数学必修2教案
1.2.2空间几何体的直观图
一、教学目标:
1、知识与技能:掌握斜二测画法画水平设置的平面图形的直观图。采用对比的方法了解在平行投影下画空间图形与在中心投影下画空间图形两种方法的各自特点。
2、过程与方法:学生观察和类比,利用斜二测画法画出空间几何体的直观图
3、情感态度与价值观:感受空间几何体,增强学生学习的积极性,同时体会对比在学习中的作用,提高学生的观察能力。
二、重点与难点:
重点:用斜二测画法画空间几何值的直观图。
难点:用斜二测画法画空间几何值的直观图。
三、课前学习:
用斜二测画法画空间几何值的直观图,从中能发现什么?
四、课中学习:
一)创设情景,揭示课题
1.我们都学过画画,这节课我们画一物体:圆柱。
2.学生画完后展示自己的结果并与同学交流,比较谁画的效果更好,思考怎样才能画好物体的直观图呢?这是我们这节主要学习的内容。
(二)研探新知
1.例1,用斜二测画法画水平放置的正六边形的直观图,由学生阅读理解,并思考斜二测画法的关键步骤,学生发表自己的见解,教师及时给予点评。
画水平放置的多边形的直观图的关键是确定多边形顶点的位置,因为多边形顶点的位置一旦确定,依次连结这些顶点就可画出多边形来,因此平面多边形水平放置时,直观图的画法可以归结为确定点的位置的画法。强调斜二测画法的步骤。
根据斜二测画法,画出水平放置的正五边形的直观图,让学生独立完成后,教师检查。
2.例2,用斜二测画法画水平放置的圆的直观图
教师引导学生与例1进行比较,与画水平放置的多边形的直观图一样,画水平放置的圆的直观图,也是要先画出一些有代表性的点,由于不能像多边那样直接以顶点为代表点,因此需要自己构造出一些点。
3.探求空间几何体的直观图的画法
(1)例3,用斜二测画法画长、宽、高分别是4cm、3cm、2cm的长方体ABCD-A’B’C’D’的直观图。
(2)投影出示几何体的三视图、课本P15图1.2-9,请说出三视图表示的几何体?并用斜二测画法画出它的直观图。教师组织学生思考,讨论和交流完成,教师巡视帮不懂的同学解疑,引导学生正确把握图形尺寸大小之间的关系。
4.平行投影与中心投影
投影出示课本P17图1.2-12,让学生观察比较概括在平行投影下画空间图形与在中心投影下画空间图形的各自特点。。
(三)巩固练习
课本P16练习1(1),2,3,4
五、课后反思
对这一节的收获是什么?有什么问题期待解决?
六、作业设计:。
课本P17练习第5题
课本P16,探究(1)(2)
扩展阅读
《空间几何体的三视图和直观图》教学反思
《空间几何体的三视图和直观图》教学反思
《空间几何体的三视图和直观图》这一节的内容,是在投影知识的基础上,学习空间几何体的三视图和直观图。投影时视图的基础,只有了解了投影,才能了解视图。投影一般分为中心投影和平行投影,它们是日常生活种最常见的两种投影,学生具有这方面的直接经验,结合具体的事例讲解这两种投影方式,学生很容易理解。
最开始拿到拿到教材时,我一直在想,三视图学生是不是很难弄懂,通过和组内其他老师的探讨,我在教学中,采取通过学生自己的亲身实践,动手作图来完成;我还充分利用教材思考栏目中提出的问题,让学生在动手实践的过程中学会三视图的作法,体会三视图的作用。再加上学生原有的基础,很圆满地完成了这一部分的教学,并且收到了良好的效果。
对于用斜二测画法来画几何体的直观图,实质是一种特殊的平行投影画法,对于学生来说,很陌生。通过对学生的了解,我发现,关键是大多数同学找不到点的位置。后来,通过习题的处理,让同学们明白,直观图的画法可以归结为确定点的位置的画法,在平面上确定点的位置,可以借助平面直角坐标系,确定点的坐标就可以确定点的位置。
另外,三视图和直观图是对空间几何体的整体刻画,要让学生通过三视图和直观图的结构,想象实物的形象,为今后学习立体几何的其他知识奠定基础。
高一数学教案:《空间几何体的直观图》教学设计
高一数学教案:《空间几何体的直观图》教学设计
一、教学目标
1.知识与技能
(1)掌握斜二测画法画水平设置的平面图形的直观图。
(2)采用对比的方法了解在平行投影下画空间图形与在中心投影下画空间图形两种方法的各自特点。
2.过程与方法
学生通过观察和类比,利用斜二测画法画出空间几何体的直观图。
3.情感态度与价值观
(1)提高空间想象力与直观感受。
(2)体会对比在学习中的作用。
(3)感受几何作图在生产活动中的应用。
二、教学重点、难点
重点、难点:用斜二测画法画空间几何值的直观图。
三、学法与教学用具
1.学法:学生通过作图感受图形直观感,并自然采用斜二测画法画空间几何体的过程。
2.教学用具:三角板、圆规
四、教学思路
(一)创设情景,揭示课题
1.我们都学过画画,这节课我们画一物体:圆柱
把实物圆柱放在讲台上让学生画。
2.学生画完后展示自己的结果并与同学交流,比较谁画的效果更好,思考怎样才能画好物体的直观图呢?这是我们这节主要学习的内容。
(二)研探新知
1.例1,用斜二测画法画水平放置的正六边形的直观图,由学生阅读理解,并思考斜二测画法的关键步骤,学生发表自己的见解,教师及时给予点评。
画水平放置的多边形的直观图的关键是确定多边形顶点的位置,因为多边形顶点的位置一旦确定,依次连结这些顶点就可画出多边形来,因此平面多边形水平放置时,直观图的画法可以归结为确定点的位置的画法。强调斜二测画法的步骤。
练习反馈
根据斜二测画法,画出水平放置的正五边形的直观图,让学生独立完成后,教师检查。
2.例2,用斜二测画法画水平放置的圆的直观图
教师引导学生与例1进行比较,与画水平放置的多边形的直观图一样,画水平放置的圆的直观图,也是要先画出一些有代表性的点,由于不能像多边那样直接以顶点为代表点,因此需要自己构造出一些点。
教师组织学生思考、讨论和交流,如何构造出需要的一些点,与学生共同完成例2并详细板书画法。
3.探求空间几何体的直观图的画法
(1)例3,用斜二测画法画长、宽、高分别是4cm、3cm、2cm的长方体ABCD-A’B’C’D’的直观图。
教师引导学生完成,要注意对每一步骤提出严格要求,让学生按部就班地画好每一步,不能敷衍了事。
(2)投影出示几何体的三视图、课本P15图1.2-9,请说出三视图表示的几何体?并用斜二测画法画出它的直观图。教师组织学生思考,讨论和交流完成,教师巡视帮不懂的同学解疑,引导学生正确把握图形尺寸大小之间的关系。
4.平行投影与中心投影
投影出示课本P17图1.2-12,让学生观察比较概括在平行投影下画空间图形与在中心投影下画空间图形的各自特点。
5.巩固练习,课本P16练习1(1),2,3,4
三、归纳整理
学生回顾斜二测画法的关键与步骤
四、作业
1.书画作业,课本P17 练习第5题
2.课外思考 课本P16,探究(1)(2)
高考数学(理科)一轮复习空间几何体、三视图和直观图学案
第八章立体几何
学案40空间几何体、三视图和直观图
导学目标:1.认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.2.能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图所表示的立体模型,并且会用斜二测画法画出它们的直观图.3.会用平行投影与中心投影两种方法画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式.4.会画某些建筑物的三视图与直观图.
自主梳理
1.多面体的结构特征
(1)棱柱的上下底面________,侧棱都________且____________,上底面和下底面是________的多边形.
(2)棱锥的底面是任意多边形,侧面是有一个________的三角形.
(3)棱台可由__________________的平面截棱锥得到,其上下底面的两个多边形________.
2.旋转体的结构特征
(1)圆柱可以由矩形绕其____________旋转得到.
(2)圆锥可以由直角三角形绕其__________________旋转得到.
(3)圆台可以由直角梯形绕__________________或等腰梯形绕上下底中点的连线旋转得到,也可由平行于圆锥底面的平面截圆锥得到.
(4)球可以由半圆或圆绕其________旋转得到.
3.空间几何体的三视图
空间几何体的三视图是用正投影得到,这种投影下与投影面平行的平面图形留下的影子与平面图形的形状和大小是完全相同的,三视图包括________、____________、________.
4.空间几何体的直观图
画空间几何体的直观图常用________画法,基本步骤是:
(1)在已知图形中取互相垂直的x轴、y轴,两轴相交于点O,画直观图时,把它们画成对应的x′轴、y′轴,两轴相交于点O′,且使∠x′O′y′=________.
(2)已知图形中平行于x轴、y轴的线段,在直观图中分别画成平行于__________的线段.
(3)已知图形中平行于x轴的线段,在直观图中保持原长度________,平行于y轴的线段,长度变为___________________.
(4)在已知图形中过O点作z轴垂直于xOy平面,在直观图中对应的z′轴也垂直于x′O′y′平面,已知图形中平行于z轴的线段,在直观图中仍平行于z′轴且长度________.
5.中心投影与平行投影
(1)平行投影的投影线互相平行,而中心投影的投影线相交于一点.
(2)从投影的角度看,三视图和用斜二测画法画出的直观图都是在平行投影下画出来的图形.
自我检测
1.如图,下列几何体各自的三视图中,有且仅有两个视图相同的是()
A.①②B.①③C.①④D.②④
2.(2011浙江)若某几何体的三视图如图所示,则这个几何体的直观图可以是()
3.(2011金华月考)将正三棱柱截去三个角(如图1所示),A,B,C分别是△GHI三边的中点,得到几何体如图2,则该几何体按图2所示方向的侧视图(或称左视图)为()
4.
(2010广东)如图,△ABC为正三角形,AA′∥BB′∥CC′,CC′⊥平面ABC且3AA′=32BB′=CC′=AB,则多面体ABC-A′B′C′的正视图(也称主视图)是()
5.(2011山东)如图是长和宽分别相等的两个矩形,给定下列三个命题:①存在三棱柱,其正(主)视图、俯视图如右图;②存在四棱柱,其正(主)视图、俯视图如右图;③存在圆柱,其正(主)视图、俯视图如右图.其中真命题的个数是()
A.3B.2C.1D.0
探究点一空间几何体的结构
例1给出下列命题:①棱柱的侧棱都相等,侧面都是全等的平行四边形;②用一个平面去截棱锥,棱锥底面与截面之间的部分是棱台;③若三棱锥的三条侧棱两两垂直,则其三个侧面也两两垂直;④若有两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱;⑤存在每个面都是直角三角形的四面体;⑥棱台的侧棱延长后交于一点.
其中正确命题的序号是________.
变式迁移1下列结论正确的是()
A.各个面都是三角形的几何体是三棱锥
B.以三角形的一条边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫圆锥
C.棱锥的侧棱长与底面多边形的边长相等,则此棱锥可能是六棱锥
D.圆锥的顶点与底面圆周上的任意一点的连线都是母线
探究点二空间几何体的三视图
例2(2009福建)如图,某几何体的正视图与侧视图都是边长为1的正方形,且体积为12,则该几何体的俯视图可以是()
变式迁移2(2011课标全国)在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图可以为()
探究点三直观图及斜二测画法
例3
用斜二测画法画一个水平放置的平面图形的直观图为如图所示的一个正方形,则原来的图形是()
变式迁移3一个平面四边形的斜二测画法的直观图是一个边长为a的正方形,则原平面四边形的面积等于()
A.24a2B.22a2C.22a2D.223a2
1.画几何体三视图的基本要求是:正视图与俯视图长对正;正视图与侧视图高平齐;侧视图与俯视图宽相等.
2.三视图的安排规则是:正视图与侧视图分别在左右两边,俯视图画在正视图的下方.
3.用斜二测画法画出的平面图形的直观图的面积S′与原平面图形的面积S之间的关系是S′=24S.
(满分:75分)
一、选择题(每小题5分,共25分)
1.一个棱柱是正四棱柱的条件是()
A.底面是正方形,有两个侧面是矩形
B.底面是正方形,有两个侧面垂直于底面
C.底面是菱形,具有一个顶点处的三条棱两两垂直
D.每个侧面都是全等矩形的四棱柱
2.(2011汕头月考)已知水平放置的△ABC的直观图△A′B′C′(斜二测画法)是边长为2a的正三角形,则原△ABC的面积为()
A.2a2B.32a2
C.62a2D.6a2
3.有一个正三棱柱,其三视图如图所示:
则其体积等于()
A.3cm3B.1cm3C.332cm3D.4cm3
4.(2011青岛模拟)如下图,一个简单空间几何体的三视图其正视图与侧视图都是边长为2的正三角形,其俯视图轮廓为正方形,则其体积是()
A.36B.423C.433D.83
5.(2011福州质检)某简单几何体的一条对角线长为a,在该几何体的正视图、侧视图与俯视图中,这条对角线的投影都是长为2的线段,则a等于()
A.2B.3C.1D.2
二、填空题(每小题4分,共12分)
6.(2010湖南)图中的三个直角三角形是一个体积为20cm3的几何体的三视图,则h=________cm.
7.已知正三角形ABC的边长为a,则△ABC的水平放置直观图△A′B′C′的面积为________.
8.(2011宜昌月考)棱长为a的正四面体ABCD的四个顶点均在一个球面上,则此球的半径R=________.
三、解答题(共38分)
9.(12分)画出下列几何体的三视图.
10.(12分)如图是一个几何体的正视图和俯视图.
(1)试判断该几何体是什么几何体;
(2)画出其侧视图,并求该平面图形的面积.
11.(14分)(2011石家庄月考)已知正三棱锥V-ABC的正视图和俯视图如图所示.
(1)画出该三棱锥的侧视图和直观图.
(2)求出侧视图的面积.
学案40空间几何体、三视图和直观图
自主梳理
1.(1)平行平行长度相等全等(2)公共顶点
(3)平行于棱锥底面相似2.(1)一边所在直线(2)一条直角边所在直线(3)垂直于底边的腰所在直线(4)直径3.正视图侧视图俯视图4.斜二测(1)45°(或135°)(2)x′轴、y′轴(3)不变原来的一半(4)不变
自我检测
1.D[在各自的三视图中①正方体的三个视图都相同;②圆锥有两个视图相同;③三棱台的三个视图都不同;④正四棱锥有两个视图相同.]
2.D[A,B的正视图不符合要求,C的俯视图显然不符合要求,答案选D.]
3.A[∵原几何体是正三棱柱,且AE在平面EG中,
∴在侧视图中,AE应为竖直的.]
4.D[由AA′∥BB′∥CC′及CC′⊥平面ABC,知BB′⊥平面ABC.又CC′=32BB′,且△ABC为正三角形,故正视图应为D中的图形.]
5.A[底面是等腰直角三角形的三棱柱,当它的一个矩形侧面放置在水平面上时,它的正视图和俯视图可以是全等的矩形,因此①正确;若长方体的高和宽相等,则存在满足题意的两个相等的矩形,因此②正确;当圆柱侧放时(即侧视图为圆时),它的正视图和俯视图可以是全等的矩形,因此③正确.]
课堂活动区
例1解题导引解决这种判断题的关键是:①准确理解棱柱、棱锥、棱台的概念;②正确运用平行、垂直的判定及性质定理进行判断,整体把握立体几何知识.
③④⑤⑥
解析
①错误,因为棱柱的底面不一定是正多边形,故侧面不一定都全等;②错误,必须用平行于底面的平面去截棱锥,才能得到棱台;③正确,因为三个侧面构成的三个平面的二面角都是直二面角;④正确,因为两个过相对侧棱的截面的交线平行于侧棱,又垂直于底面;⑤正确,如图所示,正方体AC1中的四棱锥C1—ABC,四个面都是直角三角形;⑥正确,由棱台的概念可知.因此,正确命题的序号是③④⑤⑥.
变式迁移1D[
A错误.如图所示,由两个结构相同的三棱锥叠放在一起构成的几何体,各面都是三角形,但它不是棱锥.
B错误.如下图,若△ABC不是直角三角形或是直角三角形,但旋转轴不是直角边,所得的几何体都不是圆锥.
C错误.若六棱锥的所有棱长都相等,则底面多边形是正六边形.由几何图形知,若以正六边形为底面,侧棱长必然要大于底面边长.D正确.]
例2解题导引三视图的正视图、侧视图、俯视图分别是从几何体的正前方、正左方、正上方观察几何体画出的轮廓线.解决此类问题的关键是弄清三视图“长、宽、高”的关系.
C[当俯视图为A中正方形时,几何体为边长为1的正方体,体积为1;当俯视图为B中圆时,几何体为底面半径为12,高为1的圆柱,体积为π4;当俯视图为C中三角形时,几何体为三棱柱,且底面为直角边长为1的等腰直角三角形,高为1,体积为12;当俯视图为D中扇形时,几何体为圆柱的14,且体积为π4.]
变式迁移2D[由几何体的正视图和俯视图可知,该几何体的底面为半圆和等腰三角形,其侧视图可以是一个由等腰三角形及底边上的高构成的平面图形,故应选D.]
例3解题导引本题是已知直观图,探求原平面图形,考查逆向思维能力.要熟悉运用斜二测画法画水平放置的直观图的基本规则,注意直观图中的线段、角与原图中的对应线段、角的关系.
A[按照斜二测画法的作图规则,对四个选项逐一验证,可知只有选项A符合题意.]
变式迁移3B[根据斜二测画法画平面图形的直观图的规则可知,在x轴上(或与x轴平行)的线段,其长度保持不变;在y轴上(或与y轴平行)的线段,其长度变为原来的一半,且∠x′O′y′=45°(或135°),所以,若设原平面图形的面积为S,则其直观图的面积为S′=1222S=24S.可以得出一个平面图形的面积S与它的直观图的面积S′之间的关系是S′=24S,本题中直观图的面积为a2,所以原平面四边形的面积S=a224=22a2.]
课后练习区
1.C
2.D[斜二测画法中原图面积与直观图面积之比为1∶24,则易知24S=34(2a)2,∴S=6a2.]
3.D[由给出的三视图可以得知该正三棱柱的高等于正视图和侧视图的高为3cm,若设该正三棱柱的底面边长为acm,则有32a=2,所以a=433,故该正三棱柱的体积为V=123243323=4(cm3).]
4.C[
由三视图知该几何体为一正四棱锥,记为S—ABCD,如图,其中AB=2,△SCD中CD上的高为2,即SE=2,设S在底面上的射影为O,在Rt△SOE中,SO=SE2-OE2,
∴SO=22-12=3.∴V=13SABCD×SO
=13×4×3=433.]
5.B[可以把该几何体形象为一长方体AC1,
设AC1=a,则由题意知A1C1=AB1=BC1=2,设长方体的长、宽、高分别为x、y、z,则x2+y2=2,y2+z2=2,z2+x2=2,三式相加得2(x2+y2+z2)=2a2=6.
∴a=3.]
6.4
解析由三视图可知该几何体是一个三棱锥,其底面是一个直角边长分别是5和6的直角三角形,几何体的高为h,则该几何体的体积V=131256h=20.
∴h=4.
7.616a2
解析如图
A′B′=AB=a,O′C′=12OC=34a,
过点C′作C′D′⊥A′B′于点D′,
则C′D′=22O′C′=68a,
所以S△A‘B’‘′=12A′B′C′D′=616a2.
8.64a
解析
如图所示,设正四面体ABCD内接于球O,由D点向底面ABC作垂线,垂足为H,连接AH,OA,
则可求得AH=33a,
DH=a2-33a2=6a3,
在Rt△AOH中,33a2+63a-R2=R2,
解得R=64a.
9.解图(1)中几何体的三视图如图①、②、③,图(2)中几何体的三视图如图④、⑤、⑥.
(6分)
(12分)
10.解(1)由该几何体的正视图及俯视图可知几何体是正六棱锥.(4分)
(2)侧视图(如图)
(6分)
其中AB=AC,AD⊥BC,且BC长是俯视图正六边形对边间的距离,即BC=3a,AD是正棱锥的高,AD=3a,所以侧视图的面积为S=12×3a×3a=32a2.
(12分)
11.解(1)如图.
(7分)
(2)根据三视图间的关系可得BC=23,
侧视图中VA为42-23×32×232=12=23,
∴S△VBC=12×23×23=6.(14分)
空间几何体
空间几何体习题课
一、学习目标
知识与技能:了解柱体,锥体,台体,球体的几何特征,会画三视图、直观图,能求表面积、体积。
过程与方法:通过旋转体的形成,掌握利用轴截面化空间问题为平面问题处理的方法。会画图、识图、用图。
情感态度与价值观:培养动手能力,空间想象能力,由欣赏图形的美到去发现美,创造美。
二、学习重、难点
学习重点:各空间几何体的特征,计算公式,空间图形的画法。
学习难点:空间想象能力的建立,空间图形的识别与应用。
三、使用说明及学法指导:结合空间几何体的定义,观察空间几何体的图形培养空间想象能力,熟记公式,灵活运用.
四、知识链接1.回忆柱体、锥体、台体、球体的几何特征。2.熟记表面积及体积的公式。
五、学习过程
题型一:基本概念问题
A例1:(1)下列说法不正确的是()
A:圆柱的侧面展开图是一个矩形B:圆锥的轴截面是一个等腰三角形C:直角三角形绕着它的一边旋转一周形成的曲面围成的几何体是圆锥D:圆台平行于底面的截面是圆面
(2)下列说法正确的是()A:棱柱的底面一定是平行四边形B:棱锥的底面一定是三角形C:棱锥被平面分成的两部分不可能都是棱锥D:棱柱被平面分成的两部分可以都是棱柱
题型二:三视图与直观图的问题
B例2:有一个几何体的三视图如下图所示,这个几何体应是一个()
A棱台B棱锥C棱柱D都不对
B例3:一个三角形在其直观图中对应一个边长为1正三角形,原三角形的面积为()
A.B.C.D.
题型三:有关表面积、体积的运算问题
B例4:已知各顶点都在一个球面上的正四柱高为4,体积为16,则这个球的表面积是()
ABC24D32
C例5:若正方体的棱长为,则以该正方体各个面的中心为顶点的凸多面体的体积()
(A)(B)(C)(D)
题型四:有关组合体问题
例6:已知某个几何体的三视图如下,根据图中标出的尺寸(单位:cm),可得这个几何体的体积是()
A.B.C.D.
六、达标训练
1、若一个几何体的三视图都是等腰三角形,则这个几何体可能是()
A.圆锥B.正四棱锥C.正三棱锥D.正三棱台
2、一个梯形采用斜二测画法作出其直观图,则其直观图的面积是原来梯形面积的()
A.倍B.倍C.倍D.倍
3、将一圆形纸片沿半径剪开为两个扇形,其圆心角之比为3∶4.再将它们卷成两个圆锥侧
面,则两圆锥体积之比为()
A.3∶4B.9∶16C.27∶64D.都不对
4、利用斜二测画法得到的
①三角形的直观图一定是三角形;②正方形的直观图一定是菱形;
③等腰梯形的直观图可以是平行四边形;④菱形的直观图一定是菱形.
以上结论正确的是()
A.①②B.①C.③④D.①②③④
5、有一个几何体的三视图如下图所示,这个几何体应是一个()
A棱台B棱锥C棱柱D都不对
6、如果一个几何体的三视图如图所示,主视图与左视图是边长为2的正三角形、俯视图轮廓为正方形,(单位长度:cm),则此几何体的侧面积是()
A.cmB.cm2
C.12cmD.14cm2
7、若圆锥的表面积为平方米,且它的侧面展开图是一个半圆,则这个圆锥的底面的直径为
8、将圆心角为,面积为的扇形,作为圆锥的侧面,求圆锥的表面积和体积
9、如图,在四边形中,,,,,,求四边形绕旋转一周所成几何体的表面积及体积
10、(如图)在底半径为2母线长为4的圆锥中内接一个高为的圆柱,求圆柱的表面积
七、小结与反思
【至理名言】没有学不会的知识,只有不会学的学生。
文章来源://m.jab88.com/j/17910.html
更多猜你喜欢
更多-
《空间几何体的三视图和直观图》教学反思 《空间几何体的三视图和直观图》教学反思 《空间几何体的三视图和直观图》这一节的内容,是在投影知识的基础上,学习空间几何体的三视图和直观图。投影时视图的基础,只有了解了投影,才能了解视图。投影一般分为中... - 高一数学教案:《空间几何体的直观图》教学设计 高一数学教案:《空间几何体的直观图》教学设计 一、教学目标 1.知识与技能 (1)掌握斜二测画法画水平设置的平面图形的直观图。 (2)采用对比的方法了解在平行投影下画空间图形与在中心投影下画空间图形两... 小学数学数学教案 08-14
- 高考数学(理科)一轮复习空间几何体、三视图和直观图学案 第八章立体几何 学案40空间几何体、三视图和直观图 导学目标:1.认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.2.能画出简单空间图形(长方体、球、圆柱、圆... 高中生物一轮复习教案 12-01
- 空间几何体 空间几何体习题课 一、学习目标 知识与技能:了解柱体,锥体,台体,球体的几何特征,会画三视图、直观图,能求表面积、体积。 过程与方法:通过旋转体的形成,掌握利用轴截面化空间问题为平面问题处理的方法。会... 小学几何教案 07-25
最新更新
更多-
《小小竹排画中游》语文教案 教学设计理念 江南风光旖旎,是我国的旅游胜地,课文教学采用孩子们感兴趣的“组织旅行团出游”的方式,让孩子们在一定的情境中了解江南、认读生字、感知图画、朗读课文。 教学目标: 1.认识12个生字。会写“... - 七年级语文上册《散步》教案设计 七年级语文上册《散步》教案设计 教学目标: 整体感知课文,理解文章所表达的思想感情。品味其中揣摩含义丰富的语句。 学习自主、合作、探究的学习方式,重在培养学生尊老爱幼、珍爱亲情、承担责任的情感。 (教... 小学语文五年级教案 09-22
- 七年级下册语文《我的老师》复习学案苏教版 七年级下册语文《我的老师》复习学案苏教版 一、原文 最使我难忘的,是我小学时候的女教师蔡芸芝先生。 现在回想起来,她那时有十八九岁。右嘴角边有榆饯大小一块黑痣。在我的记忆里,她是一个温柔、美丽的人。 ... 小学一年级语文的教案 09-22
- 高三数学教案:《空间几何体的结构特征》教学设计
- 《小小的船》第二课时教学设计 (一)教学目标: 1、认知目标: 学习尖、只2个生字,及新偏旁小字头。理解课文中蓝蓝、闪闪、弯弯等词语的意思。能用我看见的句式说话。 2、技能目标: 培养学生的想像力,学会正确流利地朗读课文和背诵课文... 小学语文的教学教案 09-22
- 七年级语文上册《狼》导学案 七年级语文上册《狼》导学案 学习目标: 1、掌握重要实词虚词(“之”“其”“以”)的用法和意义。 2、积累文言词汇。 3、能从文中认识狼贪婪、凶残和狡诈的本性,懂得对待象狼一样的恶人要敢于斗争、善于斗... 小学语文五年级教案 09-22
- 《爷爷和小树》教学设计3 预设教学目标: 1、认识爷、棵、到、给、穿、暖、冷、开、伞、热10 个生字,会写不、开、四、五4个字。认识一种笔画 和5个偏旁父、刂、冫、人、灬。 2、能通过观察两幅图,小组合作学习等理解课文内容,培... 小学教学教案 09-22
- 《平平搭积木》教材理解 关心他人是中华传统美德,黄香九岁能温席,孔融四岁会让梨,时时心中有他人。课文从儿童生活实际出发,采用诗歌的体裁,讲述平平用积木搭了四间房子,分别想给爷爷、奶奶、爸爸、妈妈和没有房子的人住,还要搭很多的... 幼儿园积木教案 09-22
- 第一章集合与简易逻辑1 第一章集合与简易逻辑第一教时教材:集合的概念目的:要求学生初步理解集合的概念,知道常用数集及其记法;初步了解集合的分类及性质。过程:一、引言:(实例)用到过的“正数的集合”、“负数的集合”如:2x-1... 高中安全第一课教案 09-22
- 空间几何体直观图【荐】
- 函数的概念导学案 1.2.1函数的概念导学案 课前预习学案 一、预习目标:了解函数的概念,并会计算一些简单函数的定义域。 二、预习内容: ⒈在一个变化的过程中,有两个变量x和y,如果给定了一个x值,相应地_______... 高中函数的应用教案 09-22
