88教案网

乘法交换律教案

乘法交换律教案八篇。

老师每一堂课都需要一份完整教学课件,每天老师都需要写自己的教案课件。做足了教案课件的前期准备,这样才能达到预期的教学目标。我们需要从哪些角度来写教案课件呢?下面,小编为大家整理的“乘法交换律教案八篇”,相信会对你有所帮助!

乘法交换律教案(篇1)

教学目标:

1、掌握乘法交换律和乘法结合律。

2、运用乘法交换律验算乘法。

3、培养学生的分析、概括能力。

1、出示第33页主题图。

二、自主学习,合作探究。

师:一共有25个小组,每组里4人负责挖坑、种树,2人负责抬水、浇树。负责挖坑、种树的一共有多少人?

生算,小组里交流。生汇报。

师:他们算得对吗?从这里,你发现了什么?小组里议一议,交流。(交换两个因数的位置,积不变。)

你能举出几个这样的例子吗?

师:交换两个因数的位置,积不变。这叫什么?你给它取个名字?

师:乘法交换律,以前我们已用过它,在什么地方呢?

指名两生板演,集体订正。

①师:看图,每组要种5棵树,每棵树要浇2桶水,一共要浇多少捅水?

生小组里交流,并汇报。

②师:那么(255)2○25(52)中间填上什么符号?

请你举出几个这样的例子。

生甲:三个数相乘,先乘前面两个数,或者先乘后两个数,积不变。

3、比一比,议一议。

师:比较加法交换律和乘法交换律,加法结合律和乘法结合律,你发现了什么?

生甲:我发现加法交换律和乘法交换律,都是交换数的位置,结果不变。

生乙:我发现加法结合律和乘法结合律,改变了题里的运算顺序,结果不变。

三、巩固运用,深化提高。

1、教材第35页做一做,,第1题。

先计算,再运用乘法交换律进行验算。

2、教材第35页做一做,,第2题。

四、总结提升。

这节课,你学会了什么?还有什么问题和大家共同讨论?

乘法交换律教案(篇2)

设计者:张吉林           工作单位: 郧西县羊尾镇中心小学

教学内容

课题名称   乘法分配律    学科 数学 总课时   1

单元章节名称 第三单元  运算定律和简便运算 页码   36 执教者 彭素娟

版本名称 人教版年级 四 册  次 下册

教学分析

教材分析    乘法分配律的教学是继续由主题图引出的问题:“一共有多少名同学参加了这次植树活动”,通过让同学们分组讨论,自己探究及合作交流等方式,解决问题。再通过类比,让学生理解并概括出乘法分配律,初步体会使用乘法分配律,使计算相对简便一些.

教学目标 1﹑使学生理解和掌握乘法分配律并学会用字母表示.

2﹑培养学生分析﹑比较﹑抽象﹑概括的能力.

3﹑培养学生自主探究,自主学习得出结论的学习意识.

教学重点     通过比较,对乘法分配律的归纳概括.

教学难点     对乘法分配律意义的理解.

教学准备

教具学具补充材料     导入投影片﹑主题图

教学流程(第  1    课时)

一﹑知识回顾

1﹑口答:说说什么是乘法交换律和乘法结合律?请用字母表示出来.

2﹑口算: 40×23×25             125×16

要求学生回答出结果,并口述在口算过程中,使用了什么运算定律?这样计算有什么好处?

二﹑类比感知

1﹑投影出示:

4×(5+8)               8×(4+5)               (7+6)×3

4×5+4×8              8×4+8×5               7×3+6×3

2﹑分组讨论:(1)上面各组算式的结果有什么特点?

(2)根据这个特点,每组中的两个算式可以怎样连接起来,用以表示它们的关系?

教师根据学生的回答,进行板书.

3﹑你能举出类似的例子吗?(学生自由回答)

【设计意图:通过让学生讨论举例,让学生初步体会出乘法分配律在形式上与前面学过的乘法的运算定律的不同,对将要学习的乘法分配律先有个初步的认识】

三﹑质疑释疑,研究归纳

1﹑出示主题图,根据图中信息,让学生讨论,你想解决什么问题?

2﹑针对学生提出的问题,可根据情况给予解答.

3﹑提出例3的问题,进行分析和讨论.

4﹑学生独立列式解答.

5﹑集体交流不同算法的解题思路.

方法一: (4+2)×25               方法二: 4×25+2×25

=6×25                          =100+50

=150(人)                        =150(人)

6﹑分析比较:观察两种算法有什么不同?

7﹑建立表象:以上两种算法的结果怎样?  (4+2)×25=4×25+2×25

8﹑你还能举出类似的例子吗?(教师可根据学生的回答作适当板书)

9﹑探究规律:

结合以上几个等式,让学生分组讨论:

(1)这些等式的左边是怎样的?右边呢?

(2)结果又怎样?

(3)从以上你发现了什么规律?

如果学生在语言表述上有困难,教师可给予适当的提示.

(4)你能再举出乘法分配律的例子吗?

(5)能用字母表示吗?

(6)抢答:a(b+c)=?

(7)归纳乘法分配律并板书课题: 乘法分配律

四﹑知识巩固

1﹑在(  )里填上适当的数.

(23+25)×4=(  )×4+(  )×4

18×(31+16)=18×(  )+18×(  )

(25+26)×a=(  )×(  )+(  )×(  )

53×a+47×a=(    +     )×a

48×a+(  )×b=(  )×(a+b)

25×36+25×64=25×(     +     )

2﹑连线

(25+24)×5             (25+75)×16

25×16+16×75           a×b+a×c

a×(b+c)               a×c+b×c

(a+b)×c               25×5+24×5

五﹑课堂总结

今天我们学习了什么知识?它与乘法的交换律和结合律有什么不同?

六﹑知识拓展

你会算吗?

111×999                999×222+333×334

【设计意图:放手让学生探究,通过学生自主学习,培养他们的成就感,激发他们的学习兴趣】

七﹑作业:  教材38页6﹑7.

板书设计

乘法分配律

乘法交换律:a×b=b×a                 乘法分配律:(a+b)×c=a×c+b×c

乘法结合律:(a×b)×c=a×(b×c)                (4+2)×25   =   4×25+2×25

=6×25           =100+50

=150(人)         =150(人)

学生举例;……

……

……

乘法交换律教案(篇3)

1.能从实际例子中,观察、概括出加法交换律。

2.理解掌握加法交换律,会用字母公式表示加法交换律。

3、请学生观察两组算式,说说有什么发现?是否任意一个加法算式中调换两个加数的位置,都会出现和不变的现象?

4、根据学生回答板书:猜想――两个数相加,交换加数的位置它们的和不变。

1,验证我们的猜想是否正确,我们可以举更多的例子,符合猜想的例子越多,猜想将被认为越可靠。

学生汇报答案。加数相同,调换位置,得数也相同,符合猜想。

2、同学自己设计一组式题验证,小组交流结果,汇报结论。

全部举完过就给我们的证明留下了遗憾,有没有其他的办法呢?我们来看生活实例。

例:一家电影院,走廊的左边是476个座位,走廊的右边有518个座位,一共有几个座位,(用两种方法计算)

为什么会相等呢?固为根据加法的.意义,这两个算式都是把两个相同的部分数合并起来,所不同的只是加数在算式中的位置,它们的意义是一样的。所以,在加法算式中,交换加数的位置,和不变。

5.学生自学书本、质疑。

1.学习加法交换律的最终目的是用。

2.“练一练”1,先计算出得数,再用加法交换律进行验算。

3、“练一练”

(2)指名说出验算方法和根据。

4、放录音、做游戏――“我该在什么位置”

470+830=830+    101     3+214=       十

256+214=          +256               十 367=367 +

(1)将卡片470、880、1013、214、58、58发给六个同学。

(2)伴随音乐,寻找自己的位置,并贴上。

(3)小结:这些算式都用等号连接,两边都有相同加数,那就意味着另一个加数也相同,我们并用了加法交换律。

1.这节课我们发现了什么?是怎样获得证明的?  (举例证明一意义论证) 2.这一规律已有哪些运用?

如:37+73=     +          在     中可以填哪些数据?

乘法交换律教案(篇4)

一、复习引新。

1、你能用字母表示乘法的交换律吗?

2、你能用字母表示乘法的结合律吗?

3、口算。

15脳2脳1225脳4脳1735脳2脳2

45脳2脳94脳15脳135脳4脳37

提问:上面各题口算时为什么比较方便?

指出:连乘时如果两个数先乘得的积是整十整百,再和第三个数相乘就比较简便。

4、引入新课。

应用刚才复习的乘法的交换律和结合律,可以使一些计算简便。这节课就学习应用乘法的交换律和结合律,进行简便计算(板书课题)。

二、新课。

1、用简便方法计算35脳1825脳16

35脳18

=35脳(2脳9)想:把18看成2与9的积,应用结

=(35脳2)脳9合律,先算2乘35.

=70脳9

=630

25脳16

=25脳(4脳4)提问:25和几相乘得100?

=(25脳4)脳4把16看成几和几的积?

=100脳4

=400

2、练习:用简便方法计算。

45脳828脳1525脳12

指名扳演,集体订正。

小结:在乘法计算时,如果有两个乘数相乘的积是整十,整百的数,就可以应用乘法的交换律或结合律,把这两个数先乘,再和其他乘数相乘,使计算简便。

三、想想做做。

1、P63、7

先独立填表,再观察和比较,说说积是怎样变化的。

2、P63、8

分组出示,计算完后比较。

四、布置作业

P63、第6、9、10题。

板书设计:

乘法交换律和结合律的应用

35脳18

=35脳(2脳9)想:把18看成2与9的积,应用结

=(35脳2)脳9合律,先算2乘35.

=70脳9

=630

25脳16

=25脳(4脳4)提问:25和几相乘得100?

=(25脳4)脳4把16看成几和几的积?

=100脳4

=400

乘法交换律教案(篇5)

乘法交换律

教学目标:

①理解乘法交换律的意义。

②通过观察、猜想、验证、总结得出乘法交换律。

③会用字母公式表示乘法交换律,并会利用乘法交换律进行简便计算和验算。

④让学生受到科学方法、科学态度的启蒙教育。

教学重点:掌握、猜想、验证、总结的学习方法

教学难点:利用知识的正迁移,自主探究乘法交换律的内容。

教学过程:

一、复习旧知,谈话导入

1、回忆加法交换律

师:同学们还记得加法交换律吗?

谁能用自己的话或者公式,或者举一个例子,说一说加法交换律?

生:a+b=b+a2+3=3+2两个数相加,交换加数的位置,和不变,这叫做加法交换律。

2、提出问题:

师:学了加法交换律你有什么想问的?

师:同学们加法具有交换律,减法、乘法、除法,也具有交换律吗?请同学们大胆猜想一下。

生:减法、除法没有,乘法有。

二、猜想验证,合作探究

1、提出假设

师:①这只是我们的猜想,到底是否成立,我们必须想办法去验证。

②用什么办法去验证呢?

生:用算式法验证

师:得出结论后,用自己的话概括规律。

2、探究要求

(1)验证,减法、乘法、除法是否具备交换律、请写出算式。

(2)你发现什么结论,记录下来。

(3)小组推选一名同学进行汇报。

3、小组合作探究。

4、汇报、验证规律。

三、合作探究,得出结论

小结:减法和除法不具有交换律,乘法具有交换律。

师:你能举出乘法交换律的例子吗?这么多的例子举也举不完,能用字母公式表示一下吗?用字母表示ab=ba。

师:用语言怎样说?它有什么特点?(两个数相乘,交换因数的位置,它们的积不变,这叫做乘法交换律。),这就是我们今天研究的问题乘法交换律板书课题。

师:我们是怎样研究这个问题的?

生:先假设(猜想)再验证,最后得出结论

师:其实许多数学问题都可以用这种方法来研究。

四、思考引领,应用知识

1、根据乘法交换律,在□里填上合适的数。

5472=72□38160=□□54a=□□

8200□=□□409□=□□□□=□□

2、把相等的两个算式用线连起来。

57+8612108

1648275+89

1081282164

89-7586+57

3、联系实际,巩固达标

师:同学们以前我们在什么地方用到乘法交换律?

生:做乘法验算时,交换因数的位置再乘一遍的方法来验算乘法,就是应用了这个定律。

4、计算下面两道题,并用交换因数的位置再乘一遍的方法进行验算。

140251=108123=

(1)指名板演、集体练习

(2)讲评:在这两题的验算中你有什么发现?

生:验算时只用乘2次,使计算简便。

(3)那你们说学了乘法交换律有什么作用呢?

生:可以简便计算过程:

师:利用发现的规律,说一说。

5、下面哪些题目利用乘法交换律可以简便计算过程?

①444213④555632⑦2680310

②302512⑤450208⑧723456

③700542⑥1800635⑨109606

总结交流:

(1)因数中间有零或者未尾有零交换位置相乘一般情况下可以简便计算过程。

(2)其中一个因数由重复的数字组成的,利用交换律计算也有简便。

5、两个数交换位置相乘,有时会有简便的地方?想一想,三个数相乘利用交换律是否有方便之处呢?

师出示:47325=42573=10073=7300

生举例:27350=25073=10073=7300

总结交流:三个数相乘,若其中两个数相乘可以凑成整十、整百、整千交换位置相乘有方便之处。

五、全课的总结:这节课我们学习了什么?

你学会了什么?

乘法交换律教案(篇6)

教学内容:

P34/例1(乘法交换律)例2(乘法结合律)

教学目标:

1.引导学生探究和理解乘法交换律、结合律,能运用运算定律进行一些简便运算。

2.培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性。

3.使学生感受数学与现实生活的联系,能用所学知识解决简单的实际问题。

教学过程:

一、主题图引入

观察主题图,根据条件提出问题。

(1)负责挖坑、种树的一共有多少人?

(2)一共要浇多少桶水?

学生在练习本上独立解决问题。

引导学生观察主题图。

根据学生提出的问题,适当板书。

二、新授

引导学生对解决的问题进行汇报。

(1)425=100(人)

254=100(人)

两个算式有什么特点?

你还能举出其他这样的例子吗?

教师根据学生的举例进行板书。

你们能给乘法的这种规律起个名字吗?

板书:交换两个因数的位置,积不变。这叫做乘法交换律。

能试着用字母表示吗?

学生汇报字母表示:ab=ba

我们在原来的学习中用过乘法交换律吗?在验算乘法时,可以用交换因数的位置,再算一遍的方法进行验算,就是用了乘法交换律。

根据前面的加法结合律的方法,你们能试着自己学习乘法中的另一个规律吗?

教师巡视,适时指导。

(2)(255)225(52)

=1252=1025

=250(桶)=250(桶)

小组合作学习。

①这组算式发现了什么?

②举出几个这样的例子。

③用语言表述规律,并起名字。④字母表示。

小组汇报。

教师根据学生的汇报,进行板书整理。

三、巩固练习

P35/做一做1、2

四、小结

学生小结本节课的学习内容。

教师引导学生回忆整节课的学习要点。

完善板书。

五、作业:P37/24

板书设计:

乘法交换律和乘法结合律

(1)负责挖坑、种树的一共有多少人?(2)一共要浇多少桶水?

254=100(人)425=100(人)(255)225(52)

254=425=1252

=1025

┆(学生举例)=250(桶)=250(桶)

(255)2=25(52)

┆(学生举例)

交换两个因数的位置,积不变。先乘前两个数,或者先乘后两个数,

这叫做乘法交换律。积不变。这叫做乘法结合律。

ab=ba(ab)c=a(bc)

课后小结:

第五课时:教学内容:

乘法交换律和乘法结合律练习课

教学目标:

1.能运用运算定律进行一些简便运算。

2.培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性。

3.使学生感受数学与现实生活的联系,能用所学知识解决简单的实际问题。

教学过程:

一、基本练习

(1)口算:

502=1005020=1000

254=100258=20xx512=3002540=1000

1258=100012516=200

12524=300012580=10000

通过刚才的口算,你们很快就算出结果,你们知道在乘法运算中有三对好朋友,它们分别是谁?

板书:522541258

(2)在□里填上合适的数。

3067=30(□□)

125840=(□□)□

(3)计算:

4325425434

比较两道题,在运用乘法运算定律时有什么不同?

在讨论的基础上,启发学生总结出:第1题只应用乘法结合律把后两个数相乘,就可以使计算简便;第2题要先用乘法交换律把4放在前面,使25与4相乘,或把25放在43的后面,使25与4相乘,然后再用乘法结合律,使计算简便。

小结:用乘法结合律进行简便计算有两种情况:一种是单独运用乘法结合律使计算简便,一种是两个运算定律结合使用,使计算简便。关键要掌握运算定律的内容,根据题目的特点,灵活运用运算定律。

引导学生在对比中加以区分。

(4)师生比赛,看谁直接说出结果速度快。

25424681258

43925

(5)对比练习:

425+1625

4251625

(25+15)4

(2515)4

4625

(40+6)25

4949+4951

4999+49

(68+32)5

68+325

学生小组分工后独立完成,再进行小组内交流。

汇报。

二、小结

学生谈收获。

课后小结:

乘法交换律教案(篇7)

本课时的教学内容是义务教育课程标准实验教科书四年级下册第3335页中的乘法交换律和乘法结合律。这部分内容是在教学了加法的运算定律及其相关简便运算后学习的。我主要是从下面几个环节展开教学的。

1、复习环节,我首先让学生共同回忆了加法交换律和加法结合律,因为本节课的教学内容是乘法交换律和乘法结合律,实际上加法交换律和乘法交换律、加法结合律和乘法结合律,它们的基本原理一样,只是所处的运算不同。我在教学中,就充分把握这一点,引导学生利用旧知迁移新知,自主探究出乘法的交换律和结合律。还进行了诸如25,254,1258,205,这样的口算题训练,其目的之一是通过这组口算题的练习,明确这些题目的共同特点是都是乘法运算,而且积是整十或整百或整千数,为后面运用乘法的交换律和结合律进行简便计算奠定了基础,其目的之二是通过这一组乘法口算,揭示今天的学习内容。

2、探究新知环节,我主要是通过引导学生对主题图的观察,让学生探究解决负责挖坑、种树的一共有多少人?和一共要浇多少桶水?这两个问题,找出解决问题的相关信息,并会用不同的方法解答。在此基础之上,再引导学生通过对两种方法的比较,归纳总结出乘法交换律和乘法结合律。随后还引导学生学会运用刚刚学到的乘法交换律和乘法结合律进行简便计算,培养了学生学以致用的能力。

3、巩固练习主要穿插在各个知识点的教学之后,及时反馈学生对各个知识点的掌握情况。注重引导学生经历解决问题的过程,让学生在体验过程的同时感受到了成功的喜悦。

当然,在教学过程中,也存在很多的不足,如。

1、在推导规律的过程中,导课比较快主观上是时间紧张,可课后想想,实际上是引导不到位,难以完整地总结出乘法结合律。结果,有个别学生对乘法结合律不太理解,运用时问题较多。

2、教学语言还要注意精炼,有时还是喜欢重复学生的回答。

3、要注意多媒体运用和板书的有机结合。

今后的工作中,要多向以下几个方面努力。

1、多听课,多学习。学习优秀教师的新思想、新方法,改善课堂教学,提高课堂教学艺术和课堂效率。

2、加强同科组教师之间的沟通和交流,相互学习,取长补短,共同进步。

3、认真钻研教材,把握好教材的重点、难点、关键点、易混点,上课时才能做到心中有数。

乘法交换律教案(篇8)

对于乘法结合律的教学,四位老师不仅仅满足于学生理解、掌握乘法结合律,会运用乘法结合律进行一些简便运算上,重要的是她们引导学生经历了一个数学学习的过程,通过学生的联想,激发学生学习数学的兴趣,通过验证联想,使学生全身心的投入到学习活动中,教师给了足够的思考空间,通过验证进而概括,使学生体验到成功的喜悦。从而积极愉快的进入到运用。帮助学生理解和掌握了知识,同时又培养了学生学习数学的兴趣,也帮助学生在乘法与加法进行建构,使学生获得了真正的发展。同时在学习中培养了学生的思维能力,使学生受到科学方法,科学态度的启蒙教育。

教师是教学的组织者和引导者,这样的设计,紧密围绕并运用好问题情境,师生之间积极互动,教师引导学生自己去发现规律,并学会用多种方法表示,让学生有一种成就感。然后引导学生运用前面的研究方法开展研究,由扶到放,培养了学生探索和解决问题的能力和语言的组织能力。

以上就是《乘法交换律教案八篇》的全部内容,想了解更多内容,请点击乘法交换律教案查看或关注本网站内容更新,感谢您的关注!

文章来源:http://m.jab88.com/j/161623.html

更多
上一篇:春的舞曲作文 下一篇:音乐三年级教案

猜你喜欢

更多

最新更新

更多