88教案网

平行四边形的性质教案

平行四边形的性质教案八篇。

“平行四边形的性质教案”是一个非常有趣的主题想知道更多请阅读。教案课件是老师上课预先准备好的,而课件内容需要老师自己去设计完善。老师在上课时要按照教案课件来实施。欢迎您的到来希望我们的阅读体验能够吸引您并收藏我们的网站!

平行四边形的性质教案 篇1

平行四边形是初中阶段数学中一个非常重要且基础的几何形状。它的性质涉及到角度、边长和对角线等方面,了解这些性质对于解题和理解几何知识都有很大的帮助。在学习平行四边形的性质时,我们需要对其进行深入的了解和掌握。


平行四边形有两组对边分别平行且相等。这是平行四边形最基本的性质之一。因为四边形的对边平行,所以平行四边形的对角线相互等长。这也是平行四边形性质的重要特点之一。通过学习这些性质,我们可以更好地理解平行四边形的结构和特点,快速判断给定的图形是否为平行四边形。


平行四边形的对角线相互平分,并且对角线所分割出的两个三角形是全等的。这也是平行四边形的一个重要性质。利用这个性质,我们可以很容易地证明一个四边形是平行四边形,或者求解平行四边形的各种性质。


平行四边形的角是其性质中最为重要的一部分。平行四边形的任意一个内角与其相对的外角之和为180度。平行四边形的相对角是相等的,而临角互补。利用这些性质,我们可以对平行四边形进行更为深入的分析和求解。


在学习平行四边形的性质时,我们也需要注意运用这些性质进行相关的计算和证明。通过解决一些实际问题或者例题,我们可以更好地掌握平行四边形的性质,提高数学解题能力。


了解和掌握平行四边形的性质对于初中阶段学生来说是非常重要的。通过深入学习平行四边形的性质,我们可以更好地理解几何知识,并且提高数学解题的能力。希望每位学生都能够认真对待这一部分知识,从而在数学学习中取得更好的成绩。

平行四边形的性质教案 篇2

《平行四边形性质》的教学设计

一、教材分析

《平行四边形的性质》选自义务教育课程标准实验教科书《数学》(人教版)八年级下册第十九章第一节.本节课内容是学生在小学阶段初步了解特殊四边形以及学过《三角形》这章的基础上进行的,教材首先通过丰富的生活实例,让学生体会平行四边形,然后又观察归纳性质最后通过试一试做一做等栏目让学生主动参与、亲自动手操作,进一步拓展学生的思考与探索的空间,本节课的内容是全章的重点内容,学好本节内容可以为学好全章打下基础,这些性质是解决有关实际问题的重要工具。

二、教学目标

(1)知识与技能方面:学生掌握平行四边形的有关概念;探索平行四边形的性质,会运用平行四边形的性质解决有关问题;通过学生猜测结论,培养学生的猜想能力和观察能力;通过开放式教学,培养学生的创新能力和思维的灵活性。(2)过程与方法方面:培养学生提出问题的能力,并能在提出问题的基础上确定研究问题的基本方向及研究方法,渗透从特殊到一般的拓展研究策略,同时发展学生合情推理及有条理地表达能力。

(3)情感态度与价值观方面:培养学生善于发现,勇于探索的精神;让学生在探求知识的活动过程中体会成功的喜悦,从而增强其学好数学的信心。

三、教学流程设计

教学环节

(如:导入、讲授、复习、训练、实验、研讨、探究、评价、建构)

教师活动 学生活动

信息技术支持(资源、方法、手段等)

教学活动

一、设置情境,导入课题

提出问题:知识来源于生活,又服务于生活。我们经过校门时,是否注意到电动门的机械工作原理(教师用几何画板演示开关门的过程)演示多媒体

学生认真观察然后回答问题(1)图上有没有自己所熟悉的图形?是什么图形?(2)开关门的过程实质上是什么图形变化的过程?

(3)如何定义平行四边形?如何表示?

多媒体出示教师提出的问题(几何画板演示开关门的过程)

多媒体显示

电脑显示:用几何画板演示,教师拖动B点,改变平行四边形的形状、位置、大小。通过几何画板显示使学生形象直观的看到平行四边形的边与角的数据的变化,从而水到渠成的得出平行四边形的性质。(多媒体演示)

2.教师做好引导点拨,你从几何直观上能观察猜想到什么结论?请把你的结论说出来。

(鼓励学生互相讨论,大胆发言)

很好!同学们的观察很细致,也非常全面,下面我们来看一下这些结论中那些是已学过的,哪些是没有学过的。

3.水到渠成——得出平行四边形的性质

使学生经历观察—探索—发现—归纳—猜想,培养学生数学思维,从特殊到一般的猜想证明思路

1.学生根据出示的幻灯片,分组观察数据的变化,思考后进行交流,目的是培养学生分析概括数学材料的能力与数学语言表达能力。

(1)平行四边形的对边平行(2)平行四边形的对边相等(3)平行四边形的对角相等(4)平行四边形的对角 线互相平分(5)平行四边形的邻角互补

(6)平行四边形内外角的和均为360。(7)平行四边形具有不稳定性。学生自己写出“已知、求证”教师分析证题思路,而证明过程可由学生自己完成.教师可板书一种证明方法,规范书写完整的证明过程。以便培养学生规范书写证明过程的习惯

3.学生通过上述的探究过程进行总结新的结论 【结论】①平行四边形的对边相等.

②平行四边形的对角相等. ③平行四边形的对角线互相平分。

多媒体出示几何图形,用几何画板演示,教师拖动B点,改变平行四边形的形状、位置、大小。通让学生直观上去感知,并通过多媒体几何画板进行演示

平行四边形的性质教案 篇3

平行四边形是几何学中的一个重要概念,它具有独特的性质和特点。在本文中,我们将详细介绍平行四边形的性质,并通过图示和实例来展示这些性质是如何应用于实际问题中的。


让我们来看一下平行四边形的定义。平行四边形是一个四边形,它的对边是平行的。也就是说,平行四边形的两对对边分别平行,并且相互平等。这个定义非常简单,但是它却包含了很多重要的性质。


第一个性质是平行四边形的对角线互相平分。也就是说,平行四边形的对角线相交于一个点,并且这个点将对角线等分。这个性质使得我们可以很容易地计算平行四边形的对角线的长度,从而解决实际问题中的计算难题。


第二个性质是平行四边形的相对边是相等的。也就是说,平行四边形的对边长度相等。这个性质在解决实际问题中非常有用,因为它可以帮助我们简化计算,节省时间。


第三个性质是平行四边形的内角和为180度。这个性质可以通过平行四边形的对边互平行和同旁内角相等等性质来证明。这个性质在计算平行四边形的内角时非常有用,因为它可以帮助我们确保计算的正确性。


除了上述的性质之外,平行四边形还包含许多其他有趣的性质,比如它的内角和为360度,它的对角线长度满足勾股定理等。这些性质都是在解决实际问题中非常有用的工具,可以帮助我们更好地理解和运用平行四边形的概念。


让我们来看一个实际的例子,如何应用平行四边形的性质来解决一个几何问题。假设我们需要计算一个平行四边形的面积,我们可以利用它的高和底边长来计算。根据平行四边形的定义,它的面积等于底边长乘以高。通过这个简单的公式,我们就可以很快地计算出平行四边形的面积,而不需要进行繁琐的计算。


平行四边形是几何学中一个非常重要的概念,它具有许多独特的性质和特点。通过了解并掌握这些性质,我们可以更好地理解和运用平行四边形的概念,从而更好地解决各种实际问题。希望通过本文的介绍,读者能够对平行四边形有更深入的了解,并能够灵活地运用它的性质解决各种几何问题。

平行四边形的性质教案 篇4

18.1.1平行四边形的性质

上课时间:2014年3月26日星期三第二节上课教师:杜生渊 教学课题:平行四边形的性质(1)

教学目标:

知识与技能:探索并掌握平行四边形对边相等、对角相等的性质,利用性质进行简单的推理

和计算;

过程与方法:对问题的分析经历猜想——验证——说理的过程,培养学生敢于大胆猜测、动

手实践的好品质,提高分析和解决问题的能力;

情感态度与价值观:通过学生之间的合作与交流,培养学生在独立思考问题的基础上,能够

尊重与理解他人的意见,并学会与他人合作的能力。

教学重点:理解并掌握平行四边形对边相等、对角相等的性质。

教学难点:平行四边形对边相等、对角相等的性质的应用。教学方法:探究式教学。教学过程:

一、复习引入

1、什么样的图形是平行四边形?平行四边形ABCD记作____。

2、平行四边形的定义告诉我们平行四边形具有对边分别平行的性质。另外我们还知道,平行四边形具有不稳定性,那么除此之外,平行四边形的边、角之间会有什么关系呢?这就是我们这节课所要学习的内容。

二、新知学习

1、组织学生拿出提前准备好的平行四边形纸片,引导学生从它的边、角方面观察、猜测平行四边形边角之间的关系,并进行验证,把自己的结果更其他同学互相交流。教师巡视指导。

2、叫学生代表上台通过演示验证他们的猜想,把经验证正确的结果教师书写在黑板上。平行四边形的对边相等平行四边形的对角相等

3、该命题到底是否正确,下面我们就来证明。教师引导学生证明。已知:如图1四边形ABCD是平行四边形

求证:(1)AB=CDAD=BC(2)∠A=∠C∠B=∠D 证明:连接BD

∵ AD∥BC、AB∥CD∴ ∠1=∠2,∠3=∠4

又 BD是△ABD和△CDB的公共边,∴△ABD≌△CDB∴AB=CDAD=CB∠A=∠C

请同学们自己证明∠ABC=∠CDB

通过证明发现平行四边形除了对边平行以外,对边还相等,对角也相等。我们把它们当做平行四边形的性质,在以后的有关边、角的证明计算中可以直接应用。

三、新知应用

1、例1如图2,在ABCD中DE⊥AB,BF⊥CD垂足分别为E,F,求证:AE=CF证明:略

2、随堂练习

(1)如图3,在ABCD中,AB=5cm,BC4=cm 则ABCD的周长为___cm[实用文书网 weI508.coM]

(2)如图4所示,在ABCD中∠A+∠C=160,求∠A,∠B,∠C,∠D的度数。

四、小结:

通过本节课的学习,你有什么收获?你学会了什么?先叫个别学生总结,然后教师补充。

五、作业:课本第43页1,第49页1.板书设计:

18.1.1平行四边形的性质

1、平行四边形

平行四边形ABCD记作ABCDAD∥BC、AB∥CD

2、平行四边形的性质 性质

1、平行四边形的对边相等 性质

2、平行四边形的对角相等

3、平行四边形性质的证明 例1课本第42页例1,见小黑板。证明:略

平行四边形的性质教案 篇5

一、说教材

(一)教学内容:人教课标版数学第九册第四单元““平行四边形的面积计算”。

(二)教材分析:

平行四边形的面积计算教学是在学生掌握了平行四边形的特征以及长方形、正方形面积计算的基础上进行的,它同时又是进一步学习三角形面积、梯形面积和组合图形面积计算的基础。教材以平行四边形的面积计算为重点,先用数方格方法计算图形的面积,帮助学生进一步理解面积和面积单位的含义,为推导平行四边形的面积计算公式提供感性材料。再是通过割补实验,把一个平行四边形转化为一个与它面积相等的长方形,把新旧知识联系起来,使学生明确图形之间的内在联系,便于从已经学过的图形面积计算公式推导出新的图形面积计算公式,使学生明确面积计算公式的意义和。在引导学生动手操作的基础上,初步培养学生的空间想象力和思维能力。

几何初步知识的教学是培养学生抽象概括能力、思维能力和发展空间观念的重要途径。本节教学中向学生渗透了平移旋转的思想,为将来学习图形的变换积累一些感性认识。

(三)学生分析:

学生已经掌握了平行四边形的特征和长方形面积的计算方法。这些都为本节课的学习奠定了坚实的知识基础。但是小学生的空间想象力不够丰富,对平行四边形面积计算公式的推导有一定的困难。因此本节课的学习就要让学生充分利用好已有知识,调动他们多种感官全面参与新知的发生发展和形成过程。

(四)教学目标预设:

结合本节课所学知识特点和学生的思维特点现拟定如下目标:

1.知识与技能:通过长方形面积计算知识迁移,理解平行四边形面积的计算公式,并能正确计算平行四边形面积。

2.过程与方法:在比一比、动一动中发展空间观念;在看一看、想一想中初步感知等积转化的思想方法,提高解决问题的能力。

3.情感态度与价值观:通过活动,激发学习兴趣,培养探索的精神,感受数学与生活的密切联系。

(五)教学重点、难点及关键点剖析:

通过实践理论实践来突破掌握平行四边形面积计算的重点。利用知识迁移及剪、移、拼的实际操作来分解教学难点平行四边形面积公式的推导。关键是平行四边形与长方形的等积转化问题的理解,通过“剪、移、拼”找出平行四边形底和高与长方形长和宽的关系,及面积始终不变的特点,归纳出长方形等积转化成平行四边形。

(六)教具、学具准备:

多媒体、平行四边形,学生准备任意大小的平行四边形纸片、三角板、剪刀。

二、说教法、学法

(一)设计理念:

《数学课程标准》提出了重视学生学习过程的全新理念,学生是学习的主人,新课程要求遵循学生学习数学的心理规律,强调从学生已有的生活经验出发,让学生亲身经历知识的形成过程。要充分发挥学生的主观能动性,让学生参与知识发生发展的全过程。教师在课堂教学中应尝试采取多种手段引导每一个学生积极主动地参与学习过程。

(二)说教法

本节课教法上最大的特点是通过电脑演示及学生动手操作,把静态知识转化成动态,把抽象数学知识变为具体可操作的规律性知识。教师指导学生理论联系实际,开展讨论,使他们自主、快乐地解决问题。

在本节课中,应力图体现出学生学习方法的转变:从被动接受学习变为在自主、探究、合作中学习。让学生根据提出的问题,自己想办法解决,并能以小组为单位共同合作完成;让学生亲身体验知识的形成过程,促进学生思维的发展。

在导入部分采用了创设生活情境,设疑引入的方法来激发学生的学习兴趣,这为充分发挥学生主体作用奠定了基础。

在探究过程中,重视电脑演示及学生动手操作的学习方式,大胆放手,给学生时间和空间,让他们在熟悉的具体情境中,通过探究和体验,感受,构建,扩展,超越新知。

(三)说学法

坚持“发展为本”,促进学生个性发展,并在时间和空间诸方面为学生提供发展的充分条件,以培养学生的实践能力、探索能力和创新精神为目标。在教学过程中,注意引导学生怎样有序观察、怎样操作、怎样概括结论,通过一系列活动,培养学生动手、动口、动脑的能力,使学生的观察能力、操作能力、抽象概括能力逐步提高,教会学生学习。使学生通过自己的努力有所感受,有所感悟,有所发现,有所创新。

小学生学习的数学应该是生活中的数学,是学生“自己的数学”。让学生在生活情境中“寻”数学,在实践操作中“做”数学,在现实生活中“用”数学。

“学以致用”是学习的出发点和归宿点,也是学习数学的终结所在。让学生感到数学的有趣和可学,我们还应注重将数学知识提升应用到生活中,提高学生处理问题的实际能力,让学生真正做到会学习、会创造、会生活的一代新人,让数学课堂真正成为学生活动的、创造的课堂。

三、说教学过程

为了更好地完成本节课的教学任务,突出重点,突破难点,抓住关键,教学过程分为以下几个教学环节:

(一)创设情境,设疑引入

(1)我们以前学过哪些平面图形?在这些图形中你会计算哪些图形的面积?接着出示长方形和平行四边形图,这两个图形谁大谁小呢?要知道它们谁大谁小,就是要知道什么?你用的是什么方法?(揭示出数方格法和长方形,正方形的面积公式)。

(2)继续出示方格图

问:这两个图形面积相等吗?学生边数方格边填写书上的表格,然后观察讨论,你发现了什么?

这样设计,由生活中的问题很自然地把学生带入新知的学习环节,使学生完成了学习新知的心理准备――成为一名探索者,为充分发挥学生主体作用奠定了基础。

(二)操作探索,推导公式

①实践操作

你能将平行四边形转化成我们以前学过的图形来计算面积吗?要鼓励学生多角度思考问题,再通过合作交流,能想出各种方法将平行四边形转化成长方形。

学生动手进行转化,将学生转化的图形进行展示。

教师展示,进行转化方法的正误辨别。指出应沿着高来剪,再进行移动。

让学生通过动手操作拓展了学生思维的空间,这样不仅强化平移转化方法在实际中的`应用,也大大提高了学生运用已有知识解决实际问题的能力,注重了知识的获得过程。

②归纳方法

提问:

(1)转化成的长方形与平行四边形面积相等吗?

(2)长方形的长和宽与平行四边形的底和高有什么关系?

(3)根据长方形的面积公式,怎样求平行四边形的面积?

教师根据学生回答,进行板书。追问:字母怎样表示?

在这个环节中主要采用了动手操作、自主探索和合作交流的学习方式,通过动手操作、探索,充分发挥学生学习的主体,培养学生探索精神,使学生获得战胜困难,探索成功的体验,从而产生学习数学的兴趣,建立学习数学的信心。这样做完全把学生当作学习的主体,体现了活动化的数学学习过程,有效地提高了课堂教学效率与质量。

(三)巩固练习,应用深化

1. 出示例1

根据学生解答,老师板书。

2.完成练习十五第一题

生独立完成,集体订正

3.练习十五第二题,你会计算下面图形的面积吗?

要计算平行四边形的面积必须要知道哪些条件?学生动手画高,并量出底和高的长度,然后计算出面积.

在这一环节的学习中,学生对于平行四边形的面积公式的应用的掌握程度,教师可以得到很好的了解,从而在练习课的教学中有针对性的进行练习。

四、预设效果

这节课的设计,给学生充足的眼看、手做、耳听、嘴说、脑想的时间和空间,学生在实践中理解新知,并尽可能地从多角度来验证结论,这使学生求异思维和创新能力得到最大限度的训练。培养了学生动手操作能力,逻辑思维能力,使学生掌握学法,为学习提供一把释疑解难的钥匙。

平行四边形的性质教案 篇6

平行四边形的性质教学设计

郭成秀

教材分析:

学习这一节的根底知识是平行线性质、全等三角形和四边形,课堂上可引导学生回想有关知识.平行四边形的定义在小学里学过,学生是不陌生的,但关于概念的实质属性的了解并不深入,所以这里并不是温习稳固的成绩,而是要加深了解,要避免学生把平行四边形概念当作已知,而不注重对它的实质属性的掌握。为了有助于学生对平行四边形实质属性的了解,在讲平行四边形定义前,要把平行四边形的对边、对角让学生认清楚. 教学目标

1、掌握平行四边形的相关概念和性质,并能初步应用这些知识解决简单的数学问题及实际问题。

2、丰富学生对平行四边形的认识,发展形象思维。通过观察、动手操作、猜想、推理、交流等数学活动进一步发展学生的简单推理能力和演绎思维能力,能有条理地、清晰地阐述自己的观点。尝试从不同角度探索平行四边形性质,运用平行四边形性质解决简单问题,发展应用意识。体会在解决问题的过程中与他人合作的重要性,学会与他人合作。

3、情感与态度:通过观察、操作、转化、归纳、类比、推理获得数学知识,体验数学活动充满着探索性和创造性,体验探索成功的快乐。在独立思考的基础上,积极参与对数学问题的讨论,敢于发表自己的观点,能从交流中获益。教学重点:理解与掌握平行四边形的概念及性质。

教学难点:运用平移、旋转的图形变换思想探索平行四边形的性质。教学方法:引导探究法 教学过程

一、创设情景,激发兴趣

1、出示章前图,提出问题:你能从图中找出我们熟悉的几何图形吗?

2、猜猜看,我是谁?

二、动手操作、引导探究 拼一拼:(探究平行四边形的概念)

请同学们拿出课前制作的一对全等的三角形纸片,将它们相等的一组边重合,拼出一个四边形

1、与同伴交流:你拼出了怎样的四边形?(展示不同的四边形)

2、教师出示一个平行四边形,让学生仔细观察:这个特殊的四边形对边有怎样的位置关系?说说你的理由。

3、介绍平行四边形的定义(包括两重作用)、记法、读法及其相关概念(对边、对角、对角线)。

4、找一找:

通过刚才对平行四边形的认识,环视你的周围,想想身边的事物,找找生活中平行四边形的例子。

三、参与活动、合作探究(探索平行四边形对边、对角的性质)活动一:

1、小组讨论交流:在你拼接得到的平行四边形中有哪些相等的线段?哪些相等的角?你们是如何得到的?(请用一句话描述你发现的结论)

2、想一想平行四边形的两个邻角在数量上有什么关系? 活动二:

用图形的平移、旋转探索平行四边形的性质

(一)学生实验操作教材P98页做一做问题(2)

(二)将两张大小、形状完全相同的平行四边形纸片重合在一起。如图所示,把上面的一个平行四边形绕一个顶点旋转180°,使它与下面的平行四边形重合,具体做一做。(1)教师用实物教具演示具体做法。

(2)学生拿出两张大小、形状完全相同的平行四边形纸片动手操作。

(3)小组交流:通过旋转,平移从中你又能得到哪些结论?(平行四边形的对边相等,对角相等)

(4)提问:还可以通过怎样的旋转、平移变化,使得两张平行四边形纸片重合。(可课后去探究)

活动三(简单推理说明平行四边形的性质)

1、见高效课堂作业P44页第二部分第2题

【老师引导:要证明线段相等、角相等,我们最容易想到什么?怎样得到三角形?】

2、归纳小结:同学们经过以上各种方法,验证了共同的结论是什么?(平行四边形的对边相等,对角相等)

四、学以致用、深化提高

1、想一想

(1)在平行四边形ABCD中,∠A=70°则∠B=∠C=∠D=

(2)在平行四边形ABCD中,AB=3cm,BC=4cm,则平行四边形的周长是多少?

2、比一比

:(课本第99页“随堂练习”第1、2题)

五、小结升华

这节课我们一起探究了哪些问题?谈谈你有什么收获?∠

六、布置作业、形成技能“知识技能”1、2、3题。.【板书设计】(略)

平行四边形的性质教案 篇7

尊敬的各位评委老师好!

我是面试初中数学的1号考生,今天我说课的题目是《平行四边形对角线的性质》,接下来我将从从说教材、说学情、说教法、说学法、说教学过程、说板书设计等几个方面阐述我说课的内容。

一、说教材

上好一堂课的前提是充分研读教材,本节课选自人教版八年级下册第十八章第二课时的内容。平行四边形对角线的性质是平行线和三角形知识的应用和深化,是学习矩形、菱形、正方形的必备知识,是证明线段相等、角相等的重要依据。

基于以上对教材内容分析,考虑到学生已有的认知结构心理特征及原有知识水平新课标要求教学目标多元化,根据学会、会学、乐学制订如下教学目标:

1、知识与技能目标:理解平行四边形中心对称的特征;掌握平行四边形对角线互相平分的性质。

2、过程与方法目标:在观察、操作、推理、归纳的探索活动中,进一步培养学生的推理能力和逻辑思维能力。

3、情感态度与价值观目标:通过小组合作探究学习,促进同学间的情感交流,体验学习的乐趣,在自我评价中学会自我肯定,增强学习的自信心。

结合新课标对本节课的要求,本节课的重点是平行四边形对角线互相平分的性质以及性质的应用。难点是综合运用平行四边形的性质进行有关的论证和计算。

二、说学情

不仅要备教材,更要备学生,八年级学生几何学习正处在试验几何向论证几何的过渡阶段,对于严密的推理论证,无论从知识结构,还是知识能力上都有所欠缺,因此我采用“创设情境—大胆猜想—实验探究—反思评价”的课堂活动模式,努力营造自主、合作、探究的学习氛围。

三、说教法

有教无类,因此,在教法上,教师引导和学生自主学习、同伴交流学习相结合的方法,适当地运用多媒体来辅助教学,使教学内容更加直观、具体、形象化,采用启发诱导层层深入的教学方法,让学生在观察、讨论、分析、总结等活动中,体验知识的生成、发展和应用。

四、说学法

在学法上,我准备采用小组合作交流的方式,充分发挥学生的主体地位,学生可以在合作中感受集体的智慧,在探索中体会数学的魅力,在碰撞中产生知识的火花。

五、说教学过程

为了更好的突出重点,突破难点,完成教学目标。我设计了以下五个教学环节:

1、巧设情景,初步感知

上课伊始,采用复习导入的形式,提问学生平行四边形的边、角这两个基本要素的性质是什么?学生根据上节课的知识,可以回顾起来,平行四边形的对边平行且相等,平行四边形的对角相等。顺势提出在平行四边形中,还有一组对角线,通过多媒体展示ABCD中,连接AC、BD,并设它们相交于点O,请同学大胆猜想OA与OC,OB与OD有什么关系?预设学生猜想在ABCD中,OA=OC,OB=OD,根据学生的猜想,引导学生证明,引出本节课主题。设计意图:通过提问的方式复习前一节所学的平行四边形关于边和角的性质,这样的方式复习更能体现学生掌握知识的.情况。

2、师生合作、探究新知

活动一:探究平行四边形对角线的性质

引导学生利用提前准备好的平行四边形教具,两个全等的平行四边形重叠在一起且在对角线的交点处钉上图钉,请学生把其中的一个平行四边形旋转180度,引导学生观察发生的现象。学生通过动手操作会发现旋转前后两条对角线重合了,因此平行四边形是中心对称图形,两条对角线的交点是对称中心,同时可以发现OA=OC,OB=OD,进一步验证了猜想,引导学生在证明平行四边形的性质基础之上借助三角形全等用规范的数学语言证明。组织学生进行小组讨论,学生讨论结束后,请学生汇报,预设学生根据平行四边形的性质,得到了BD=AC、∠CAD=∠ACB,∠ADB=∠DBC,再根据角角边得到了三角形全等,进一步证明了平行四边形对角线互相平分。并请学生板书出详细的证明过程。最后我将总结出平行四边形对角线的性质。

活动二:平行四边形对角线性质的运用

学生证明了平行四边形对角线的性质之后,出示大屏幕中的例题在ABCD中,AB=10,AD=8,AC⊥BC,求BC,CD,AC,OA的长,以及ABCD的面积。提示学生根据已知条件可以得出哪些信息。学生会根据平行四边形的性质得到CD=AB=10,BC=AD=8,根据AC⊥BC,可以构造出直角三角形。引导学生写出证明过程,预设学生的板书内容是∵四边形ABCD是平行四边形,∴CD=AB=10,BC=AD=8,∵AC⊥BC,∴△ABC是直角三角形,根据勾股定理得出AC=6,又OA=OC,∴OA=3,SABCD=6×8=48。从而解决了这个问题。

设计意图:通过例题的分析让学生感觉到数学知识前后的牵连,这个问题涉及了刚学习的平行四边形对角线的性质,对于计算或证明,让学生学会如何分析,学会如何严格的书写,突破用几何语言书写表达的难点.。

3、巩固应用,内化提高

新授课结束,适当的练习可起到巩固所学知识,渗透数学思想的作用。在这个环节,我会让学生利用今天所学知识,去解决练一练的题目和生活中的实际问题,并通过合理设错,加深学生对本节课知识点的掌握。让学生体会到学有所成,学有所用的快乐从而把知识升华为能力。

4、总结提炼,拓展延伸

这节课结束时,我会问学生:“今天有哪些收获?学到了哪些东西?”并引导学生及时总结在知识、能力、方法、思想等方面的收获。

5、作业设计

我将设计以下作业:下课后,完成课后习题,学有余力的同学完成拓展题。

六、说板书设计

下面说一下我板书设计,好的板书就像一份微型的教学设计,尤其是数学课的板书更应该是学生学习数学的一个缩影。大家来看,我的板书简洁明了,形象直观,使学生对所学内容一目了然。

平行四边形的性质教案 篇8

平行四边形的性质

湖北阳新宏卿初级中学

胡宝钗

一、教学目标

1知识目标

理解平行四边形的概念;探索并掌握平行四边形的对边相等,对角相等的性质。

2能力目标

在探索过程中发展学生的探究能力,提高学生运用数学知识解决问题的能力;

3情感目标

培养学生合作交流的习惯,提高克复困难的勇气和信心。

二、教学重点、难点

教学重点:探索平行四边形的性质

教学难点:通过操作、思考、归纳出结论

三、教学方法

探索归纳法

四、教学过程

(一)创设情境,引入新课

1.(幻灯片展示)观察图片中有你熟悉的哪种图形?(平行四边形)请你举出自己身边存在的平行四边形的例子。

例如:汽车的防护链,地板砖,篱笆格子等(用幻灯打出实物的照片)2.观察图形有什么特征?(有两组对边分别平行)

平行四边形的定义:两组对边分别平行的四边形叫做平行四边形 如图:四边形ABCD是平行四边形 记作:ABCD 今天我们就来探究平形四边形的性质。

(二)讲授新课

1、拼一拼(出示幻灯片)小组合作,探究新知

用两个全等的三角形纸片可以拼出几种形状不同的平行四边形?从拼图中你能得到哪些启示?相对的边、角分别有什么关系?

(让学生实际动手操作,可分组讨论结论,用ppt课件展示)

2、学生分析总结出:平行四边形的对边平行

平行四边形的对边相等

平行四边形的对角相等

平行四边形的邻角互补

用符号语言表示:如图

小结:平行四边形的性质是证明线段相等、角相等的重要依据和方法。3.用什么方法验证平行四边形:两组对边分别相等

两组对角分别相等

(小组讨论比一比看谁的速度最快、方法最多)

4、例题讲解

如图:小明用一根36m长的绳子围成了一个平行四边形的场地,其中一条边AB长为8m,其他三条边各长多少?

解:∵ 四边形ABCD是平行四边形

∴AB=CD, AD=BC

∵AB=8m

∴CD=8m

又AB+BC+CD+AD=36

∴ AD=BC=10m

(三)随堂练习(幻灯片展示)

(四)感悟与收获

1.两组对边分别平行的四边形叫做平行四边形. 2.平行四边形的性质:对边平行

对边相等

对角相等

邻角互补

3.解决平行四边形的有关问题经常连结对角线转化为三角形。

(五)作业

(六)板书与设计

(见幻灯片)

以上就是《平行四边形的性质教案八篇》的全部内容,想了解更多内容,请点击平行四边形性质教案查看或关注本网站内容更新,感谢您的关注!

文章来源:http://m.jab88.com/j/170523.html

更多

最新更新

更多