§2.1.2椭圆的简单几何性质2
【学情分析】:
学生对于解析几何部分“利用方程来解决曲线公共点的问题”有一定的认识,对椭圆的性质比较熟悉的情况下,进一步提高学生的运算水平。
【三维目标】:
1、知识与技能:
①进一步掌握“利用方程组求解来解决曲线公共点”的方法、步骤。
②理解求公共点的过程中△对于公共点的个数的影响。
③进一步提高学生的运算能力,培养学生的总结能力。
2、过程与方法:
通过学生研究直线与椭圆的交点问题,掌握“数形结合”的方法。
3、情感态度与价值观:
通过“数形结合法”的学习,培养学生辨证看待问题。
【教学重点】:
知识与技能③
【教学难点】:
知识与技能①②
【课前准备】:
课件
【教学过程设计】:
教学环节教学活动设计意图
一、复习、引入1、在平面直角坐标系中,求出直线与的交点坐标。(3,2)
2、引入。在平面直角坐标系中,两条曲线的公共点问题,可以转化为解方程组问题。今天,我们就重点学习直线与椭圆的公共点问题。1、通过练习由学生回味解析几何中解决问题的方法。为引入做铺垫。
二、例题、练习
1、请画出一个椭圆和一条直线,你能否讲出直线与椭圆有哪几种位置关系?(没有公共点——相离;有且只有一个公共点——相切;有两个公共点——相交)
例1、已知椭圆
(1)判断直线与椭圆是否有公共点,若有公共点,请求出公共点的坐标。
(2)判断与椭圆是否有公共点,若有公共点,请求出公共点的坐标。
(3)判断与椭圆是否有公共点,若有公共点,请求出公共点的坐标。
分析:联立椭圆与直线的方程,组成方程组,若方程组有解,则有公共点,方程组的解就是公共点的坐标。注意体会在解方程组过程中,解的个数怎样判断?
1、通过图形,先让学生对直线与椭圆的位置关系有一个直观上的认识。
2、通过例题的三种情况,使学生在求公共点的坐标过程里,体会求解过程的相同之处、不同之处。
3、尽可能地让学生自己发现在求解过程当中△的用法。
三、小节
本节课主要学习了直线与椭圆的三种位置关系:
1、相交2、相切3、相离
解析几何中,求直线与椭圆的公共点问题,可以转化为求解方程组的问题。若只是判断有没有公共点,有多少个公共点,可以不求出公共点的坐标,通过△来判断。
一般情况下,△0,有两个公共点;
△=0,有且只有一个公共点;
△0,没有公共点;尽可能地引导学生,由学生总结出规律来。
四、作业书本P428
五、补充训练1求直线与椭圆的焦点坐标。(答略)
2、经过椭圆+=1的右焦点做倾斜角为135°的直线,与椭圆相交于A,B两点,则=
3、直线l过点M(1,1),与椭圆+=1相交于A、B两点,若AB的中点为M,试求直线l的方程.
()
4、斜率为1的直线l与椭圆+y2=1相交于A、B两点,则|AB|的最大值为(B)
A.2B.
C.D.
5、已知(4,2)是直线l被椭圆=1所截得的线段的中点,则l的方程是_____
6、,为椭圆的两个焦点,过的直线交椭圆于两点P、Q,且,求椭圆的离心率。
()
提高学生解决综合题目的能力。
经验告诉我们,成功是留给有准备的人。高中教师在教学前就要准备好教案,做好充分的准备。教案可以让学生更好地进入课堂环境中来,帮助高中教师更好的完成实现教学目标。关于好的高中教案要怎么样去写呢?下面是由小编为大家整理的“§2.1.2椭圆的简单几何性质1”,希望能对您有所帮助,请收藏。
§2.1.2椭圆的简单几何性质1俗话说,居安思危,思则有备,有备无患。高中教师要准备好教案,这是老师职责的一部分。教案可以让学生们能够更好的找到学习的乐趣,帮助高中教师提高自己的教学质量。您知道高中教案应该要怎么下笔吗?小编为此仔细地整理了以下内容《椭圆的几何性质》,欢迎您阅读和收藏,并分享给身边的朋友!
2.2.2椭圆的几何性质(一)
教学目标:(1)掌握椭圆的范围,对称性,顶点,离心率。
(2)掌握标准方程中a,b,c,e的几何意义,以及之间的相互关系.
(3)通过椭圆标准方程的讨论,使学生理解在解析几何中是怎样用代数方法研究几何问题的。
重点:掌握椭圆的几何性质
难点:椭圆的几何性质的探究以及a,b,c,e关系
一.问题情境
二.数学探究
问题1:观察椭圆的形状,你能从图上看出它的范围吗?它
具有怎样的对称性?椭圆上哪些点比较特殊?
1.范围:
2.椭圆的对称性:
3.椭圆的顶点坐标:
三.数学应用
例1:已知椭圆方程为,回答下列问题,并用描点法画出图形
它的长轴长是:。短轴长是:。
焦距是:。
焦点坐标是:。
顶点坐标是:。
问题2:圆的形状都是相同的,而椭圆却有些比较“扁”,有些比较“圆”,用什么样的量来刻画椭圆“扁”的程度呢?
4.椭圆的离心率:
练习:下列各组椭圆中,哪一个更接近于圆?
例2.若椭圆+=1的离心率为0.5,求k的值。
巩固练习:
1.椭圆方程上点P(x,y)的横坐标的范围为
2.若点P(2,4)在椭圆上,下列是椭圆上的点有
(1)P(-2,4)(2)P(-4,2)(3)P(-2,-4)(4)P(2,-4)
3.中心在原点,焦点在x轴上,长轴、短轴的长分别为8和6的椭圆方程为
4.说出椭圆的长轴长,短轴长,离心率,顶点和焦点坐标。
5.若椭圆的两个焦点把长轴分成三等分,则其离心率为
问题探究:.若椭圆的两个焦点F1,F2及一个短轴端点B1构成正三角形,求其离心率。
变式1:若是等边三角形?
点击高考:
(2008江苏12)在平面直坐标系中,椭圆的焦距为2。以O为圆心,a为半径作圆,过点作圆的两切线互相垂直,则离心率e=______
课外练习:
1.根据下列条件,求出椭圆的标准方程
(1)中心在原点,一个焦点坐标为(0,5),短轴长为4。
(2)对称轴都在坐标轴上,长半轴长为10,离心率是0.6。
(3)已知椭圆的中心在原点,焦点在坐标轴上,长轴是短轴的三倍,且椭圆经过点P(3,0)
(4)中心在原点,焦点在x轴上,右焦点到短轴端点的距离为2,到右顶点的距离为1。
2.、若椭圆的焦距长等于它的短轴长,则其离心率为。
3、已知椭圆过点(3,-2),离心率为,求a,b的值
文章来源://m.jab88.com/j/49853.html
更多