88教案网

轴对称图形教学反思

轴对称图形教学反思1000字9篇。

学习的最大动力,是对学习材料的兴趣。教案课件的质量,也体现了教师的教学水平。教案可以帮助教师充分发挥信息技术的优势,如何去写一篇教案呢?下面,我们为你推荐了轴对称图形教学反思,还请多多关注我们网站!

轴对称图形教学反思 篇1

本课教学内容在课本的基础上作了一些调整,包括作线段的垂直平分线、作对称轴、作轴对称图形等内容。

最大的优点是:两个重要的题型能够比较地理解和掌握,已知直线和直线的同侧有两点A、B,在直线上求一点P,使点P到点A、B的距离相等;已知直线和直线的同侧有两点A、B,在直线上求一点P,使点P到点A、B的距离和最小相等。

最难处理的问题是第二个典型应用的引导,作法为:作点A关于交直线l的对称点A′,连接A′B,交直线l于点P,证明这个点使距离之和最小很好启发引导,但是为什么能够想到这样作图,是比较难处理的问题,我在设计这个问题时,要求学生把直线想象成镜子(平面镜),由点A经过平面镜看点B,光线经过的路线就是最短的路径,因此,使我们选择了这样的作图方法。更难的应用,已知∠XOY,和角内部的点A,在OX、OY上分别作点B、C,使△ABC的周长最小。引导学生思考时,还是可以把OX、OY看成两面镜子,学生理解起来能够更便利些。

轴对称图形教学反思 篇2

本节课的内容是在学生认已有的对称知识的基础上,结合学生熟悉的生活情境进行教学的,重点教学轴对称图形的性质和画法。

成功之处:

1、课件演示,直观形象。在教学中,首先出示一些轴对称图形的图片,让学生观察这些图形有什么特点,从而引出轴对称图形的概念。在例1的教学中通过出示小松树图形,让学生认识轴对称图形的对应点,然后数一数每个对应点到对称轴的距离,从而发现轴对称图形的性质是对应点到对称轴的距离相等,最后通过连线对应点,学生会发现对应点的连线垂直于对称轴。在这一系列的教学中,学生通过课件的直观演示,非常容易发现其中的秘密,学得也自然轻松,感兴趣。

2、依据性质,学习画法。在例2的教学中,先出示图形的一半,让学生独立思考如何画轴对称图形呢?也就是另一半呢?通过学生的交流讨论,得出轴对称图形的画法,即先定点——定出每条线段的端点;再画对应点——依据轴对称图形的性质对应点到对称轴的距离相等;最后连点——依次连接每个对应点。在轴对称图形的画法中紧紧联系轴对称图形的性质,可以使学生进一步加深对性质的理解和应用。

整节课的安排,努力贯彻“学生为主体、教师为主导”学生自主发展的教育原则。教师只是对概念的引入加以指导以及对整个教学流程加以控制,其余都让学生自己观察、思考;操作、联想;讨论、口述,这样将有利于每位学生积极动脑、动手、动口、耳闻、目睹,各种器官并用,使全体学生真正成为学习活动的主人

不足之处:学生在画轴对称图形时,不按照画法去做,而是照葫芦画瓢按照自己的方法去画,虽然有的同学能画对,但是也存在个别学生出现错误的画法。再教设计:强化画轴对称图形的画法,让学生不仅要知其然还有知其所以然,明白不仅仅画对就可以,还要知道依据轴对称图形的性质,这样才能加深对轴对称图形性质的理解。

轴对称图形教学反思 篇3

讲过[轴对称]这节课,我有了新的熟悉,以下是我的几点收获:

第一、要明白课一开始复习对称轴是为了什么,也就是要明白你的每一节课上每一处的教学设计的意图。我想,在这里复习对称轴是为了唤起学生已有的轴对称图形对称轴的生活经验,同时为本节课进一步熟悉轴对称图形的对称轴,探究轴对称图形的对应点与对称轴之间的关系——轴对称图形上两个对称点到对称轴的方格数(距离)相等做铺垫吧!

第二、在我让孩子举例说明“生活中你见过哪些轴对称图形?”,学生说的都是生活中的物体,这时老师可以指出我们今天钻研的轴对称图形是平面图形,比如他们说黑板,课桌时,我可以适当的加以纠正“黑板,课桌的面是轴对称图形”!

第三、开始让学生指出图形的对称轴时,不能只让她们简单地用手比划一下,而是应该让他们在书上画一画,语言上的叙述也要在老师的引导下进一步规范严谨。比如说:中间那条线是对称轴,应该是“上下两条线的中点的连线所在的直线是对称轴”。

第四、在处理本节课的重点“在操作中探究轴对称图形的特征和性质时”,老师一定要放手,主动权给孩子,重点要让学生说,,然后他们才会画。先让学生找一对对称点,然后连接对称点,从图中发明两条虚线相交之处有直角符号,直角符号表示两条虚线垂直,这样才会清晰地发明对称点的连线与对称轴是垂直的关系。接着再数一数点A和其对称点到对称轴的距离,知道点A与其对称点到对称轴的距离都是3小格。这两个特征要给孩子时间去操作去发明去尝试,尝试才有发明,发明才有创新!耐下心来,总有学生会发明的!

然后再找其他对称点,去验证这两个特征,这个过程是需要时间的,没有经过具体的操作,学生是发明不了的。经过几次这样的操作活动,使学生明白轴对称图形上两个对称点到对称轴的方格数(距离)相等,加深学生对轴对称图形特征的熟悉。

第五、在发明对称轴两边的对称点到对称轴的距离相等之后,还要指出特殊的一类点:对称轴上的点,他们的对称点在哪?使学生明白点沿着对称轴折过去之后跟谁重合对称点就是谁,从而他们才明白这一类点的对称点就是它本身,也在对称轴上。

第六、要给学生强调画图的时候要用铅笔和直尺,而我在课堂上只强调了画图要用直尺,这一点以后一定改正。

第七、在讲本节课的第二个知识点补全轴对称图形的另一半时,最后要引导学生归纳总结这类画图题的方法步骤:

1 “找”,找出图形上的端点或者说要害点。

2 “定”,根据对称轴确定每一个端点的对称点。

3 “连”,依次连接这些对称点,得到轴对称图形的另一半。

小学阶段的画图,还是要给学生规范方法步骤的。

我课堂上的组织管理能力还有待提高,假如有学生提出质疑,要及时肯定赞扬,激励他的思量过程,思维习惯,久而久之,数学课堂上该有的思量味儿才会越来越浓!

轴对称图形教学反思 篇4

(一)师:同学们,我们已学过哪些平面图形?(根据学生回答分类板书)

师:请拿出按照课本P145剪下的8个平面图形,说说哪些图形是轴对称图形,然后再想办法验证。

(学生先猜测,然后动手折图验证,最后举手回答。)

生:第一个图形是等腰三角形,它是轴对称图形,有一条对称轴。

师:你是怎样验证的?(学生动手演示)

师:如果是等边三角形呢?也有一条对称轴吗?

生:它是轴对称图形,有3条对称轴。

生:第2个图形是平行四边形,平行四边形不是轴对称图形。

师:是不是所有的平行四边形都不是轴对称图形?

生:(齐答)是。

生:猛地站起一名学生,激动地说:“我认为刚才大家说得不对。有的平行四边形是轴对称图形。”

师:你说说看。

生:(边说边演示)用刚折的两个等腰三角形拼成了一个平行四边形,这个平行四边形就是轴对称图形,并且有两条对称轴。

师摸着这个孩子的头,高兴地说:“你真是一个爱动脑筋的‘数学大王’?”

(二)师:学习了轴对称图形,我们可不可以进行一些创造发明呢?

生:可以!

师:下面就请大家发明聪明才智,动手创造吧。

生:将一张长方形的纸对折,然后沿折线在纸上画半个树叶,用剪刀剪下,再打开,就变成了这片美丽的树叶。

师:它有几条对称轴?(一条)

生:我将一张长方形纸对折,再对折,然后以两条折线的交点为中心画一个扇叶,将扇叶剪下来打开,再打开,就成了这个风扇了。它有2条对称轴。

生:我先将纸对折,然后沿线画上老师的半张笑脸,剪下来打开,就变成了老师的整个笑脸。祝老师身体健康,笑口常开。

师:老师非常感谢这位同学的祝福,也接受这份十分珍贵的礼物。

反思:

一、注重思维能力和创新能力的发展

对于“平行四边形不是轴对称图形”这个问题,大部分学生头脑中已形成,也包括教师。我认为,片断一中的那个孩子表现堪称“壮举”,因为他面对的是被证明了的事实。“眼见为实”,岂容怀疑?

二、重视培养学生应用数学知识的意识和能力。

综合应用是培养学生主动探究与合作学习能力的重要途径。片断二所展示的画面,已让我们充分感受到了学生应用数学知识的强烈意识以及他们在应用过程中所显露出来的创造力。这充分体现了学生的创新意识和创新能力。

三、突出学生的主体地位,注重师生情感交流。

《新课标》要求我们“以人为本”,这就决定了数学教学适应并促进学生的展。因此,教师只有以学习者的角色去理解学生,才能教好学生。片断二中,学生能向老师赠送自己的作品,充分说明了师生间情感的交融。

轴对称图形教学反思 篇5

对称是一种最基本的图形变换,是学习空间与图形知识的必要基础,对于帮助学生建立空间观念,培养学生的空间想象力有着不可忽视的作用。

本册第一次教学轴对称图形,教材中安排了形式多样的操作活动,在本节课的教学中,我结合教材的特点,设计了三次操作活动,让学生在动手操作中逐步体验轴对称图形的基本特征。

一、创设情境教学,请会折叠衣服的同学上台来展示一下叠衣服的方法。从而引出课题。接着1、出示轴对称物体:天安门、飞机、奖杯、让学生观察它们有什么共同特点?学生观察发现,它们的两边都是一样的。2 剪小树:通过不同剪法师生共同评价得出这些图形两边都一样的,所以先把纸对折,然后再剪,剪定后再展开,就是这棵小树了。

这是本节课第一次操作活动,安排在学生观察生活中的对称现象后,目的在于让学生在操作中初步感知轴对称现象。学生这次操作活动看似一次无目的操作活动,但要一棵小树甚至一个漂亮的窗花,不去寻找规律,也是非常困难的,通过学生的交流,能初步感知到两边一样的图形可以对折起来再剪,这就是轴对称图形特征的初步感知。

二、动手画一画,折一折,通过把同学们看到的物体画下来得到下面的图形(天安门、飞机、奖杯等)进行分组操作讨论,得出结论——图形对称后,两边完全重合了,从而得出什么样的图形是轴对称图形。

这是本节课的第二次操作活动,安排在学生对轴对称图形的特征有了初步感知之后。学生此次操作是由目的性,有导向性的操作,目的是在操作活动过程中,探究图形对折后折痕两边的部分完全重合这一基本特征,在此基础上解释出轴对称图形的概念。

三、想办法做出以各轴对称图形、并分组展示自己的作品。

这是本节课达三次操作安排,且是在学生对轴对称图形有较为正确系统的认识之后,意在操作活动中巩固深化对轴对称图形的认识,学生这次操作活动手段是多样的,作品也是丰富多彩的。三次的操作活动目的不同,所产生的成效也截然不同,学生在这次活动中,通过有序、有层次的操作更加深对轴对称图形特征以认识,充分概念之轴对称图形的基本特征。

1(工作总结之家 dg15.com)

本节课最大感受是由于课前准备充分,所有的练习和操作活动较为自然的串联在参观的情景中,课堂结构紧凑,学生兴趣浓烈,让学生用不同的方式、以不同的角度体会轴对称图形的特征。

2、五年级数学下册《因数与倍数》的教学反思

《因数和倍数》是一节数学概念课,人教版新教材在引入因数和倍数的概念时与以往的教材有所不同。

(1)新课标教材不再提“整除”的概念,也不再是从除法算式的观察中引入本单元的学习,而是反其道而行之,通过乘法算式来导入新知。

(2)“约数”一词被“因数”所取代。这样的变化原因何在?我认真研读教材,通过学习了解到以下信息:签于学生在前面已经具备了大量的区分整除与有余数除法的知识基础,对整除的含义已经有了比较清楚的认识,不出现整除的定义并不会对学生理解其他概念产生任何影响。

(3)因此,本套教材中删去了“整除”的数学化定义,而是借助整除的`模式na=b直接引出因数和倍数的概念。

虽然学生已接触过整除与有余数的除法,但我班学生对“整除”与“除尽”的内涵与外延并不清晰。因此在教学时,补充了两道判断题请学生辨析:

11÷2=5……1。问:11是2的倍数吗?为什么?因为5×0.8=4,所以5和0.8是4的因数,4是5和0.8的倍数,对吗?为什么?

特别是第2小题极具价值。价值不仅体现在它帮助学生通过辨析明确了在研究因数和倍数时,我们所说的数都是指整数(一般不包括0),及时弥补了未进行整除概念教学的知识缺陷,还通过此题对“因数”与乘法算式名称中的“因数”,倍数与倍进行了对比。

3、五年级数学下册《合数与质数》的教学反思

在《合数与质数》的教学中,我跳出了教材的束缚,体现以“以人发展为本”的新课程教学理念,尊重学生,信任学生,敢于放手让学生自己去学习。在整个教学过程中,学生能从已有的知识经验的实际状态出发,通过操作、讨论、归纳,经历了知识的发现和探究过程,从中体验了解决问题的喜悦或失败的情感。 2

一、学生参与面广,学习兴趣浓。

新课程教学标准要求我们教学中要“让学生经历数学知识的形成与应用过程。”因此,在教学中,我注重面向全体学生,使学生在愉悦的气氛中学习,唤起学生强烈的求知欲望。如:让学生利用学具去摆拼,用“2、3、4……12个小正方形分别可以拼成几种长方形的方法去体验质数与合数的不同之处,以操作代替教师讲解,激发了学生的学习兴趣和求知欲,使全体同学都参与到“活动”中来,课堂气氛愉快热烈,学生学得轻松、学得牢固,从而大大提高了课堂教学效率。

二、从学生的角度出发,把课堂的主动权还给学生。

课堂教学,学生是“主角”,教师只是“配角”,教学中应把大量时间和空间留给学生,使每个学生都有学习、讨论、观察,思考的机会。在教学中我除了给学生动手拼摆的机会,还让学生把几个数(如2、3、4、5、6、7、8、9、10、11、12等)进行分类。尽管学生可能分类标准不一样,但他们都能把只有两个因数的数分在一类,把含有2个以上的因数的数放在一起。这样教师就可以顺势引导学生说出什么叫质数,什么叫合数。再让学生用自己的语言归纳合数与质数。在这个过程中,引导学生参与知识的形成过程,有利于培养和提高学生获取知识的能力。

三、点燃学生智慧的火花,让学生真正活起来。

爱因斯坦说过:“提出一个问题比解决一个问题更重要。”在本节课的课后我设计了这样一个环节,你还想研究质数、合数有关哪些方面的知识。这个学习任务既是给学生在课堂上一个探究的任务,也是给学生在课外留下一个拓展的空间。使每个学生都能根据自己不同的水平去探究属于自己的数学空间,从而让不同的学生在数学上得到了不同的发展。

4、五年级数学下册《公因数和最大公因数》的教学反思

《标准》指出“学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者。”这一理念要求我们教师的角色必须转变。我想教师的作用必须体现在以下几个方面。一是要引导学生思考和寻找眼前的问题与自己已有的知识体验之间的关联;二是要提供把学生置于问题情景之中的机会;三是要营造一个激励探索和理解的气氛,为学生提供有启发性的讨论模式;四是要鼓励学生表达,并 3

且在加深理解的基础上,对不同的答案开展讨论;五是要引导学生分享彼此的思想和结果,并重新审视自己的想法。

对照《课标》的理念,我对《公因数与最大公因数》的教学作了一点尝试。

一、引导学生思考和寻找眼前的问题与自己已有的知识体验之间的关联。 《公因数与最大公因数》是在《公倍数和最小公倍数》之后学习的一个内容。如果我们对本课内容作一分析的话,会发现这两部分内容无论是在教材的呈现程序还是在思考方法上都有其相似之处。基于这一认识,在课的开始我作了如下的设计:

“今天我们学习公因数与最大公因数。对于今天学习的内容你有什么猜测?” 学生已经学过公倍数与最小公倍数,这两部分内容有其相似之处,课始放手让学生自由猜测,学生通过对已有认知的检索,必定会催生出自己的一些想法,从课的实施情况来看,也取得了令人满意的效果。什么是公因数和最大公因数?如何找公因数与最大公因数?为什么是最大公因数面不是最小公因数?这一些问题在学生的思考与思维的碰撞中得到了较好的生成。无疑这样的设计贴近学生的最近发展区,为课堂的有效性奠定了基础。

二、提供把学生置于问题情景之中的机会,营造一个激励探索和理解的气氛 “对于今天学习的内容你有什么猜测?”这一问题的包容性较大,不同的学生面对这一问题都能说出自己不同的猜测,学生的差异与个性得到了较好的尊重,真正体现了面向全体的思想。不同学生在思考这一问题时都有了自己的见解,在相互补充与想互启发中生成了本课教学的内容,使学生充分体会了合作的魅力,构建了一个和谐的课堂生活。在这一过程中学生深深地体会到数学知识并不是那么高深莫测、可敬而不可亲。数学并不可怕,它其实滋生于原有的知识,植根于生活经验之中。这样的教学无疑有利于培养学生的自信心,而自信心的培养不就是教育最有意义而又最根本的内容吗?

三、让学生进行独立思考和自主探索

通过学生的猜测,我把学生的提出的问题进行了整理:

(1) 什么是公因数与最大公因数?

(2) 怎样找公因数与最大公因数?

(3) 为什么是最大公因数而不是最小公因数?

(4) 这一部分知识到底有什么作用?

我先让学生独立思考?然后组织交流,最后让学生自学课本

这样的设计对学生来说具有一定的挑战性,在问题解决的过程中充分发挥了学生的主体性。在这一过程中学生形成了自己的理解,在与他人合作与交流中逐渐完善了自己的想法。我想这大概就是《标准》中倡导给学生提供探索与交流的时间和空间的应有之意吧。

5、五年级数学下册《最小公倍数》的教学反思

《最小公倍数》这节课,如何让学生的学习的积极性较高,知识的掌握也较为自然而扎实,学生的思维也在呈螺旋式上升趋势,取得了良好的教学效果。我是从以下几个方面来做:五年级下册数学反思

一、创设情境 激发兴趣,使学生主动的参与到学习中去。

“公倍数”、“最小公倍数”单从纯数学的角度去让学生领会,显然是比较枯燥、乏味的。我从学生的经验和已有的知识出发,激发学生的学习兴趣,向学生提供充分从事数学活动的机会,增强学生学好数学的信心。使这些枯燥的知识变成鲜活、灵动数学,让学生在解决问题的过程中既学到了知识,又体念到了学数学的快乐。五年级下册数学反思

二、培养学生自主探究的能力。五年级下册数学反思

教学中,我们不要教给学生现成的数学,而是要让学生自己观察、思考、探索研究数学。在研究最小公倍数的意义时,设计了例举法找最小公倍数、最小公倍数猜想、分解质因数比较,一系列开放的数学问题,让学生有足够的思维活动空间来解决问题,自主地进行探究性活动,使学生体念到数学数学就在我们的身边。

三、挖掘不足 有待改进

1、课初的情境创设虽考虑到与例题之间的联系,但过渡得不够好。

2、如何激发学生的兴趣不止是一时之效,如何从学生的角度出发进行预案的设计,课堂中顺学而导保持学生的学习积极性是一个值得思考的问题。

轴对称图形教学反思 篇6

一、一段题外话

4月4日清明,许多学校都组织了学生去春游。后来老同学讲了一个笑话。她说清明节那天她们学校组织去烈士陵园扫墓。回来后让学生写作文。要求写出所看到的,所想到的就行了。有一大半的学生写道:“清明节,我们怀着高兴的心情来到了烈士陵园。”

无语,不知道怎么说。

二、轴对称图形。

轴对称图形学生在三年级的时候就已经学过,感觉不是太难。书本上的题目我事先做了一下,觉得学生应该也是能够做的。

1、操作之后的语言

今天一上课我就出示了各种图形,让学生说出哪些是轴对称图形,学生很快地就把轴对称图形找出来了。我让学生拿了长方形到黑板前对折而后自己再画了对称轴,顺便规范了一下对称轴的画法。再让学生先想一下,再用自己的语言说了一下什么叫对称轴,哎,我发现,经过操作学生就是能够说,而且说得是自己的理解,也还蛮到位。

2、探究部分的难度。

原题为:试一试找出正方形的对称轴。

正方形图案简单,学生对正方形的感知很多,找出正方形并画出对称轴并不是难事,可以说,没有探究的价值。

所以,我把题目变了一下,改为让学生探究想想做做4.

小组合作:找出各个图形的对称轴。

完成下表。

正三角形

正四边形

正五边形

正六边形

边数

对称轴的条数。

你们的发现。

学生一填,马上找出了规律。那就是:正几边形就有几条对称轴。

这一步,还是处理得很满意的。

3、练习的问题。

既然是新授的第一课时,练习中就肯定会出现形形色色的问题,有些在预设之中,有些在预设之外。

譬如第2题。学生的对称轴找不全。

譬如第5题,学生的图形设计流于简单,缺乏美感。

轴对称图形教学反思 篇7

一、创设了一个生动有趣的情境。

古人云:“学起于思,思起于疑”,有疑问才能思考和探究。课堂上教师是教学活动的组织者,教师只有精心设计贴近学生生活、有意义和富有挑战性的问题情境,让学生在心里产生一种悬念,进而达到以疑激学的目的。很多学生在幼儿园和小学低年级的剪纸课上,就已经会用对折的方法剪出左右两边形状、大小完全一样的图形。因此,现实中一些对称的图形学生在课前早已接触过,然而何谓“对称”,这一概念对于学生来说却是新鲜的。由此可见,如何让学生科学地认识并建立“对称”的概念是我这节课要达成的重要目标之一。因此,我设计“出示一个图形的一半让学生猜整个图形,在猜图游戏中最后出现半个花瓶,激发学生想办法剪出一个完整的花瓶”的这样一个活动,有效地帮助学生构建科学的“对称”概念,抓住对称的本质特征,让学生对“对称”的概念有更清晰的认识,也为其在生活中如何判断对称现象提供方法。

二、开展有序、有效的活动。

1.首先在动手剪对称图形的活动中加深体验。

“剪一剪”的活动,让学生先自己探索剪对称图形的方法,并尝试着剪一剪,当学生有不同的剪法时,可引导学生比一比:谁的剪法好?说说怎样剪,剪出来的图形才能对称?这样,让学生在具体实践活动中很自然地引出“对称轴”的概念。这一活动的开展,以激起学生动手操作的兴趣和欲望为前提,将观察、思考、操作有机的结合,充分感知对称图形及“对称轴”的概念。

2.观察对称现象,感知对称图形。

观察图片讨论:“这些图形有什么共同特点?”接着当学生交流了“这些图形两边都一样”时,教师追问:“你怎样证明它们两边都一样呢?”这时引导学生把图形对折后,发现图形的左右两边重合在了一起,只能看到图形的一半。这一活动的开展,是把学生观察到的形状让学生用对折的方法亲手验证。这一观察——讨论——动手验证的过程。让学生充分感受轴对称图形的特征。

3.在充分的练习中巩固。

给出轴对称图形和对称轴的名称以后,我没有更多的去强调定义。而是出示在学习和生活中常见的汉字、数字、字母、平面图形等让学生去判断是否是对称图形,画出对称轴等练习,让学生在练习中进一步去构建对称轴和轴对称图形的概念。让学生对轴对称图形和对称轴有一个更准确、更深刻的了解。

三、感受数学的美。

数学与生活紧密联系,教学中,要让学生带着数学走出课堂,走进生活去理解生活中的数学,去体验数学的价值。对称的物体给人一种匀称、均衡的感觉,一种美感。本节课我抓住对称图形的特点师生一起欣赏生活中一幅副精美的对称图片,给学生带来美的感受。

轴对称图形教学反思 篇8

轴对称图形的教学重点是使学生初步认识轴对称图形的一些基本特征,难点是掌握判别轴对称图形的方法。在此之前学生已经学过一些平面图形的特征,形成了一定的空间观念,自然界和生活中具有轴对称性质的事物有很多,也为学生奠定了感性基础。因此在教学这一内容时,就集欣赏美与动手操作为一体的综合实践课。在教学过程中建构具有教育性、创造性、实践性、操作性的学生主题活动为主要形式,以鼓励学生主动参与、主动探索、主动思考、主动实践为基本特征,以学生的自主活动和合作活动为主。使学生始终保持着高昂的学习情绪,切身经历了“做数学”的全过程,感受了学习数学的快乐,品尝了成功的喜悦。

一上课,我就问学生:“咱们班谁画画画的最好?”在孩子们的呼声中亚圣站了起来!我接着说:“老师要和亚圣比一比,我们都来画一个笑脸,看谁画的好看!”孩子们都很兴奋,他们想看看结果究竟会怎样。亚圣认真地画了起来,我呢,也拿起了粉笔……等我们画好后,孩子们放声大笑!因为亚圣画得很漂亮,而我画的笑脸却是一个眼大、一个眼小,耳朵也是大小不一,可以说丑陋无比!我也笑着说:“为什么大家都说我画的不好看啊?我看着倒还不错!”有孩子说:“我们的两只眼睛应该是一样大的!这样画,太不美了!”还有孩子说:“如果从我们的身体中间画一条线,左右两边应该是对称的!”……我表扬了所有发言的孩子后说:“看来大家的审美标准是一样的,今天呢我们就一起感受一些美丽的事物,这些美丽的事物有着一个共同点,我想亚圣已经知道了这个共同点,否则他怎么画的这么漂亮呢?老师相信你也会发现其中的奥秘!”(其实这个奥秘就是轴对称图形的概念。)

接下来,通过多媒体,我向学生展示了众多现实中的照片和一些学生熟知的平面图形,让他们一步步感受轴对称图形的概念。

整堂课教师将学生的观察思考操作过程与媒体的演示过程有机的结合,使学生在潜移默化的过程中体验着轴对称图形的美,享受着学习过程中的快乐。

轴对称图形教学反思 篇9

一、数学的实质是一种文化

《新课程规范》指出:“数学是人类的一种文化,它的内容、思想、方法、语言是现代文明的一局部。”本节课的教学我没有拘泥于课本,“唯教材至上”,而是变“教教材””为“用教材”,把教材作为一个传达数学知识的一个载体。在公开课教案中将“自然、社会、历史、数学”等领域中轴对称图形有机的结合在一起,放大了轴对称图形的文化特性,折射出“冰冷”的图形背后的魅力,将轴对称图形的神韵淋漓尽致的表示了出来。

课堂上我用课件展示自然界中的蝴蝶、蜻蜓等具有轴对称图形特征的动植物图片,调动了同学的已有的表象,丰富了同学的感知。面对一幅幅精美的图片,同学流露出的不只是惊喜,还有几分疑惑:为什么大自然如此的垂青于轴对称图形的形状呢?当“天安门、重庆人民大礼堂、上海东方明珠、河北赵洲桥”等极具中国特色的具有对称美的事物出现在同学的眼前时,同学们被这种文化氛围陶醉了,激发了同学热爱劳动人民的朴素情感和民族自豪感。

二、把探究活动引向深入

我在教学中创设了剪纸游戏、展示同学的作品,然后让同学观察自身创作的作品,比较他们的不同。由于是同学自身的作品,因此同学观察的很仔细。“我发现他们形状不同。”“我发现他们大小不同。”“我发现它们左右两边是完全一样的。”这样的发现过程是真实的,也是一个逐渐发现的数学学习过程。这样同学们就能够较好的判断一个图形是不是轴对称图形。

寻找平面图形中的轴对称图形是本节课的一个重要的环节。一是放手让同学通过自主探索、小组合作的方式进行探究性的活动,最后让同学汇报、争论。二是上述案例中的方法。尽管开放性没有方法一好,但是由于有了师生的互动,。在实践中我发现尽管方法一有很强的开放性,有利于培养同学的合作能力和探究能力,但是经常表示为优等生的游戏,绝大局部后进、中等的同学课后对这一环节表示疑惑。因此我在教学中采用了方式二,尽管开放性没有方法一好,但是由于有了师生的互动,方向性较强,又培养了同学层层深入研究、发现问题的能力。在争论平行四边形是否是轴对称图形的环节里,同学思维的火花在迸发,师生的对话是那样的自然,平等。教师的欣赏犹如催化剂,使探究活动走向高潮,生成性的精彩不时在课堂出现。

纵观本节课的教学,同学在新课程文化的轻拂下学习还是比较轻松的。这股清新之风吹走了数学的枯燥、苦涩,吹走了同学心灵中对数学的恐惧,让同学生长在富有情趣和意义的数学文化氛围中,使数学课堂充溢着文化的气息。

以上就是《轴对称图形教学反思1000字9篇》的全部内容,想了解更多内容,请点击轴对称图形教学反思查看或关注本网站内容更新,感谢您的关注!

文章来源:http://m.jab88.com/j/132263.html

更多

最新更新

更多