88教案网

余弦函数的图像与性质教案(2)

一名优秀的教师在教学时都会提前最好准备,作为高中教师就需要提前准备好适合自己的教案。教案可以让学生们充分体会到学习的快乐,使高中教师有一个简单易懂的教学思路。那么怎么才能写出优秀的高中教案呢?急您所急,小编为朋友们了收集和编辑了“余弦函数的图像与性质教案(2)”,欢迎大家阅读,希望对大家有所帮助。

§6余弦函数的图像与性质
一、教学思路
【创设情境,揭示课题】
在上一次课中,我们知道正弦函数y=sinx的图像,是通过等分单位圆、平移正弦线而得到的,在精确度要求不高时,可以采用五点作图法得到。那么,对于余弦函数y=cosx的图像是不是也是这样得到的呢?有没有更好的方法呢?
【探究新知】
1.余弦函数y=cosx的图像
由诱导公式有:
与正弦函数关系∵y=cosx=cos(-x)=sin[-(-x)]=sin(x+)
结论:(1)y=cosx,xR与函数y=sin(x+)xR的图象相同
(2)将y=sinx的图象向左平移即得y=cosx的图象
(3)也同样可用五点法作图:y=cosxx[0,2]的五个点关键是(0,1)(,0)(,-1)(,0)(2,1)

(4)类似地,由于终边相同的三角函数性质y=cosxx[2k,2(k+1)]kZ,k0的图像与y=cosxx[0,2]图像形状相同只是位置不同(向左右每次平移2π个单位长度)

2.余弦函数y=cosx的性质
观察上图可以得到余弦函数y=cosx有以下性质:
(1)定义域:y=cosx的定义域为R
(2)值域:y=cosx的值域为[-1,1],即有|cosx|≤1(有界性)
(3)最值:1对于y=cosx当且仅当x=2k,kZ时ymax=1
当且仅当时x=2k+π,kZ时ymin=-1
2当2k-x2k+(kZ)时y=cosx0
当2k+x2k+(kZ)时y=cosx0
(4)周期性:y=cosx的最小正周期为2
(5)奇偶性
cos(-x)=cosx(x∈R)y=cosx(x∈R)是偶函数
(6)单调性
增区间为[(2k-1)π,2kπ](k∈Z),其值从-1增至1;
减区间为[2kπ,(2k+1)π](k∈Z),其值从1减至-1。
【巩固深化,发展思维】
1.例题讲评
例1.请画出函数y=cosx-1的简图,并根据图像讨论函数的性质。
解:(略,见教材P31-32)
2.课堂练习
二、归纳整理,整体认识
(1)请学生回顾本节课所学过的知识内容有哪些?所涉及的主要数学思想方法有那些?
(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。
(3)你在这节课中的表现怎样?你的体会是什么?
三、布置作业:
四、课后反思

延伸阅读

余弦函数的性质与图像导学案


俗话说,居安思危,思则有备,有备无患。教师在教学前就要准备好教案,做好充分的准备。教案可以更好的帮助学生们打好基础,帮助教师掌握上课时的教学节奏。那么一篇好的教案要怎么才能写好呢?下面的内容是小编为大家整理的余弦函数的性质与图像导学案,供您参考,希望能够帮助到大家。

金台高级中学编写人:张梅
§6余弦函数的性质与图像
一.课前指导
学习目标
掌握余弦函数的周期和最小正周期,并能求出余弦函数的最小正周期。
掌握余弦函数的奇、偶性的判断,并能求出余弦函数的单调区间。并能求出余弦函数的最大最小值与值域、
学法指导
1.利用换元法转化为求二次函数等常见函数的值域.
2.将sin(-2x)化简为-cos2x,然后利用对数函数单调性及余弦函数的有界性求得最大值.
要点导读
1.从图象上可以看出,;,的最小正周期为;
2.一般结论:函数及函数,(其中为常数,且,)的周期T=;
函数及函数,的周期T=;
3.函数y=cosx是(奇或偶)函数函数y=sinx是(奇或偶)函数
4.正弦函数在每一个闭区间上都是增函数,其值从-1增大到1;
在每一个闭区间上都是减函数,其值从1减小到-1.
余弦函数在每一个闭区间上都是增函数,其值从-1增加到1;
在每一个闭区间上都是减函数,其值从1减小到-1.
5.y=sinx的对称轴为x=k∈Zy=cosx的对称轴为x=k∈Z
二.课堂导学
例1.已知x∈,若方程mcosx-1=cosx+m有解,试求参数m的取值范围.

例2.已知y=2cosx(0≤x≤2π)的图像和直线y=2围成一个封闭的平面图形,则这个封闭图形的面积是_________________.

例3.求下列函数值域:
(1)y=2cos2x+2cosx+1;(2)y=.

例4.已知0≤x≤,求函数y=cos2x-2acosx的最大值M(a)与最小值m(a).
点拔:利用换元法转化为求二次函数的最值问题.

例5求下列函数的定义域:
(1)y=lgsin(cosx);(2)=.

三、课后测评
一、选择题(每小题5分)
1.下列说法只不正确的是()
(A)正弦函数、余弦函数的定义域是R,值域是[-1,1];
(B)余弦函数当且仅当x=2kπ(k∈Z)时,取得最大值1;
(C)余弦函数在[2kπ+,2kπ+](k∈Z)上都是减函数;
(D)余弦函数在[2kπ-π,2kπ](k∈Z)上都是减函数
2.函数f(x)=sinx-|sinx|的值域为()
(A){0}(B)[-1,1](C)[0,1](D)[-2,0]
3.若a=sin460,b=cos460,c=cos360,则a、b、c的大小关系是()
(A)cab(B)abc(C)acb(D)bca
4.对于函数y=sin(π-x),下面说法中正确的是()
(A)函数是周期为π的奇函数(B)函数是周期为π的偶函数
(C)函数是周期为2π的奇函数(D)函数是周期为2π的偶函数
5.函数y=2cosx(0≤x≤2π)的图象和直线y=2围成一个封闭的平面图形,则这个封闭图形的面积是()
(A)4(B)8(C)2π(D)4π
*6.为了使函数y=sinωx(ω0)在区间[0,1]是至少出现50次最大值,则的最小值是()(A)98π(B)π(C)π(D)100π
二.填空题(每小题5分)
7.(2008江苏,1)f(x)=cos(x-)最小正周期为,其中>0,则=.
8.函数y=cos(sinx)的奇偶性是.
9.函数f(x)=lg(2sinx+1)+的定义域是;
10.关于x的方程cos2x+sinx-a=0有实数解,则实数a的最小值是.
三.解答题(每小题10分)
11..已知函数f(x)=,求它的定义域和值域,并判断它的奇偶性.

12.已知函数y=f(x)的定义域是[0,],求函数y=f(sin2x)的定义域.

13.已知函数f(x)=sin(2x+φ)为奇函数,求φ的值.

14.已知y=a-bcos3x的最大值为,最小值为,求实数a与b的值.

15求下列函数的值域:
(1)y=;
(2)y=sinx+cosx+sinxcosx;
(3)y=2cos+2cosx.
四、课后反思:通过本节课的学习你有哪些收获?

高一数学《余弦函数的图像与性质》教案


教案课件是每个老师工作中上课需要准备的东西,大家在认真准备自己的教案课件了吧。我们制定教案课件工作计划,可以更好完成工作任务!你们清楚教案课件的范文有哪些呢?小编特地为您收集整理“高一数学《余弦函数的图像与性质》教案”,欢迎您阅读和收藏,并分享给身边的朋友!

高一数学《余弦函数的图像与性质》教案

【学习目标】
1、从图像平移和描点法两个角度了解余弦函数的图像画法;
2、类比学习正弦函数的图像方法理解五点法画函数y=cosx,x∈[0,2π]的简图;
3、会利用余弦函数的图像研究其定义域、值域、周期性、最大(小)值、单调性、奇偶性、图像的对称性;
【学习重点】
五点法画余弦函数图象和余弦函数的性质
【学习难点】
余弦函数的性质性质的应用
【思想方法】
能从图形观察、分析得出结论,体会数形结合的思想方法
【学习过程】
一、预习自学(把握基础)
(阅读课本第31~33页“练习”以上部分的内容,类比正弦函数的图像和性质的研究方法,理解y=cosx,x∈[0,2π]的简图并归纳其性质)
1、余弦函数y=cosx,x411【导学案】余弦函数的图像与性质R,的图像的画法有和两种;
2、描点法画余弦曲线时的五个关键点是:
411【导学案】余弦函数的图像与性质
3、试结合余弦曲线理解归纳出余弦函数的性质:

二、合作探究(巩固深化,发展思维)
例1.用“五点法”画出下列函数的简图.
(1)y=-cosx,x411【导学案】余弦函数的图像与性质[0,2π](2)y=3cosx,x411【导学案】余弦函数的图像与性质[-π,π]
例2.画出函数y=cosx-1,x411【导学案】余弦函数的图像与性质R的简图,根据图像讨论函数的定义域、值域、周期性、最大(小)值、单调性、奇偶性、图像的对称性;

例3、请分别用单位圆和余弦函数图像求满足不等式411【导学案】余弦函数的图像与性质的x的集合。
三、学习体会
1、知识方法:
2、我的疑惑:
四、达标检测(相信自我,收获成功)
1.y=1+cosx,x411【导学案】余弦函数的图像与性质[0,2π]的图像与直线y=1的交点个数为
2、函数y=2-cosx,x411【导学案】余弦函数的图像与性质[0,2π]的值域为,增区间为
3、y=411【导学案】余弦函数的图像与性质的定义域为;
4、y=1+cosx的奇偶性是
5、411【导学案】余弦函数的图像与性质的递减区间是;
6.观察余弦曲线写出满足cosx<0的x的集合

正切函数的图像与性质


做好教案课件是老师上好课的前提,大家在用心的考虑自己的教案课件。在写好了教案课件计划后,才能更好的在接下来的工作轻装上阵!那么到底适合教案课件的范文有哪些?下面是小编帮大家编辑的《正切函数的图像与性质》,仅供参考,欢迎大家阅读。

正切函数的图像与性质
一、教学目标:
1、知识与技能
(1)了解任意角的正切函数概念;
(2)理解正切函数中的自变量取值范围;
(3)掌握正切线的画法;
(4)能用单位圆中的正切线画出正切函数的图像;
(5)熟练根据正切函数的图像推导出正切函数的性质;
(6)能熟练掌握正切函数的图像与性质;
(7)掌握利用数形结合思想分析问题、解决问题的技能。
2、过程与方法
类比正、余弦函数的概念,引入正切函数的概念;在此基础上,比较三个三角函数之间的关系;让学生通过类比,联系正弦函数图像的作法,通过单位圆中的有向线段得到正切函数的图像;能学以致用,结合图像分析得到正切函数的诱导公式和正切函数的性质。
3、情感态度与价值观
使同学们对正切函数的概念有一定的体会;会用联系的观点看问题,建立数形结合的思想,激发学习的学习积极性;培养学生分析问题、解决问题的能力;让学生体验自身探索成功的喜悦感,培养学生的自信心;培养学生形成实事求是的科学态度和锲而不舍的钻研精神。
二、教学重、难点
重点:正切函数的概念、诱导公式、图像与性质
难点:熟练运用诱导公式和性质分析问题、解决问题
三、学法与教学用具
我们已经知道正、余弦函数的概念是通过在单位圆中,以函数定义的形式给出来的,从而把锐角的正、余弦函数推广到任意角的情况;现在我们就应该与正、余弦函数的概念作比较,得出正切函数的概念;同样地,可以仿照正、余弦函数的诱导公式推出正切函数的诱导公式;通过单位圆中的正切线画出正切函数的图像,并从图像观察总结出正切函数的性质。
教学用具:投影机、三角板

第一课时正切函数的定义、图像及性质
一、教学思路
【创设情境,揭示课题】
常见的三角函数还有正切函数,在前两次课中,我们学习了任意角的正、余弦函数,并借助于它们的图像研究了它们的性质。今天我们类比正弦、余弦函数的学习方法,在直角坐标系内学习任意角的正切函数,请同学们先自主学习课本P35。
【探究新知】
1.正切函数的定义
在直角坐标系中,如果角α满足:α∈R,α≠+kπ(k∈Z),那么,角α的终边与单位圆交于点P(a,b),唯一确定比值.根据函数定义,比值是角α的函数,我们把它叫作角α的正切函数,记作y=tanα,其中α∈R,α≠+kπ,k∈Z.
比较正、余弦和正切的定义,不难看出:tanα=(α∈R,α≠+kπ,k∈Z).
由此可知,正弦、余弦、正切都是以角为自变量,以比值为函数值的函数,我们统称为三角函数。
下面,我们给出正切函数值的一种几何表示.
如右图,单位圆与x轴正半轴的交点为A(1,0),任意角α
的终边与单位圆交于点P,过点A(1,0)作x轴的垂线,与角
的终边或终边的延长线相交于T点。从图中可以看出:
当角α位于第一和第三象限时,T点位于x轴的上方;
当角α位于第二和第四象限时,T点位于x轴的下方。
分析可以得知,不论角α的终边在第几象限,都可以构造两
个相似三角形,使得角α的正切值与有向线段AT的值相等。因此,
我们称有向线段AT为角α的正切线。
2.正切函数的图象
(1)首先考虑定义域:
(2)为了研究方便,再考虑一下它的周期:
∴的周期为(最小正周期)
(3)因此我们可选择的区间作出它的图象。

根据正切函数的周期性,把上述图像向左、右扩展,得到正切函数,且的图像,称“正切曲线”

从上图可以看出,正切曲线是由被相互平行的直线x=+kπ(k∈Z)隔开的无穷多支曲线组成的,这些直线叫作正切曲线各支的渐近线。
3.正切函数y=tanx的性质
引导学生观察,共同获得:
(1)定义域:,
(2)值域:R
观察:当从小于,时,
当从大于,时,。
(3)周期性:
(4)奇偶性:奇函数。
(5)单调性:在开区间内,函数单调递增。
二、归纳整理,整体认识
(1)请学生回顾本节课所学过的知识内容有哪些?所涉及的主要数学思想方法有那些?
(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。
(3)你在这节课中的表现怎样?你的体会是什么?
三、课后反思

高二数学《正、余弦函数的图像和性质的应用》教案


高二数学《正、余弦函数的图像和性质的应用》教案

【学习目标】
1、学习利用正、余弦函数的图像和性质解决一些简单应用;
2、比较单位圆和图像法研究三角函数的性质时各自的特点;
3、进一步熟悉正、余弦函数的最值、单调性、奇偶性、图像的对称性的应用;
【学习重点】
正、余弦函数的图像和性质的简单应用
【学习难点】
运用函数观点和数形结合思想研究函数性质
【学习过程】
一、预习自学(把握基础)
(温习课本第18页、28页、31页、32页关于正、余弦函数的图像和性质的内容,解决下列内容)
1、角α终边和单位圆交于点P(u,v)时,sinα=;cosα=;
若P(x,y)是角α终边上一点,则sinα=;cosα=;
2、描点法画余弦曲线时的五个关键点是:

描点法画余弦曲线时的五个关键点是:

3、说说正、余弦函数的性质有哪些相同点和不同点?(画出表格比较)
二、合作探究(巩固深化,发展思维)
例1.书第24页A组第6题

例2.书第24页B组第4题
例3、书第35页B组第1题
三、达标检测(相信自我,收获成功)
1、函数y=2cosx,412【导学案】正、余弦函数的图像和性质的应用的增区间为;减区间为。
2、书第35页B组第2题(分cosx<0和cosx≥0两种情况化简解析式后画出图像)
(1)该函数图像为:
(2)定义域为;值域为;x=时,
函数最大值为;最小正周期为;奇偶性为;
(3)该函数图像的对称性是;
增区间为;
减区间为。
(4)函数在[-2π,2π]上的图像与直线y=-1的交点个数是。
四、学习体会
我的疑惑:

文章来源:http://m.jab88.com/j/27823.html

更多

最新更新

更多