七年级下册数学知识点:二元一次方程组
每个老师需要在上课前弄好自己的教案课件,到写教案课件的时候了。教案课件工作计划写好了之后,才能使接下来的工作更加有序!你们到底知道多少优秀的教案课件呢?下面是小编帮大家编辑的《七年级下册数学知识点:二元一次方程组》,希望能对您有所帮助,请收藏。
七年级下册数学知识点:二元一次方程组
一、目标与要求
1.认识二元一次方程和二元一次方程组。
2.了解二元一次方程和二元一次方程组的解,会求二元一次方程的正整数解。
3.会用代入法解二元一次方程组。
4.初步体会解二元一次方程组的基本思想――“消元”。
5.通过研究解决问题的方法,培养学生合作交流意识与探究精神。
6.使学生会借助二元一次方程组解决简单的实际问题,让学生再次体会二元一次方程组与现实生活的联系和作用。
7.通过应用题教学使学生进一步使用代数中的方程去反映现实世界中等量关系,体会代数方法的优越性。
二、重点
用代入消元法解二元一次方程组;
理解二元一次方程组的解的意义。
三、难点
求二元一次方程的正整数解;
探索如何用代入法将“二元”转化为“一元”的消元过程。
四、结构图
五、知识点、概念总结
1.二元一次方程:含有两个未知数,并且未知数的指数都是1,像这样的方程叫做二元一次方程,一般形式是ax+by=c(a≠0,b≠0)。
如果一个方程含有两个未知数,并且所含未知项都为1次方,那么这个整式方程就叫做二元一次方程,有无穷个解,若加条件限定有有限个解。二元一次方程组,则一般有一个解,有时没有解,有时有无数个解。
2.二元一次方程组:把两个二元一次方程合在一起,就组成了一个二元一次方程组。
3.二元一次方程的解:一般地,使二元一次方程两边的值相等的未知数的值叫做二元一次方程组的解。
4.二元一次方程组的解:一般地,二元一次方程组的两个方程的公共解叫做二元一次方程组。
5.消元:将未知数的个数由多化少,逐一解决的想法,叫做消元思想。
归纳:基本思路:“消元”——把“二元”变为“一元”。
6.代入消元:将一个未知数用含有另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做代入消元法,简称代入法。
7.加减消元法:当两个方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,这种方法叫做加减消元法,简称加减法。
8.教科书中没有的几种解法
(1)加减-代入混合使用的方法:
特点:两方程相加减,单个x或单个y,这样就适用接下来的代入消元。
(2)换元法
特点:两方程中都含有相同的代数式,换元后可简化方程也是主要原因。
(3)设参数法
9.列方程(组)解应用题步骤:
(1)审题。理解题意。弄清问题中已知量是什么,未知量是什么,问题给出和涉及的相等关系是什么。
(2)设元(未知数)。
①直接未知数②间接未知数(往往二者兼用)。一般来说,未知数越多,方程越易列,但越难解。
(3)用含未知数的代数式表示相关的量。
(4)寻找相等关系(有的由题目给出,有的由该问题所涉及的等量关系给出),列方程。一般地,未知数个数与方程个数是相同的。
(5)解方程及检验。
(6)答案。
综上所述,列方程(组)解应用题实质是先把实际问题转化为数学问题(设元、列方程),在由数学问题的解决而导致实际问题的解决(列方程、写出答案)。在这个过程中,列方程起着承前启后的作用。因此,列方程是解应用题的关键。
10.三元一次方程组:如果方程组中含有三个未知数,且含有未知数的项的次数都是一次,这样的方程组叫做三元一次方程组。举例如下:
11.三元一次方程组解法:
主要的解法就是加减消元法和代入消元法,通常采用加减消元法,若方程难解就用代入消元法,因题而异。
12.简单的三元一次方程组的解法步骤:
(1)思路:解三元一次方程组的基本思想仍是消元,其基本方法是代入法和加减法。
(2)步骤:①利用代入法或加减法,消去一个未知数,得出一个二元一次方程组;
②解这个二元一次方程组,求得两个未知数的值;
③将这两个未知数的值代入原方程中较简单的一个方程,求出第三个未知数的值,把这三个数写在一起的就是所求的三元一次方程组的解。
灵活运用加减消元法,代入消元法解简单的三元一次方程组。
精选阅读
七年级上册数学二元一次方程组
每个老师不可缺少的课件是教案课件,大家在认真写教案课件了。只有写好教案课件计划,未来工作才会更有干劲!你们知道适合教案课件的范文有哪些呢?以下是小编为大家精心整理的“七年级上册数学二元一次方程组”,希望能为您提供更多的参考。
第28讲二元一次方程组
方法运用
1.如果,那么=_____________.
2.如图,周长为34的长方形ABCD被分成7个大小完全一样的小长方形,则每个小长方形的面积_____________.
3.解方程组:
⑴⑵
4.已知y=kx+b,若x=4时,y=15;x=7时,y=24,求当x=-2时,y的值是多少?
5.已知y=x2+px+q,当x=1时,y的值为2;当x=-2时,y的值为2;求当x=-3时,y的值.
6.关于x、y方程组中x,y相等,求k的值.
7.已知方程组的解x、y互为相反数,求方程组的解.
8.在解关于x、y方程组可以用⑴×2+⑵消去未知数x;也可以用⑴+⑵×5消去未知数,求m、n的值.
9.已知(xyz≠0),求x:y:z的值.
10.若4x-3y-6z=0,x+2y-7z=0(xyz≠0),求式子的值.
11.张阿姨要把若干个苹果分给小朋友们吃,若每人2个,则多1个;若每人3个,则缺2个,苹果有_________个,小朋友有__________个.
12.小明和小亮做数字游戏:他们各写一个两位数,先将小明写的两位数减去小亮写的两位数,得到的差是一个一位数;再将他们写的两位数相加,得到一个三位数.在这个三位数后面添写上面得到的差就得到一个四位数为1482.小明、小亮各写的是子什么数?
13.某人装修房屋,原预算25000元.装修时因材料费下降了20%,工资涨了10%,实际用去了21500元.求原来材料费及工资各是多少元?
14.一列匀速行驶的火车通过一座160米的铁路桥用了30秒,而它以同样的速度穿过一段200米长的隧道用了35秒,求这列火车的速度和长度?
综合思考
15.天兴洲大桥的护栏由两种金属材料建成,规格为30米和60米.某公司承建了1200米路段的工程,要求每种规格的材料多于10根,已知建成后30米规格的材料每根可盈利8000元,60米规格的材料每根可盈利15000元.若设30米规格的材料用x根,60米规格的材料用y根.
⑴用含y的式子表示x;
⑵该公司共有多少种承建方案?
⑶哪种方案的盈利较大?
16.建设国家森林城市,园林部门决定搭配A、B两种园艺造型共50个摆放在市区,现有3490盆甲种花卉和2950盆乙种花卉可供使用,已知搭配一个A种造型需甲种花卉80盆,乙种花卉40盆.搭配一个B种造型需甲种花卉50盆,乙种花卉90盆.
⑴问符合题意的搭配方案有几种?请你帮助设计出来.
⑵若搭配一个A种造型的费用是800元,搭配一个B种造型的费用是960元,试说明⑴中哪种方案费用最低?最低费用是多少元?
17.要运送一批货物,若用3台大货车各运7次,结果还有12件货物未运送完;若9台小货车各运4次,结果刚好运送完,已知每台大货车比每台小货车一次多运送3件货物.
⑴求这批货物共有多少件?
⑵已知每台大货车每次的运送费用为60元,每台小货车每次的运送费用为40元,若要想两次将所有货物运送完(每台货车都运送2次,每次都是满载货物),问如何租用这两种货车,才合算呢?
18.如图,MN∥ST,直线PQ交MN,ST分别于A、B两点,AC平分∠MAB交ST于C,∠ACB=400.
⑴求∠ABT的度数;
⑵直线PQ上是否存在点D,使∠ACB=2∠ACD?若存在,求∠ADC的度数;若不存在,请说明理由.
⑶E为∠MAC的平分线上一动点,连接BE,∠CBE的平分线BF交AC于F,当点E在运动过程中,2∠AFB-∠AEB的度数是否变化?若不变,求其值;若变化,求出变化范围.
七年级下册《二元一次方程组》教案
七年级下册《二元一次方程组》教案
教学目标:
1.认识二元一次方程和二元一次方程组.
2.了解二元一次方程和二元一次方程组的解,会求二元一次方程的正整数解.
教学重点:
理解二元一次方程组的解的意义.
教学难点:
求二元一次方程的正整数解.
教学过程:
篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分.负一场得1分,某队为了争取较好的名次,想在全部22场比赛中得到40分,那么这个队胜负场数分别是多少?
思考:
这个问题中包含了哪些必须同时满足的条件?设胜的场数是x,负的场数是y,你能用方程把这些条件表示出来吗?
由问题知道,题中包含两个必须同时满足的条件:
胜的场数+负的场数=总场数,
胜场积分+负场积分=总积分.
这两个条件可以用方程
x+y=22
2x+y=40
表示.
上面两个方程中,每个方程都含有两个未知数(x和y),并且未知数的指数都是1,像这样的方程叫做二元一次方程.
把两个方程合在一起,写成
《二元一次方程组》教案nx+y=22
2x+y=40
像这样,把两个二元一次方程合在一起,就组成了一个二元一次方程组.
探究:
满足方程①,且符合问题的实际意义的x、y的值有哪些?把它们填入表中.
x
上表中哪对x、y的值还满足方程②
一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.
二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.
例1(1)方程(a+2)x+(b-1)y=3是二元一次方程,试求a、b的取值范围.
(2)方程x∣a∣–1+(a-2)y=2是二元一次方程,试求a的值.
例2若方程x2m–1+5y3n–2=7是二元一次方程.求m、n的值
例3已知下列三对值:
《二元一次方程组》教案n《二元一次方程组》教案n《二元一次方程组》教案nx=-6x=10x=10
y=-9y=-6y=-1
(1)《二元一次方程组》教案n《二元一次方程组》教案n哪几对数值使方程《二元一次方程组》教案nx-y=6的左、右两边的值相等?
(2)哪几对数值是方程组的解?
例4求二元一次方程3x+2y=19的正整数解.
课堂练习:
教科书第102页练习
习题8.11、2题
作业:
教科书第102页3、4、5题
评价与反思
1.概念课教学模式:本节课的主要内容是二元一次方程(组)的有关概念,设计时按照“实例研究,初步体会——比较分析,把握实质——归纳概括,形成定义——应用提高,发展能力”的思路进行,让学生体会到是因为“需要”而学习新知识,逐步渗透应用意识。
2.类比法的运用:二元一次方程及其解的意义类比一元一次方程学习,一方面加深学生对于方程中“元”与“次”的理解,另一方面易于理清一元一次方程与二元一次方程“解”的相关知识的异同,同时为二元一次方程组相关概念扫清障碍。
3.分层递进,循环上升:学生对知识的理解,教师对学生的要求,都是由低到高,逐步提升,题目的设计从单一知识点的直接运用,逐渐到多个知识点的灵活运用,给学生设计必要的台阶,使其一步步向前,最终达到教学目标。
解二元一次方程组
每个老师上课需要准备的东西是教案课件,规划教案课件的时刻悄悄来临了。此时就可以对教案课件的工作做个简单的计划,才能规范的完成工作!有没有出色的范文是关于教案课件的?下面是由小编为大家整理的“解二元一次方程组”,欢迎您阅读和收藏,并分享给身边的朋友!
第七章二元一次方程组总课时:8课时使用人:
备课时间:第九周上课时间:第十三周
第2课时:7、2解二元一次方程组(1)
教学目标
知识与技能:会用代入消元法解二元一次方程组.
过程与方法:了解“消元”思想,初步体会数学研究中“化未知为已知”的化归思想.
情感态度与价值观:让学生经历自主探索过程,化未知为已知,从中获得成功的体验,从而激发学生的学习兴趣.
教学重点
用代入消元法解二元一次方程组.
教学难点
在解题过程中体会“消元”思想和“化未知为已知”的化归思想.
教学准备:多媒体课件
教学过程:
第一环节:情境引入(5分钟,学生理解题意,小组讨论解决方案)
内容:
教师引导学生共同回忆上一节课讨论的“买门票”问题,想一想当时是怎么获得二元一次方程组的解的.
设他们中有x个成人,y个儿童,我们得到了方程组成人和儿童到底去了多少人呢?在上一节课的“做一做”中,我们通过检验是不是方程x+y=8和方程5x+3y=34的解,从而得知这个解既是x+y=8的解,也是5x+3y=34的解,根据二元一次方程组的解的定义,得出是方程组的解.所以成人和儿童分别去了5人和3人.
提出问题:每一个二元一次方程的解都有无数多个,而方程组的解是方程组中各个方程的公共解,前面的方法中却好我们找到了这个公共解,但如果数据不巧,这可没那么容易,那么,有什么方法可以获得任意一个二元一次方程组的解呢?
第二环节:探索新知(10分钟,教师引导学生分析方程中的数量关系,找到方法)
内容:回顾七年级第一学期学习的一元一次方程,是不是也曾碰到过类似的问题,能否利用一元一次方程求解该问题?(由学生独立思考解决,教师注意指导学生规范表达)
解:设去了x个成人,则去了(8-x)个儿童,根据题意,得:
5x+3(8-x)=34.
解得:x=5.
将x=5代入8-x=8-5=3.
答:去了5个成人,3个儿童.
在学生解决的基础上,引导学生进行比较:列二元一次方程组和列一元一次方程设未知数有何不同?列出的方程和方程组又有何联系?对你解二元一次方程组有何启示?
(先让学生独立思考,然后在学生充分思考的前提下,进行小组讨论,在此基础上由学生代表回答,老师适时地引导与补充,力求通过学生观察、思考与讨论后能得出以下的一些要点.)
1.列二元一次方程组设有两个未知数:x个成人,y个儿童.列一元一次方程只设了一个未知数:x个成人,儿童去的个数通过去的总人数与去的成人数相比较,得出(8-x)个.因此y应该等于(8-x).而由二元一次方程组的一个方程x+y=8,根据等式的性质可以推出y=8-x.
2.发现一元一次方程中5x+3(8-x)=34与方程组中的第二个方程5x+3y=34相类似,只需把5x+3y=34中的“y”用“(8-x)”代替就转化成了一元一次方程.
教师引导学生发现了新旧知识之间的联系,便可寻求到解决新问题的方法——即将新知识(二元一次方程组)转化为旧知识(一元一次方程)便可.
(由学生来回答)上一节课我们就已知道方程组中相同的字母表示的是同一个未知量.所以将中的①变形,得y=8-x③,我们把y=8-x代入方程②,即将②中的y用(8-x)代替,这样就有5x+3(8-x)=34.“二元”化成“一元”.
教师总结:同学们很善于思考.这就是我们在数学研究中经常用到的“化未知为已知”的化归思想,通过它使问题得到完美解决.下面我们完整地解一下这个二元一次方程组.
(教师把解答的详细过程板书在黑板上,并要求学生一起来完成)
解:
由①得:.③
将③代入②得:
.
解得:.
把代入③得:.
所以原方程组的解为:
(提醒学生进行检验,即把求出的解代入原方程组,必然使原方程组中的每个方程都同时成立,如不成立,则可知解有问题)
下面我们试着用这种方法来解答上一节的“谁的包裹多”的问题.
(放手让学生用已经获取的经验去解决新的问题,由学生自己完成,让两个学生在黑板上规范的板书,教师巡视:发现学生的闪光点以及存在的问题并适时的加以辅导,以期学生在解答的过程中领会“代入消元法”的真实含义和“化归”的数学思想.)
第三环节:巩固新知(10分钟,教师演示,学生理解、识记)
内容:
1例解下列方程组:
(1)(2)
(根据学生的情况可以选择学生自己完成或教师指导完成)
(1)解:将②代入①,得:.
解得:.
把代入②,得:.
所以原方程组的解为:
(2)由②,得:.③
将③代入①,得:.
解得:.
将y=2代入③,得:.
所以原方程组的解是
(⑵题需先进行恒等变形,教师要鼓励学生通过自主探索与交流获得求解,在求解过程中学生消元的具体方法可能不同,所以教学中不必强求解答过程的统一,但要提出如何选择将哪个方程恒等变形、消去哪个未知数能使运算较为简单.让学生在解题中进行思考)
(教师在解完后要引导学生再次就解出的结果进行思考,判断它们是否是原方程组的解.促使学生进一步理解方程组解的含义以及学会检验方程组解的方法.)
2思考总结:(教师根据学生的实际情况进行生与生、师与生之间的相互补充与评价,并提出下面的问题)
⑴给这种解方程组的方法取个什么名字好?
⑵上面解方程组的基本思路是什么?
⑶主要步骤有哪些?
⑷我们观察例题的解法会发现,我们在解方程组之前,首先要观察方程组中未知数的特点,尽可能地选择变形后的方程较简单和代入后化简比较容易的方程变形,这是关键的一步.你认为选择未知数有何特点的方程变形好呢?
(由学生分组讨论,教师深入参与到学生讨论中,发现学生在自主探索、讨论过程中的独特想法,请学生小组的代表回答或学生举手回答,其余学生可以补充,力求让学生能够回答出以下的要点,教师要板书要点,在学生回答时注意进行积极评价)
1.在解上面两个二元一次方程组时,我们都是将其中的一个方程变形,即用含其中一个未知数的代数式表示另一个未知数,然后代入另一个未变形的方程,从而由“二元”转化为“一元”,达到消元的目的.我们将这种方法叫代入消元法.
2.解二元一次方程组的基本思路是消元,把“二元”变为“一元”.
3.解上述方程组的步骤:
第一步:在已知方程组的两个方程中选择一个适当的方程,将它的某个未知数用含有另一个未知数的代数式表示出来.
第二步:把此代数式代入没有变形的另一个方程中,可得一个一元一次方程.
第三步:解这个一元一次方程,得到一个未知数的值.
第四步:把求得的未知数的值代回到原方程组中的任意一个方程或变形后的方程(一般代入变形后的方程),求得另一个未知数的值.
第五步:把方程组的解表示出来.
第六步:检验(口算或笔算在草稿纸上进行),即把求得的解代入每一个方程看是否成立.
4.用代入消元法解二元一次方程组时,尽量选取一个未知数的系数的绝对值是1的方程进行变形;若未知数的系数的绝对值都不是1,则选取系数的绝对值较小的方程变形.
第四环节:练习提高(10分钟,学生独立完成,教师个别指导,全班交流)
内容:
1.教材随堂练习(在随堂练习中,可以鼓励学生通过自主探索与交流,各个学生消元的具体方法可能不同,可以不必强调解答过程统一.可能会出现整体代换的思想,若有条件可以提出,为下一课做点铺垫也可以)
2.补充练习:用代入消元法解下列方程组:
(1)(2)⑶(注意分数线有括号功能)
第五环节:课堂小结(5分钟,教师引导学生总结解方程的方法)
内容:师生相互交流总结解二元一次方程组的基本思路是“消元”,即把“二元”变为“一元”;解二元一次方程组的第一种解法——代入消元法,其主要步骤是:将其中的一个方程中的某个未知数用含有另一个未知数的代数式表示出来,并代入另一个方程中,从而消去一个未知数,化二元一次方程组为一元一次方程.解这个一元一次方程,便可得到一个未知数的值,再将所求未知数的值代入变形后的方程,便求出了一对未知数的值.即求得了方程组的解.
第六环节:布置作业习题7.2A组(优等生)1、2
B组(中等生)1
C组(后三分之一生)1
教学反思
文章来源://m.jab88.com/j/31474.html
更多猜你喜欢
更多-
七年级上册数学二元一次方程组 每个老师不可缺少的课件是教案课件,大家在认真写教案课件了。只有写好教案课件计划,未来工作才会更有干劲!你们知道适合教案课件的范文有哪些呢?以下是小编为大家精心整理的“七年级上册数学二元一次方程组”,希望能为您提供更多的参考。第28讲二元一次方程组方法运用1.如果,那么=_____________.2... - 七年级下册《二元一次方程组》教案 七年级下册《二元一次方程组》教案 教学目标: 1.认识二元一次方程和二元一次方程组. 2.了解二元一次方程和二元一次方程组的解,会求二元一次方程的正整数解. 教学重点: 理解二元一次方程组的解的意义.... 一元二次方程高中教案 10-06
- 解二元一次方程组 每个老师上课需要准备的东西是教案课件,规划教案课件的时刻悄悄来临了。此时就可以对教案课件的工作做个简单的计划,才能规范的完成工作!有没有出色的范文是关于教案课件的?下面是由小编为大家整理的“解二元一次方程组”,欢迎您阅读和收藏,并分享给身边的朋友!第七章二元一次方程组总课时:8课时使用人:备课时间:... 一元二次方程高中教案 12-08
- 8.1二元一次方程组 8.1二元一次方程组 教学目标1、弄懂二元一次方程、二元一次方程组和它们的解的含义,并会检验一对数是不是某个二元一次方程组的解; 2、学会用类比的方法迁移知识;体验二元一次方程组在处理实际问题中的优越... 一元二次方程高中教案 11-12
最新更新
更多-
小学语文二年级教学实录——教学实录——《画杨桃》 作为大家敬仰的人民教师,要对每一堂课认真负责。为了不消耗上课时间,就需要有一份完整的教学计划。这样可以有效的提高课堂的教学效率,你们有没有写过一份完整的教学计划?请您阅读小编辑为您编辑整理的《小学语文二年级教学实录——教学实录——《画杨桃》》,仅供参考,希望可以帮助到您。第一课时师:以前我给你们上过... - 《荆轲刺秦王》教案 一名优秀的教师在教学方面无论做什么事都有计划和准备,教师要准备好教案,这是老师职责的一部分。教案可以让学生们充分体会到学习的快乐,帮助授课经验少的教师教学。那么怎么才能写出优秀的教案呢?下面是小编精心为您整理的“《荆轲刺秦王》教案”,相信能对大家有所帮助。《荆轲刺秦王》教案教学目标:1、知识与能力:... 高中教案教案 10-19
- 人是什么(第一课时) 一名优秀负责的教师就要对每一位学生尽职尽责,高中教师要准备好教案,这是教师工作中的一部分。教案可以让学生们能够更好的找到学习的乐趣,帮助高中教师在教学期间更好的掌握节奏。那么如何写好我们的高中教案呢?小编经过搜集和处理,为您提供人是什么,仅供参考,大家一起来看看吧。2人是什么●说课从课文的标题上看,... 高中安全第一课教案 10-19
- 《涉江采芙蓉》教案 俗话说,磨刀不误砍柴工。高中教师在教学前就要准备好教案,做好充分的准备。教案可以让讲的知识能够轻松被学生吸收,使高中教师有一个简单易懂的教学思路。高中教案的内容要写些什么更好呢?为了让您在使用时更加简单方便,下面是小编整理的“《涉江采芙蓉》教案”,欢迎您参考,希望对您有所助益!《涉江采芙蓉》教案1、... 高中教案教案 10-19
- 高一语文旅夜书怀导学案 一名优秀负责的教师就要对每一位学生尽职尽责,高中教师要准备好教案,这是教师工作中的一部分。教案可以让学生们能够更好的找到学习的乐趣,帮助高中教师在教学期间更好的掌握节奏。那么如何写好我们的高中教案呢?小编经过搜集和处理,为您提供高一语文旅夜书怀导学案,仅供参考,大家一起来看看吧。旅夜书怀教学目标:1... 高中语文必修一教案 10-19
- 七年级数学二元一次方程组说课稿
- 11 路旁的橡树 教案教学设计 相信很多老师都希望自己的课堂上同学们能够积极的与自己互动。为此老师就需要在上课前准备好教案,以此来提高课堂的教学质量。从而在课堂上与学生更好的交流,你知道怎样才制作一份学生爱听的教案吗?以下是小编收集整理的“11 路旁的橡树 教案教学设计”,仅供您在工作和学习中参考。11路旁的橡树第一课时教学目标:... 小学语文的教学教案 10-19
- 七年级上册数学知识点:一元一次方程
- 七年级下册《中位数》学案 一般给学生们上课之前,老师就早早地准备好了教案课件,大家静下心来写教案课件了。只有规划好教案课件计划,才能更好地安排接下来的工作!哪些范文是适合教案课件?下面是小编帮大家编辑的《七年级下册《中位数》学案》,欢迎您参考,希望对您有所助益!七年级下册《中位数》学案教学目标1.认识中位数,并会求出一组数据... 小学五年级教案 10-19
- 丰富的图形世界学案 作为老师的任务写教案课件是少不了的,是认真规划好自己教案课件的时候了。只有规划好了教案课件新的工作计划,新的工作才会如鱼得水!你们清楚有哪些教案课件范文呢?以下是小编为大家收集的“丰富的图形世界学案”供大家借鉴和使用,希望大家分享!第一课时§1.1生活中的立体图形一、学习目标:1、通过观察生活中的大... 高中世界地理教案 10-19
- 画杨桃 作为大家敬仰的人民教师,要对每一堂课认真负责。即使每天晚上一两点都要坚持制定出一份最详细的教学计划。这样可以让同学们很容易的听懂所讲的内容,那吗编写一份教案应该注意那些问题呢?以下是小编收集整理的“画杨桃”,仅供参考,希望可以帮助到您。教学目标:1.学会本课14个生字,能正确读写叮嘱、准确、一幅画、... 小学语文微课教案 10-19
