条件可得∠ABD=30o,如能构造有一个锐角是30o的直角三角形,斜边是AB,30o角所对的边是与BC相等的线段,问题就得到解决了.
B

文章来源://m.jab88.com/j/52301.html

更多

猜你喜欢

更多

最新更新

更多