88教案网

一名优秀负责的教师就要对每一位学生尽职尽责,作为高中教师就要根据教学内容制定合适的教案。教案可以让学生能够在课堂积极的参与互动,帮助高中教师提前熟悉所教学的内容。所以你在写高中教案时要注意些什么呢?为了让您在使用时更加简单方便,下面是小编整理的“映射”,仅供参考,欢迎大家阅读。

映射

教学目标

1.了解映射的概念,象与原象的概念,和一一映射的概念.
(1)明确映射是特殊的对应即由集合,集合和对应法则f三者构成的一个整体,知道映射的特殊之处在于必须是多对一和一对一的对应;
(2)能准确使用数学符号表示映射,把握映射与一一映射的区别;
(3)会求给定映射的指定元素的象与原象,了解求象与原象的方法.
2.在概念形成过程中,培养学生的观察,比较和归纳的能力.
3.通过映射概念的学习,逐步提高学生对知识的探究能力.

教学建议

教材分析

(1)知识结构

映射是一种特殊的对应,一一映射又是一种特殊的映射,而且函数也是特殊的映射,它们之间的关系可以通过下图表示出来,如图:

由此我们可从集合的包含关系中帮助我们把握相关概念间的区别与联系.

(2)重点,难点分析

本节的教学重点和难点是映射和一一映射概念的形成与认识.

①映射的概念是比较抽象的概念,它是在初中所学对应的基础上发展而来.教学中应特别强调对应集合中的唯一这点要求的理解;

映射是学生在初中所学的对应的基础上学习的,对应本身就是由三部分构成的整体,包括集合A和集合B及对应法则f,由于法则的不同,对应可分为一对一,多对一,一对多和多对多.其中只有一对一和多对一的能构成映射,由此可以看到映射必是“对B中之唯一”,而只要是对应就必须保证让A中之任一与B中元素相对应,所以满足一对一和多对一的对应就能体现出“任一对唯一”.

②而一一映射又在映射的基础上增加新的要求,决定了它在学习中是比较困难的.

教法建议

??(1)在映射概念引入时,可先从学生熟悉的对应入手,选择一些具体的生活例子,然后再举一些数学例子,分为一对多、多对一、多对一、一对一四种情况,让学生认真观察,比较,再引导学生发现其中一对一和多对一的对应是映射,逐步归纳概括出映射的基本特征,让学生的认识从感性认识到理性认识.

(2)在刚开始学习映射时,为了能让学生看清映射的构成,可以选择用图形表示映射,在集合的选择上可选择能用列举法表示的有限集,法则尽量用语言描述,这样的表示方法让学生可以比较直观的认识映射,而后再选择用抽象的数学符号表示映射,比如:

,.

这种表示方法比较简明,抽象,且能看到三者之间的关系.除此之外,映射的一般表示方法为,从这个符号中也能看到映射是由三部分构成的整体,这对后面认识函数是三件事构成的整体是非常有帮助的.

(3)对于学生层次较高的学校可以在给出定义后让学生根据自己的理解举出映射的例子,教师也给出一些映射的例子,让学生从中发现映射的特点,并用自己的语言描述出来,最后教师加以概括,再从中引出一一映射概念;对于学生层次较低的学校,则可以由教师给出一些例子让学生观察,教师引导学生发现映射的特点,一起概括.最后再让学生举例,并逐步增加要求向一一映射靠拢,引出一一映射概念.

(4)关于求象和原象的问题,应在计算的过程中总结方法,特别是求原象的方法是解方程或方程组,还可以通过方程组解的不同情况(有唯一解,无解或有无数解)加深对映射的认识.

(5)在教学方法上可以采用启发,讨论的形式,让学生在实例中去观察,比较,启发学生寻找共性,共同讨论映射的特点,共同举例,计算,最后进行小结,教师要起到点拨和深化的作用.

教学设计方案

2.1映射

教学目标(1)了解映射的概念,象与原象及一一映射的概念.
(2)在概念形成过程中,培养学生的观察,分析对比,归纳的能力.
(3)通过映射概念的学习,逐步提高学生的探究能力.

教学重点难点::映射概念的形成与认识.

教学用具:实物投影仪

教学方法:启发讨论式

教学过程:

一、引入

在初中,我们已经初步探讨了函数的定义并研究了几类简单的常见函数.在高中,将利用前面集合有关知识,利用映射的观点给出函数的定义.那么映射是什么呢?这就是我们今天要详细的概念.

二、新课

在前一章集合的初步知识中,我们学习了元素与集合及集合与集合之间的关系,而映射是重点研究两个集合的元素与元素之间的对应关系.这要先从我们熟悉的对应说起(用投影仪打出一些对应关系,共6个)

我们今天要研究的是一类特殊的对应,特殊在什么地方呢?
提问1:在这些对应中有哪些是让A中元素就对应B中唯一一个元素?
让学生仔细观察后由学生回答,对有争议的,或漏选,多选的可详细说明理由进行讨论.最后得出(1),(2),(5),(6)是符合条件的(用投影仪将这几个集中在一起)
提问2:能用自己的语言描述一下这几个对应的共性吗?
经过师生共同推敲,将映射的定义引出.(主体内容由学生完成,教师做必要的补充)

(板书)

一.映射

1.定义:一般地,设两个集合,如果按照某种对应法则,对于集合中的任何一个元素,在集合中都有唯一的元素和它对应,那么这样的对应(包括集合及到的对应法则)叫做集合到集合的映射,记作.
定义给出之后,教师应及时强调映射是特殊的对应,故是三部分构成的一个整体,从映射的符号表示中也可看出这一点,它的特殊之处在于元素与元素之间的对应必须作到“任一对唯一”,同时指出具有对应关系的元素即中元素对应中元素,则叫的象,叫的原象.

(板书)

2.象与原象
可以用前面的例子具体说明谁是谁的象,谁是谁的原象.
提问3:下面请同学根据自己对映射的理解举几个映射的例子,看对映射是否真正认识了.
(开始时只要是映射即可,之后可逐步提高要求,如集合是无限集,或生活中的例子等)由学生自己评判.之后教师再给出几个(主要是补充学生举例类型的不足)

(1),,,.

(2).

(3)除以3的余数.

(4){高一1班同学},{入学是数学考试成绩},对自己的考试成绩.

在学生作出判断之后,引导学生发现映射的性质(教师适当提出研究方向由学生说,再由老师概括)

(板书)3.对概念的认识

(1)与是不同的,即与上有序的.

(2)象的集合是集合B的子集.

(3)集合A,B可以是数集,也可以是点集或其它集合.

在刚才研究的基础上,教师再提出(2)和(4)有什么共性,能否把它描述出来,如果学生不能找出共性,教师可再给出几个例子,(用投影仪打出)

如:

(1)

(2){数轴上的点},实数与数轴上相应的点对应.
(3){中国,日本,韩国},{北京,东京,汉城},相应国家的首都.
引导学生在元素之间的对应关系和元素个数上找共性,由学生提出两点共性集合A中不同的元素对集合B中不同的元素;②B中所有元素都有原象.
那么满足以上条件的映射又是一种特殊的映射,称之为一一映射.

(板书)4.一一映射

(1)定义:设A,B是两个集合,是集合A到集合B的映射,如果在这个映射下对于集合A中的不同元素,在集合B中又不同的象,而且B中每一个元素都有原象,那么这个映射叫做A到B上的一一映射.
给出定义后,可再返回到刚才的例子,让学生比较它与映射的区别,从而进一步明确“一一”的含义.然后再安排一个例题.
例1下列各表表示集合A(元素a)到集合B(元素b)的一个映射,判断这些映射是不是A到B上的一一映射.

其中只有第三个表可以表示一一映射,由此例点明一一映射的特点
(板书)(2)特点:两个集合间元素是一对一的关系,不同的对的也一定是不同的(元素个数相同);集合B与象集C是相等的集合.
对于映射我们现在了解了它的定义及特殊的映射一一映射,除此之外对于映射还要求能求出指定元素的象与原象.

(板书)5.求象与原象.

例2(1)从R到的映射,则R中的-1在中的象是_____;中的4在R中的原象是_____.
(2)在给定的映射下,则点在下的象是_____,点在下的原象是______.
(3)是集合A到集合B的映射,,则A中元素的象是_____,B中象0的原象是______,B中象-6的原象是______.
由学生先回答第(1)小题,之后让学生自己总结一下,应用什么方法求象和原象,学生找到方法后,再在方法的指导下求解另外两题,若出现问题,教师予以点评,最后小结求象用代入法,求原象用解方程或解方程组.
注意:所解的方程解的情况可能有多种如有唯一解,也可能无解,可能有无数解,这与映射的定义也是相吻合的.但如果是一一映射,则方程一定有唯一解.

三、小结

1.映射是特殊的对应

2.一一映射是特殊的映射.
3.掌握求象与原象的方法.

四、作业:略

五、板书设计

探究活动

(1){整数},{偶数},,试问与中的元素个数哪个多?为什么?如果我们建立一个由到的映射对应法则乘以2,那么这个映射是一一映射吗?

答案:两个集合中的元素一样多,它们之间可以形成一一映射.

(2)设,,问最多可以建立多少种集合到集合的不同映射?若将集合改为呢?结论是什么?如果将集合改为,结论怎样?若集合改为,改为,结论怎样?

从以上问题中,你能归纳出什么结论吗?依此结论,若集合A中含有个元素,集合B中含有个元素,那么最多可以建立多少种集合到集合的不同映射?

答案:若集合A含有m个元素,集合B含有n个元素,则不同的映射有个.

扩展阅读

§2.1.4映射的概念


一名优秀的教师就要对每一课堂负责,教师要准备好教案,这是每个教师都不可缺少的。教案可以让学生们充分体会到学习的快乐,有效的提高课堂的教学效率。教案的内容要写些什么更好呢?以下是小编为大家精心整理的“§2.1.4映射的概念”,仅供参考,欢迎大家阅读。

§2.1.4映射的概念
【学习目标】:
1.了解映射的概念及表示方法;2.理解输入值与输出值的概念。

【教学过程】:
一、复习回顾:
1.单值对应:
2.函数的概念:
3.下列对应关系是否是从M到N的函数:
(1)M={1,2,3},N={3,4,5,6,7,8,9},法则:乘2加1;
(2)M=N*,N={0,1},法则:除以2得的余数;
(3)M=,N=R,法则:
二、新课讲授:
1.观察下列对应:

①②③④
②③④三个对应的共同特点是
2.映射:
(1)定义:一般地,设是两个_____集合,如果按某种对应法则,对于集合中的________元素,在集合中都有_______的元素与之对应,这样的单值对应叫做从集合到集合的的映射,记为______________________.
(2)象与原象________________________________
思考1:映射与函数的概念有什么联系和区别?
思考2:对于A中的“任一元素”B中会不会出现多个元素与之对应?
思考3:集合B中的元素是不是都是象?是不是都有原象?
思考4:“从集合到集合的的映射”与“从集合到集合的的映射”相同吗?

三、典例欣赏:
例1.下列对应是否是从A到B的映射:
(1)A={1,2,3,4},B={3,4,5,6,7,8,9},f:A→B“乘2加1”;
(2)A=N*,B={0,1},f:A→B“除以2得的余数”;
(3)A=R,B={直线上的点},f:A→B“建立数轴的方法,使A中的数与B中的点对应”;
(4)A={x|x是三角形},B={y|y0},f:A→B“计算面积”;
(5)A=R,B=(0,+∞),f:x→y=|x|;
(6)A=Z,B=Z,f:A→B“求平方”;(“求平方根”)
(7)A=B=N,f:x→|x-3|。
小结:判断映射的要点是
例2.从集合A={1,2}到集合B={5,6}的不同映射共有多少个?并画示意图.

变题:已知M={a,b,c},N={-3,0,3},则满足条件f:MN,f(a)+f(b)+f(c)=0的映射有几个?

例3.(x,y)在映射f下的象是(x+y,x2-y),则(-3,2)的象为;(2,-2)的原象为。

变题1:映射f:A→B中,A=B={(x,y)|x∈R,y∈R},f:(x,y)→(3x-2y+1,4x+3y-1),问是否存在这样的元素(a,b)使它的象仍是自己?若存在,求出这个元素;若不存在,说明理由。

变题2:若f:y=3x+1是从集合A={1,2,3,k}到集合B={4,7,a4,a2+3a}的一个映射,该映射满足B中任何一个元素均有原象,求自然数a,k及集合A,B.
【反思小结】:
【针对训练】:班级姓名学号
1.根据给定的对应关系,写出下列三图中和x对应的数值:

2.判断下列各图表示的对应中不是A到B的映射的是。

3.在给定的映射f:(x,y)→(2x+y,xy)(x,y∈R)下,点()的原象是。
4.设集合A和B都是自然数集合N,映射f:AB把集合A中的元素n映射到集合B中的元素2n+n,则在映射f下,象20的原象是
5.如果映射的象的集合是Y,原象集合是Z,那么Z和A的关系是;
Y和B的关系是
6.设,若从M到的N映射满足:,求这样的映射f的个数为
7.f是从集合A={a,b,c}到集合B={d,e}的一个映射,则满足映射条件的“f”共有____个
8.已知P={x|0≤x≤4},Q={y|0≤y≤2},下列对应不表示从P到Q的映射是___________.
(1)f:x→y=(2)f:x→y=(3)f:x→y=(4)f:x→y=
9.从集合A到集合B的映射中,下面的说法不正确的是_____________.
(1)A中的每一个元素在B中都有象(2)A中的两个不同元素在B中的相必不相同
(3)B中的元素在A中可以没有原象(4)B中的某一元素在A中的原象可能不止一个
10.如果映射f:AB,其中,集合A={-3,-2,-1,1,2,3,4},集合B中的元素都是集合A中元素在映射f下的象,且对任意的aA,B中和它对应的元素是|a|,则集合B中元素的个数是______________.
11.设A={1,2,3,m},B={4,7,},对应法则是从A到B的一一映射,已知,又知1的象是4,7的原象是2,求。

2.1映射的概念


一位优秀的教师不打无准备之仗,会提前做好准备,高中教师要准备好教案,这是高中教师需要精心准备的。教案可以让学生更好的吸收课堂上所讲的知识点,帮助授课经验少的高中教师教学。那么,你知道高中教案要怎么写呢?以下是小编为大家精心整理的“2.1映射的概念”,供大家借鉴和使用,希望大家分享!

2.1映射的概念
教学目标:
1.知识与技能
了解映射的概念,掌握象、原象等概念及其简单应用。
2.过程与方法
学会用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用。
3.情感、态度与价值观
树立数学应用的观点,培养学习良好的思维品质。
教学重点:映射的概念。
教学难点:映射的概念。
教学过程:
一、复习引入:
1、在初中我们已学过一些对应的例子:(学生思考、讨论、回答)
①看电影时,电影票与座位之间存在者一一对应的关系
②对任意实数a,数轴上都有唯一的一点A与此相对应
③坐标平面内任意一点A都有唯一的有序数对(x,y)和它对应
2、函数的概念
本节我们将学习一种特殊的对应—映射。
二、讲解新课:
看下面的例子:设A,B分别是两个集合,为简明起见,设A,B分别是两个有限集
说明:(2)(3)(4)这三个对应的共同特点是:对于左边集合A中的任何一个元素,在右边集合B中都有唯一的元素和它对应
映射:设A,B是两个集合,如果按照某种对应法则f,对于集合A中的任何一个元素,在集合B中都有唯一的元素和它对应,这样的对应(包括集合A、B以及A到B的对应法则f)叫做集合A到集合B的映射记作:
象、原象:给定一个集合A到集合B的映射,且,如果元素和元素对应,则元素叫做元素的象,元素叫做元素的原象
关键字词:(学生思考、讨论、回答,教师整理、强调)
①“A到B”:映射是有方向的,A到B的映射与B到A的映射往往不是同一个映射,A到B是求平方,B到A则是开平方,因此映射是有序的;
②“任一”:就是说对集合A中任何一个元素,集合B中都有元素和它对应,这是映射的存在性;
③“唯一”:对于集合A中的任何一个元素,集合B中都是唯一的元素和它对应,这是映射的唯一性;
④“在集合B中”:也就是说A中元素的象必在集合B中,这是映射的封闭性.
指出:根据定义,(2)(3)(4)这三个对应都是集合A到集合B的映射;注意到其中(2)(4)是一对一,(3)是多对一
思考:(1)为什么不是集合A到集合B的映射?
回答:对于(1),在集合A中的每一个元素,在集合B中都有两个元素与之相对应,因此,(1)不是集合A到集合B的映射
思考:如果从对应来说,什么样的对应才是一个映射?
一对一,多对一是映射但一对多显然不是映射
辨析:
①任意性:映射中的两个集合A,B可以是数集、点集或由图形组成的集合等;
②有序性:映射是有方向的,A到B的映射与B到A的映射往往不是同一个映射;
③存在性:映射中集合A的每一个元素在集合B中都有它的象;
④唯一性:映射中集合A的任一元素在集合B中的象是唯一的;
⑤封闭性:映射中集合A的任一元素的象都必须是B中的元素,不要求B中的每一个元素都有原象,即A中元素的象集是B的子集.
映射三要素:集合A、B以及对应法则,缺一不可;
三、例题讲解
例1判断下列对应是否映射?有没有对应法则?
aeaeae
bfbfbf
cgcgcg
dd
(是)(不是)(是)
是映射的有对应法则,对应法则是用图形表示出来的
例2下列各组映射是否同一映射?

aeaede
bfbfbf
cgcgcg
例3判断下列两个对应是否是集合A到集合B的映射?
(1)设A={1,2,3,4},B={3,4,5,6,7,8,9},对应法则
(2)设,对应法则
(3),,
(4)设
(5),
四、练习:
1.设A={1,2,3,4},B={3,4,5,6,7,8,9},集合A中的元素x按照对应法则“乘2加1”和集合B中的元素2x+1对应.这个对应是不是映射?(是)
2.设A=N*,B={0,1},集合A中的元素x按照对应法则“x除以2得的余数”和集合B中的元素对应.这个对应是不是映射?(不是(A中没有象))
3.A=Z,B=N*,集合A中的元素x按照对应法则“求绝对值”和集合B中的元素对应.这个对应是不是映射?(是)
4.A={0,1,2,4},B={0,1,4,9,64},集合A中的元素x按照对应法则“f:ab=(a1)2”和集合B中的元素对应.这个对应是不是映射?(是)
5.在从集合A到集合B的映射中,下列说法哪一个是正确的?
(A)B中的某一个元素b的原象可能不止一个;(B)A中的某一个元素a的象可能不止一个(C)A中的两个不同元素所对应的象必不相同;
(D)B中的两个不同元素的原象可能相同
6.下面哪一个说法正确?
(A)对于任意两个集合A与B,都可以建立一个从集合A到集合B的映射
(B)对于两个无限集合A与B,一定不能建立一个从集合A到集合B的映射
(C)如果集合A中只有一个元素,B为任一非空集合,那么从集合A到集合B只能建立一个映射
(D)如果集合B只有一个元素,A为任一非空集合,则从集合A到集合B只能建立一个映射
7.集合A=N,B={m|m=,n∈N},f:x→y=,x∈A,y∈B.请计算在f作用下,象,的原象分别是多少.(5,6)

高一数学映射复习037


北师大高中数学必修(Ⅰ)第二章《函数》全部教案
第四节映射
一.教学目标:1.知识与技能:(1)了解映射的概念及表示方法;(2)结合简单的对应图表,理解一一映射的概念.
2.过程与方法:(1)函数推广为映射,只是把函数中的两个数集推广为两个任意的集合;(2)通过实例进一步理解映射的概念;(3)会利用映射的概念来判断“对应关系”是否是映射,一一映射.
3.情态与价值:映射在近代数学中是一个极其重要的概念,是进一步学习各类映射的基础.
二.教学重点:映射的概念
教学难点:映射的概念
三.学法与教学方法
1.学法:通过丰富的实例,学生进行交流讨论和概括;从而完成本节课的教学目标;2.教学方法:探究交流法。
四.教学过程
(一)创设情景,揭示课题
复习初中常见的对应关系:1.对于任何一个实数,数轴上都有唯一的点和它对应;2.对于坐标平面内任何一个点A,都有唯一的有序实数对()和它对应;3.对于任意一个三角形,都有唯一确定的面积和它对应;4.某影院的某场电影的每一张电影票有唯一确定的座位与它对应;5.函数的概念.
(二)研探新知
1.我们已经知道,函数是建立在两个非空数集间的一种对应,若将其中的条件“非空数集”弱化为“任意两个非空集合”,按照某种法则可以建立起更为普通的元素之间的对应关系,这种对应就叫映射(板书课题).
2.先看几个例子,两个集合A、B的元素之间的一些对应关系:
(1)开平方;(2)求正弦;(3)求平方;(4)乘以2.
归纳引出映射概念:
一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则,使对于集合A中的任意一个元素,在集合B中都有唯一确定的元素与之对应,那么就称对应:A→B为从集合A到集合B的一个映射.记作“:A→B”
说明:
(1)这两个集合有先后顺序,A到B的映射与B到A的映射是截然不同的,其中表示具体的对应法则,可以用多种形式表述.
(2)“都有唯一”什么意思?
包含两层意思:一是必有一个;二是只有一个,也就是说有且只有一个的意思.
(三)质疑答辩,排难解惑,发展思维
例1.下列哪些对应是从集合A到集合B的映射?
(1)A={是数轴上的点},B=R,对应关系:数轴上的点与它所代表的实数对应;
(2)A={是平面直角坐标中的点},对应关系:平面直角坐标系中的点与它的坐标对应;
(3)A={三角形},B=:每一个三角形都对应它的内切圆;
(4)A={是新华中学的班级},对应关系:每一个班级都对应班里的学生.
思考:将(3)中的对应关系改为:每一个圆都对应它的内接三角形;(4)中的对应关系改为:每一个学生都对应他的班级,那么对应:B→A是从集合B到集合A的映射吗?
例2.在下图中,图(1),(2),(3),(4)用箭头所标明的A中元素与B中元素的对应法则,是不是映射?是不是函数关系?
A开平方BA求正弦B

(1)(2)

A求平方BA乘以2B

(3)(4)
(四)巩固深化,反馈矫正
1、画图表示集合A到集合B的对应(集合A,B各取4个元素)
已知:(1),对应法则是“乘以2”;
(2)A=>,B=R,对应法则是“求算术平方根”;
(3),对应法则是“求倒数”;
(4)<对应法则是“求余弦”.
2.在下图中的映射中,A中元素600的象是什么?B中元素的原象是什么?
A求正弦B

(五)归纳小结
提出问题:怎样判断建立在两个集合上的一个对应关系是否是一个映射,你能归纳出几个“标准”呢?
师生一起归纳:判定是否是映射主要看两条:一条是A集合中的元素都要有象,但B中元素未必要有原象;二条是A中元素与B中元素只能出现“一对一”或“多对一”的对应形式.
(六)设置问题,留下悬念.
1.由学生举出生活中两个有关映射的实例.
2.已知是集合A上的任一个映射,试问在值域(A)中的任一个元素的原象,是否都是唯一的?为什么?
3.已知集合从集合A到集合B的映射,试问能构造出多少映射?
AB
解:二对一,有3个映射;
一对一时,有3×2=6个映射
所以,共有9个映射

4.设集合A={a,b,c},B={0,1},试问:从A到B的映射一共有几个?并将它们分别表示出来。
AB
【共有2×2×2=8个映射】

五、课后反思

高一数学映射036


课题:§1.2.2映射
教学目的:(1)了解映射的概念及表示方法,了解象、原象的概念;
(2)结合简单的对应图示,了解一一映射的概念.
教学重点:映射的概念.
教学难点:映射的概念.
教学过程:
一、引入课题
复习初中已经遇到过的对应:
1.对于任何一个实数a,数轴上都有唯一的点P和它对应;
2.对于坐标平面内任何一个点A,都有唯一的有序实数对(x,y)和它对应;
3.对于任意一个三角形,都有唯一确定的面积和它对应;
4.某影院的某场电影的每一张电影票有唯一确定的座位与它对应;
5.函数的概念.
二、新课教学
1.我们已经知道,函数是建立在两个非空数集间的一种对应,若将其中的条件“非空数集”弱化为“任意两个非空集合”,按照某种法则可以建立起更为普通的元素之间的对应关系,这种的对应就叫映射(mapping)(板书课题).
2.先看几个例子,两个集合A、B的元素之间的一些对应关系
(1)开平方;
(2)求正弦
(3)求平方;
(4)乘以2;
3.什么叫做映射?
一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:AB为从集合A到集合B的一个映射(mapping).
记作“f:AB”
说明:
(1)这两个集合有先后顺序,A到B的射与B到A的映射是截然不同的.其中f表示具体的对应法则,可以用汉字叙述.
(2)“都有唯一”什么意思?
包含两层意思:一是必有一个;二是只有一个,也就是说有且只有一个的意思。
4.例题分析:下列哪些对应是从集合A到集合B的映射?
(1)A={P|P是数轴上的点},B=R,对应关系f:数轴上的点与它所代表的实数对应;
(2)A={P|P是平面直角体系中的点},B={(x,y)|x∈R,y∈R},对应关系f:平面直角体系中的点与它的坐标对应;
(3)A={三角形},B={x|x是圆},对应关系f:每一个三角形都对应它的内切圆;
(4)A={x|x是新华中学的班级},B={x|x是新华中学的学生},对应关系f:每一个班级都对应班里的学生.
思考:
将(3)中的对应关系f改为:每一个圆都对应它的内接三角形;(4)中的对应关系f改为:每一个学生都对应他的班级,那么对应f:BA是从集合B到集合A的映射吗?
5.完成课本练习
三、作业布置
补充习题

文章来源:http://m.jab88.com/j/13137.html

更多

猜你喜欢

更多

最新更新

更多