88教案网

2022年北师大版六年级数学下册全册集体备课教案2

老师要承担起对每一位同学的教学责任,在开展教学工作之前。有的老师会在很久之前就精心制作一份教学计划。这样我们可以在上课时根据不同的情况做出一定的调整,那么老师怎样写才会喜欢听课呢?下面是小编精心收集整理,为您带来的《2022年北师大版六年级数学下册全册集体备课教案2》,欢迎阅读,希望您能阅读并收藏。

学 习

目 标 进一步掌握圆柱和圆锥体积的计算方法,能正确熟练地运用公式计算圆锥的体积。进一步培养学生运用所学知识解决实际问题的能力和动手操作的能力。 进一步熟悉圆锥的体积计算。

学 习

重 点 圆锥的体积计算。

过 程 与 方 法

教 师 活 动

一、基本练习

圆锥体积计算公式

相邻两个面积单位之间的进率是多少?

相邻两个体积单位之间的进率是多少?

二、实际应用

占地面积是求得什么?

三、实践活动

学生独立完成。

指名口答。

实际测量完成。

针对学困生进行指导。

小组合作完成。

板书设计

圆锥的体积

——练习——

反思

通过练习,进一步掌握了圆锥体积的计算方法,从而达到理解。

课题 变化的量 教时 二 1 (9)

学 习

目 标 1.结合具体目标,体会生活中存在着大量互相依存的变量。

2.在具体情境中,尝试用自己的语言描述两个变量之间的关系。

学 习

重 点 结合具体目标,体会生活中存在着大量互相依存的变量。

过 程 与 方 法

教 师 活 动

活动一:观察并回答。

1、 下表是小明的体重变化情况。

2、 上表中哪些量在发生变化?

3、 说一说小明10周岁前的体重是如何随年龄增长而变化的?

小结:小明的体重随年龄的增长而变化。2—6岁和6---10岁是体重的增长高峰。说明这两个阶段是孩子成长的重要阶段。

4、体重一直会随年龄的增长而变化吗?这说明了什么?

6、 教育学生要合理饮食,适当控制自己的体重。

活动二:骆驼被称为“沙漠之舟”,它的体温随时间的变化而发生较大的变化。

观察书上统计图:新课标第一网

1、 图中所反映的两个变化的量是哪两个?

2、 横轴表示什么?纵轴表示什么?

3、 一天中,骆驼的体温最高是多少?最低是多少?

4、 一天中,在什么时间范围内骆驼的体温在上升?在什么时间范围内骆驼的体温在下降?

5、 第二天8时骆驼的体温与前一天8时的体温有什么关系?

6、 骆驼的体温有什么变化变化的规律吗?

活动三:某地的一位学生发现蟋蟀叫的次数与气温之间有如下的近似关系。

3、 你还发现生活中有哪两个量之间具有变化的关系?它们之间是怎样变化的?四人小组交流你收集到的信息,选派代表请举例说明

4、 你还发现我们学过的数学知识中有哪些量之间具有变化的关系?

全课小结:今天我们研究的两个量都是相关联的。它们之间在变化的时候都具有一定的关系。下一节课我们将深入研究具有相关联的两个量,在变化时有相同的变化特征,这样的知识在数学上的应用。

观察表中所反映的内容,搞清楚表中所涉及的量是哪两个量?观察后请回答。

说明:体重和年龄是一组相关联的量。但体重的增长是随着人的生长规律而确定的。

同桌两人观察并思考,得出结论后,记录在书上,然后再在全班汇报说明。

1、 蟋蟀1分叫的次数除以7再加3,所得的结果与当时的气温值差不多。

2、 如果用 t 表示蟋蟀每分叫的次数,你能用公式表示这个近似关系吗?请你写出这个关系式,全班展示,交流。

板书设计

变化的量

反思

课题 正比例 教时 二 2 (10)

学 习

目 标 利用正比例解决一些简单的生活问题,感受正比例关系在生活中的广泛应用。能根据正比例的意义,判断两个相关联的量是不是成正比例。结合丰富的事例,认识正比例。

学 习

重 点 结合丰富的事例,认识正比例。能根据正比例的意义,判断两个相关联的量是不是成正比例。

过 程 与 方 法

教 师 活 动

活动一:在情境中感受两种相关联的量之间的变化规律。

(一)情境一:

2、填完表以后思考:正方形的周长与边长,面积与边长的变化是否有关系?它们的变化分别有怎样的规律?规律相同吗?

说说从数据中发现了什么?

3、 小结:正方形的周长和面积都随边长的增加而增加,在变化过程中,正方形的周长与边长的比值一定都是4。正方形的面积一边长的比是边长,是一个不确定的值。

(二)情境二:

1、一种汽车行驶的速度为90千米/小时。汽车行驶的时间和路程如下:

3、从表中你发现了什么规律?

(三)情境三:

1、一些人买一种苹果,购买苹果的质量和应付的钱数如下。

应付的钱数与质量的比值(也就是单价)相同。

4、说说以上两个例子有什么共同的特点。

小结:

5、正比例关系:

(1)时间增加,所走的路程也相应增加,而且路程与时间的比值(速度)相同。那么我们说路程和时间成正比例。

(2)购买苹果应付的钱数与质量有什么关系?

6、观察思考成正比例的量有什么特征?

(四)想一想:

1、正方形的周长与边长成正比例吗?面积与边长呢?为什么?

师小结:

(1)正方形的周长随边长的变化而变化,并且周长与边长的比值都是4,所以正方形的周长与边长成正比例。

(2)正方形的面积虽然也随边长的变化而变化,但面积与边长的比值是一个变化的值,所以正方形的面积和边长不成正比例。

2、小明和爸爸的年龄变化情况如下:

小明 6 7 8 9 10 11

爸爸 32 33

(2) 父子的年龄成正比例吗?为什么?

(3) 爸爸的年龄=小明的年龄+26。虽然小明岁数增加,爸爸岁数也增加,但是小明岁数与爸爸岁数的比值随着时间发生变化,不是一个确定的值,所以父子的年龄不成正比例。

活动二:练一练。

1、 判断下面各题中的两个量,是否成正比例,并说明理由。

(1)每袋大米的质量一定,大米的总质量和袋数。

(2) 一个人的身高和年龄。

(3) 宽不变,长方形的周长与长。

2、根据下表中平行四边形的面积与高相对应的数值,判断当底是6厘米的时候,它们是是成正比例,并说明理由。

平行四边形的面积随高的变化而变化,即平行四边形的面积与高的比值不变,所以平行四边形的面积与高成正比例。(也可以用公式进行说明)

3、 买邮票的枚数与应付的钱数成正比例吗?填写表格。先填写表格,再说明理由

应付的钱数随购买的枚数的变化而变化,而且比值不便。所以应付的钱数与买邮票的枚数成正比例。

4、找一找生活中成正比例的例子。

5、先自己独立完成,然后集体订正,说理由。

1、 观察图,分别把正方形的周长与边长,面积与边长的变化情况填入表格中。请根据你的观察,把数据填在表中。

说说你发现的规律。

2、请把下表填写完整。

说说你发现的规律:路程与时间的比值(速度)相同。

2、把表填写完整。

3、从表中发现了什么规律?

路程随时间的变化而变化,在变化过程中路程与时间的比值相同;应付的钱数随购买苹果的质量的变化而变化,在变化过程中应付的钱数与质量的比值相同。

一个量随另一个量的变化而变化,在变化过程中这两个量的比值相同。

请你也试着说一说。

请生用自己的语言说一说。

(1)把表填写完整。

与同桌交流,再集体汇报

在老师的小结中感受并总结正比例关系的特征

5、先自己独立完成,然后集体订正,说理由。

板书设计

正比例

平行四边形的面积随高的变化而变化,即平行四边形的面积与高的比值不变,所以平行四边形的面积与高成正比例。(也可以用公式进行说明)

教学反思

利用正比例解决一些简单的生活问题,感受正比例关系在生活中的广泛应用。能根据正比例的意义,判断两个相关联的量是不是成正比例。

课题 画一画 教时 二 3 (11)

学 习

目 标 在具体情境中,通过“画一画”的活动,初步认识正比例图象。 会在方格纸上描出成正比例的量所对应的点,并能在图中根据一个变量的值估计它所对应的变量的值。 利用正比例关系,解决生活中的一些简单问题。

学 习

重 点 在具体情境中,通过“画一画”的活动,初步认识正比例图象。会在方格纸上描出成正比例的量所对应的点,并能在图中根据一个变量的值估计它所对应的变量的值。

过 程 与 方 法

教 师 活 动

一 、复习

活动一;判断下面的量是否成正比例关系?

1、 每行人数一定,总人数和行数。

2、 长方形的长一定,宽和面积。

3、 长方体的底面积一定,体积和高。

4、 分子一定,分母和分数值。

5、 长方形的周长一定,长和宽。

6、 一个自然数和它的倒数。

7、 正方形的边长与周长。

8、 正方形的边长与面积。

9、 圆的半径与周长。

10、 圆的面积与半径。

11、 什么样的两个量叫做成正比例的量?

二、新授

活动二:探索一个数与它的5倍之间的关系。

2、判断一个数的5倍和这个数有怎样的关系?

小结:一个数和它的5倍之间具有正比例关系。

3、 根据上表,说出下图中各点的含义。(图见书上)。请观察横轴表示什么?纵轴表示什么?然后说说各点表示的含义。

4、 连接各点,你发现了什么?

注:所描的点都在同一条直线上。

三、练习新课标第一网

活动三:试一试。

1、 在下图中描点,表示第20页两个表格中的数量关系。

2、 思考;连接各点,你发现了什么?

活动四:练一练。

1、 圆的半径和面积成正比例关系吗?为什么?

教师讲解:因为圆的面积和半径的比值不是一个常数。

2、 乘船的人数与所付船费为:(数据见书上)

(1) 将书上的图补充完整。

(2) 说说哪个量没有变?

(3) 乘船人数与船费有什么关系?

(4) 连接各点,你发现了什么?

每人所需的乘船费用没有变化。

乘船费用与人数成正比例。

所有的点都在一条直线上。

3、 回答下列问题:

(1)圆的周长与直径成正比例吗?为什么?

圆的周长与直径成正比例关系。

(2) 根据右图,先估计圆的周长,再实际计算。

(3) 直径为5厘米的圆的周长估计值为( ),实际计算值为()。

(4) 直径为15厘米的圆的周长估计值为(),实际计算值为()。

4、把下表填写完整。试着在 第一题的图上描点,并连接各点,你发现了什么?(表格见书上)所有的点都在同一条直线上。

指名学生完成。

1、 求出一个数的5倍,填写书上表格。自己独立完成。

说说你判断的理由。

利用书上的图,把下表填完整。

估计并找一找这组数据在统计图上的位置。

自己独立完成。

在统计图上估计一下,看看自己估计地是否准确 。

学生先补充完整,然后指名汇报。

师生评议。

指名汇报。

自己独立完成。

板书设计

画一画 教学反思

会在方格纸上描出成正比例的量所对应的点,并能在图中根据一个变量的值估计它所对应的变量的值。 利用正比例关系,解决生活中的一些简单问题。

课题 反比例 教时 二 4 (12)

学 习

目 标 结合丰富的实例,认识反比例。能根据反比例的意义,判断两个相关联的量是不是成反比例。利用反比例解决一些简单的生活问题,感受反比例关系在生活中的广泛应用。

学 习

重 点 认识反比例,能根据反比例的意义判断两个相关联的量是不是成反比例。

过 程 与 方 法

教 师 活 动

一、复习

1、什么是正比例的量?

2、判断下面各题中的两种量是否成正比例?为什么?

(1)工作效率一定,工作时间和工作总量。

(2)每头奶牛的产奶量一定,奶牛的头数和产奶总量。

(3)正方形的边长和它的面积。

二、导入新课

利用反义词来导入今天研究的课题。今天研究两种量成反比例关系的变化规律。

三、进行新课

情境(一)

认识加法表中和是12的直线及乘法表中积是12的曲线。

情境(二)

让学生把汽车行驶的速度和时间的表填完整,当速度发生变化时,时间怎样变化?每两个相对应的数的乘积各是多少?你有什么发现?独立观察,思考

同桌交流,用自己的语言表达写出关系式:速度×时间=路程(一定)观察思考并用自己的语言描述变化关系乘积(路程)一定

情境(三)

把杯数和每杯果汁量的表填完整,当杯数发生变化时,每杯果汁量怎样变化?每两个相对应的数的乘积各是多少?化关系

写出关系式:每杯果汁量×杯数=果汗总量(一定)

5、以上两个情境中有什么共同点?

反比例意义

引导小结:

活动四:想一想

P26页第1、2、3题

关系式:X×Y=K(一定)

课后反思:

学生自由回答,相互补充。

学生观察,弄清题意。

引导学生发现规律:加法表中和是12,一个加数随另一个加数的变化而变化;乘法表中积是12,一个乘数随另一个乘数的变化而变化。

独立观察,思考同桌交流,用自己的语言表达写出关系式:速度×时间=路程(一定)观察思考并用自己的语言描述变化关系乘积(路程)一定。

你有什么发现?用自己的语言描述变

都有两种相关联通的量,其中一种量变化,另一种量也随着变化,并且这

两种量中相对应的两个数的乘积是一定的。这两种量之间是反比例关系。

板书设计

教学反思

课题 观察与探究 教时 二 5 (14)

学 习

目 标 1、让学生尝试用图表示成反比例的量之间的关系,利用图进一步认识反比例。2、渗透事物之间都是相互联系和发展变化的观点,初步渗透函数思想。

学 习

重 点 动手操作,用图表示成反比例的量之间的关系,利用图进一步认识反比例。

过 程 与 方 法

教 师 活 动

一、复习

长方形面积一定,长与宽成反比例吗?为什么?

二、新课

呈现情境

这节课我们用图表表示成反比例的量之间的关系。

用x、y表示面积为24cm2的长方形相邻的两条边长,它们的变化关系如下表。略

1、观察表格,根据数据在方格纸上画出这8个长方形。

2、把图中的点用平滑的曲线依次连起来。

3、长和宽是怎样变化的?有什么规律?—长扩大,宽缩小,相对应的长和宽的乘积是24。

关系式:长×宽=长方形面积(一定)

4、图上的点A、B、C、D……在一条直线上吗

三、小结:

学生回答并补充。

观察表格,根据数据在方格纸上画出这8个长方形。

把图中的点用平滑的曲线依次连起来。

总结后板书。

板书设计

观察与探究

长×宽=长方形面积(一定) 教学反思

课题 图形的放缩 教时 二 6 (15)

学 习

目 标 通过观察、操作,体会比例尺产生的必要性和按相同的比扩大或缩小实际意义。通过图形的放缩,结合具体情境,感受图形的相似。

学 习

重 点 体会比例尺产生的必要性和按相同的比扩大或缩小的实际意义。

过 程 与 方 法

教 师 活 动

呈现情境图

引导学生分析这三名学生是如何画的。

1、笑笑:图中的长与实际的长的比量多少?图中的宽与实际的宽的比是多少?

笑笑是按相同的比来画。

2、淘气:图中的长与宽的比是多少?淘气也是按相同的比来画。

小 结3、他们都是按相同的比来画,所以都画得像。

4、为什么同样大小的贺卡,却画出大小不同的长方形,而且有的像,有的不像呢?

5、将较大的长方形画成较小的长方形,首先可能量出原来的长和宽缩+相同的倍数,才能画得像。

画一画探究活动

P28 引导学生把原来的长和宽按3:2扩大。

讨论谁画得像呢?

指名回答问题,学生补充。

说明原因。

小组交流后,独立操作,教师指导。

板书设计

图形的放缩

教学反思

课题 比例尺 教时 二 7 (16)

学 习

目 标 结合具体情境,认识比例尺,能根据图上距离,实际距离,比例尺中的两个量求第三个量。运用比例尺的有关知识,通过测量、绘图、估算、计算等活动,学会解决生活中的一些实际问题,进一步体会数学与日常生活的密切联系。

学 习

重 点 认识比例尺,能根据三个量中的两个量求第三个量,运用比例尺的知识解决实际问题的能力。

过 程 与 方 法

教 师 活 动

一、呈现情境图

我家的房屋平面图

1、比例尺1:100是什么意思?

图上距离

2、比例尺=--------------

实际距离

4、P30页第4题,怎样求窗户的图上距离? 5、指导

注意求比例尺时,图上距离与实际距离的单位要统一。

P31页第1题,说明清楚两地距离一般假设是直线距离,计算时,注意单位换算。

教师对困难的学生加以指导

思 考、讨 论

独立完成P30页第2、3题。

注意比成相成的单位后再计算。

完成P30页第5题。

P31页第2题,自己尝试独立完成。

放手让学生自己研究。

试一试

练一练

板书设计

比例尺

图上距离

比例尺=--------------

实际距离

教学反思

扩展阅读

2022年苏教版六年级数学下册教案全册


目标:

1.使学生通过复习加深对整数、小数、分数和百分数的理解,进一步明确有关数的意义和基本性质,体会整数与小数、小数与分数、分数与百分数的内在联系。

2.让学生体会到数在刻画现实世界中数量关系与空间形式方面的价值。

3.发展学生对数学的积极情感。

教学重点:

分数和小数的基本性质。

教学难点:

整数、小数和分数之间的联系。

教学准备:多媒体

教学过程:

一、复习

1.我们学过了哪些数?举例说明

2.回顾整数的意义www.

(1)追问:-1、-2…是整数吗?

判断:A、自然数都是整数B、整数就是自然数C、负数比0小D、负数都是整数

(2)排出整数的数位顺序表,个级、万级、亿级各包括哪几个数位?每个数位上的计数单位各是多少?相邻两个计数单位之间的进率是多少?

填空:()个一千是一万;一亿里面有()个千万;320000是由()个万组成的;49个亿、49个万个49个一组成的数是()。

3.回顾分数的意义

(1)你能想到哪些用分数表示信息的例子?

(2)谁来说说分数的意义?你对单位“1”是怎样理解的?

(3)什么是分数的基本性质?应用分数的基本性质可以解决哪些问题?

学生交流

4.回顾小数的意义

(1)举例什么样的数是小数?你认为小数与分数有怎样的关系?

(2)小数的性质是什么?

5.回顾百分数的意义

(1)你能想到哪些用百分数表示信息的例子

(2)百分率、百分比

二、巩固练习

1.完成83页的第1题

学生填写在书上

2. 3.7元=()元()角 0.45时=()分

4000千克=()吨 200秒=()分()秒

3.完成84页的第3题

先说说你能获得哪些信息?

指出:“23:00”不表示数量的多少

3.课后完成84页第4题

学生交流

三、小结

通过学习你有什么收获?

学生交流

四、作业

完成《练习与测试》相关作业。

板书设计

关于数的认识的复习

关于数的认识的复习

教学课时:

教学目标:

1.使学生进一步加深对整数、小数、分数和百分数之间的内在联系,掌握因数与公因数、倍数与公倍数、奇数与偶数、素数与合数的含义。巩固读数与写数的方法。

2.进一步体会不同领域数学内容的联系和综合。

3.使学生感受新知识获得的过程,培养创新意识。

教学重点:

分数、小数、百分数之间的联系和区别

教学难点:

整除中的有关概念

教学准备:多媒体

教学过程:

一、整理与反思

1.结合第5题练习。

让学生说说正数与负数、

分数与小数、

百分数与分数的联系和区别。

2.第6题。

先让学生独立写一写,

再让学生适当小结写法。

3.完成第7、8两题

小数点位置的移动怎样引起小数大小的变化?

学生交流

4.结合第9题小结

(1)读表中各数,并在小组里说说自己的想法。怎样读。

(2)改写与求近似数的区别

(3)适当小结整数、小数、分数和百分数大小比较的方法。

二、练习与实践

(1)读出下面的数。

4003 40034003 3043000000

指出:读整数时,每四位一级,每级按个级上的数读,并读出级名“万”或“亿”。

(2)写出下面各数。

三千五百

三千五百万三千五百

十二亿三千五百万

注意:每个数中“0”的个数。

三、小结

通过学习你有什么收获?

学生交流

四、作业

完成《练习与测试》相关作业。

板书设计

关于数的认识的复习

关于数的认识的复习

教学内容: “练习与实践”第10~14题。

教学目标:

1.进一步熟悉分数、小数和百分数的互化的方法和比较分数大小的方法。

2.巩固分数与除法的联系。

3.培养学生的判断、分析等思维能力。

教学重点:

分数、百分数与除法的联系

教学难点:

百分数大小的比较

教学准备:多媒体

教学过程:

一、整理与反思

1.完成第10题

(1)组成的数中素数和合数各有哪些?什么叫素数和合数?

(2)组成的数中哪些有公因数2、3或5?什么样的数能被2、3、5整除?

(3)什么叫做公倍数?

(4)你还能提出哪些问题?

2.说出每个分数的意义。

上面每个分数的分数单位是什么,各有几个这样的分数单位?什么叫分数单位?

3.完成86页的第11题。

结合练习帮助学生进一步明确分数基本性质的应用,并适当总结分数、小数与百分数的互化

4.完成86页12题

让学生找出数的排列的规律

5.完成86页第13题。

先让学生估计每个图形中涂色部分所占的百分比的大小,在让学生写出百分比

6.复习最简分数

(1)提问:怎样的分数是最简分数?谁来举几个最简分数的例子?

(2)在( )里填上适当的数,使每个分数都是最简分数。

①4米是6米的 。

②9千克是12千克的 。

③5厘米是1O厘米的 。

7.完成86页第14题第1小题

先让学生说说可以怎样判断

二、小结

通过学习你有什么收获?

学生交流

三、作业

完成《练习与测试》相关作业。

板书设计

关于数的认识的复习

关于数的运算的复习

教学内容:教科书第87页的“整理与反思”,“练习与实践”第1~4题。

教学目标:

1.使学生进一步加深对整数、小数和分数四则运算意义和方法的理解,能正确进行相关的口

算、笔算和估算。

2.使学生掌握加减法之间、乘除法之间的关系。

3.增强验算意识,培养验算习惯。

教学重点:

四则运算的计算和验算方法

教学难点:

四则运算的算理

教学准备:多媒体

教学过程:

一、整理与反思

1.整数四则运算意义。

提问:通常所说的四则运算是指什么?谁来说一说整数四则运算的意义各是怎样的?

2.计算方法

计算:865+78= 8.65+7.8= 13 +25 =

3、计算整数加减法的时候要把相同数位对齐,计算小数加减法的时候要把小数点对齐。计算分数要先通分化成同分母分数。你能说说这之间的联系吗?(让学生明白:要把相同计数单位的数直接相加)

4.对比练习:完成“练习与实践”的第2题

(1)问:怎样进行整数、小数和分数乘法和除法的计算?

(2)比较每组题的计算方法,体会内在联系。

二、练习与实践

1.完成87页第1题

(1)学生独立填出答案

(2)学生汇报结果,挑选几题,让学生说说怎样算的?

2.完成87页的第3题

(1)学生独立完成。

(2)让学生说说是怎样估算的?

3.完成87页第4题

(1)学生独立完成,个别学生板演。

(2)结合每道题目,让学生说说是怎样验算的?应该注意什么?

(3)说说加法与减法、乘法与除法各部分之间有什么关系?

三.小结

通过学习你有什么收获?

学生交流

四.作业

完成《练习与测试》相关作业。

板书设计

关于数的运算的复习

关于数的运算的复习

教学内容:教科书第88页的第5~8题。

教学目标:

1.使学生进一步认识整数、小数、分数应用题及其数量关系,加深理解和掌握分析应用题的推理过程和解题思路,正确解答百分数应用题。

2.进一步培养学生初步的思维能力和分析、解答应用题的能力。

3.养成独立思考、主动与人合作的习惯。

教学重点:

分析应用题的方法和解题规律

教学难点:

分析数量关系、确定解题思路的方法

教学准备: 多媒体

教学过程:

一、整理与反思

1.口算:

+ = 1 × = 6 -1 =

1÷ = 0.63÷0.7= × =

2.完成88页第5题

(1)学生自己默读题意。

(2)每道题你打算怎样进行计算?

(要结合具体情况合理选择、灵活地运用。)

3.(1)小军买《小学生字典》和《成语词典》各1本,30元够吗?

(2)冬冬买1本《儿童百科知识读本》需付多少元?比原价便宜多少元?

从图中你可以知道哪些信息?;

哪些书按七五折出售?哪些按原价出售?

4.林老师编写了一本《趣味数学故事》,获得稿费3800元。按规定,一次稿费超过800元的部分应按14%的税率纳税。林老师应缴纳税款多少元?

(1)学生读题

(2)提问:应纳税是多少元的14%?

(3)学生独立完成后集体交流

5.完成88页第8题

(1)怎样比较成绩更合理?小组讨论后再计算。为什么单单比较助跑摸高的厘米数不合理。

(2)一名篮球运动员身高188厘米,助跑摸高成绩是351厘米。他助跑摸高的高度是身高的百分之几?

二、小结

通过学习你有什么收获?

学生交流

三、作业

完成《练习与测试》相关作业。

板书设计

关于数的运算的复习

关于数的运算的复习

教学内容:教科书第89页的“整理与反思”,“练习与实践”第1~6题。

教学目标:

1.使学生进一步理解分数四则运算的意义和法则,能正确地进行分数四则运算。

2.使学生能正确地进行整数、小数和分数的四则混合运算,并能灵活地选择合理的方法使计算简便,提高学生的计算能力。

3.培养学生认真计算、自觉验算的良好习惯。

教学重点:

理解算理

教学难点:

运算率的具体应用

教学准备: 多媒体

教学过程:

一、整理与反思

1.说说下面式子的运算顺序

1842+56-453 ×45 ÷45

[( + )× ]÷

总结整数、小数和分数四则运算的运算顺序。

归纳:先乘除后加减,同一级运算从左往右依次计算,有括号的先算括号里的。

2.复习运算定律。

(1)填写书89页的表格

(2)还有哪些运算性质或运算规律?举例说明。2、完成“练习与实践”的第1题

(1)学生说说每题的运算顺序

(2)分组练习

二、练习与实践

1.完成“练习与实践”的第1、2题

(1)学生独立完成

(2)每题你运用的是什么运算性质或运算定律?

2.完成“练习与实践”的第3题

说说每题怎样算比较简便?

总结:根据题目中数的特点,灵活选用合理的方法。

3.完成“练习与实践”的第4题

说说题中的主要数量关系

每页的行数×每行的字数=每页的字数

4.完成“练习与实践”的第5题

(1)让学生标出行走的路线,再列式计算

(2)谁先超过中点?说明在相同时间里,路程的多少与什么有关系?

5.完成“练习与实践”的第7题

学生完成、交流。

三、小结

通过学习你有什么收获?

学生交流

四、作业

完成《练习与测试》相关作业。

板书设计

关于数的运算的复习

关于数的运算的复习

教学内容:教科书90页的“练习与实践”第7~10题。

教学目标:

1.使学生加深理解和掌握分数、百分数应用题的数量关系和解题思路,能正确地分析、解答分数,百分数应用题。

2.使学生进一步明确简单的和稍复杂的分数、百分数应用题之间的联系,以及不同类型的分数、百分数应用题的结构特征和解题规律;

3、进一步提高分析、推理和判断等思维能力。

教学重点:

分析分数应用题的方法

教学难点:

应用题的数量关系

教学准备: 多媒体

教学过程:

一、揭题

今天,我们复习分数、百分数应用题。通过复习,进一步掌握它们的结构特点和解题思路,能正确解答稍复杂的分数、百分数应用题,提高分析数量关系和解答应用题的能力。

二、练习与实践

1.在日常生活中,有哪些百分率?

什么叫出勤率?怎样计算出勤率?

要求出勤率,需要先求什么?

2.某班今天的出勤率为98%,缺席1人,今天到校多少人?

要求这个问题可以先求什么?

3.完成第8题

(1)八月份的用电量比七月份增加百分之几,也就是谁是谁的百分之几?把谁看作单位“1”?

强调:相差数÷单位“1”=相差的百分率

(2)九月份的用电量比七月份节约了百分之几?比八月份呢?

4.某商场有奖销售活动设置了10000张奖券。其中一等奖的中奖率是5%,二等奖是10%,三等奖是30%。一等奖和二等奖的奖券一共有多少张?三等奖的奖券比一等奖多多少张?

(1)学生读题

(2)5%是谁的5%?把谁看作单位“1”

(3)有哪些不同的方法?数量关系是什么?

5.对比练习

(1)三信小学九月份的水电费是480元,十月份的水电费是408元。十月份比九月份节约百分之几?

(2)三信小学九月份的水电费是480元,十月份比九月份节约了15%。十月份的水电费是多少元?

(3)三信小学九月份的水电费是480元,比九月份节约了15%。九月份的水电费是多少元?

这三题都是九月份和十月份之间的比较,有什么不同?

学生独立完成、交流

三、小结

通过学习你有什么收获?

学生交流

四、作业

完成《练习与测试》相关作业。

板书设计

关于数的运算的复习

关于数的运算的复习

教学内容:教科书91页的“练习与实践”第11、12题。

教学目标:

1.使学生进一步掌握分数、百分数应用题的解题思路和解题方法。

2.能正确地解答稍复杂的分数、百分数应用题,提高学生分析推理和解答应用题的能力。

3.培养学生互相协助的意识、能力。

教学重点:

运用所学知识解决简单实际问题

教学难点:

百分数应用题的解题思路和解题方法

教学准备: 多媒体

教学过程:

一、基础练习

1.根据题中的已知条件,请你提出三个不同的问题,再列式。

修一条水渠,已经修了200米,正好是未修米数的45 ,

A______________?列式_________

B_____________ ?列式__________

C_____________?列式___________

2、一种商品。现价比原价降低了10%。这句话的数量关系可表示为:

___________×10%=_____________

_________÷(1-10%)=__________

二、解决实际问题

1.完成91页第11题

安装分时电表前一共要付多少元电费?

安装分时电表后,谷时和峰时分别是多少千瓦时?

学生完成、交流

2.完成91页第12题

阅读上表,你了解到哪些信息?

理解“上浮”与“下浮”是谁的百分之几?

你还能提出什么问题?

学生完成、交流

三、小结

通过今天的复习,你对数学知识与日常生活的联系有了哪些新的认识?

学生交流

四、作业

完成《练习与测试》相关作业。

板书设计

关于数的运算的复习

关于式与方程的复习

教学内容:教科书92页“整理与反思”,完成“练习与实践”第1~6题。

教学目标:

1.使学生进一步体会方程的意义和思想,会用等式的性质解一些简单的方程。

2.使学生进一步认识用字母表示数及其作用,培养学生抽象,概括的能力。

教学重点:

能正确地用含有字母的式子表示数量及数量关系、计算公式。

教学难点:

会用等式的性质解一些简单的方程。

教学准备: 多媒体

教学过程:

一、整理与反思

今天要复习解简易方程,(板书课题)通过复习,要进一步明白字母可以表示数量、数量关系和计算公式,能正确地解简易方程。

师:你能自己举出一些用字母表示数的例子吗?

长方形的周长C=2(a+b)

加法交换率a+b=b+a……

师:什么叫方程?方程与等式有什么联系和区别?

(1)教师引导:含有字母的等式叫方程。

(2)表示相等的式子叫等式。方程是含有字母的等式。

师长:你知道等式有哪些性质?举例说一说。

强调:0除外

教师归纳:等式的两边同时加、减、乘、除以同一个数(除数不为0),等式的两边相等。

二、练习与实践

1.在括号里写出含有字母的式子

(1)一种贺卡的单价是a元,小英买5张这样的贺卡,用去()元;小明买n张这样的贺卡,付出10元,应找回()元。

(2)每千瓦时电费0.52元,每立方米水费2元。小明家本月用了a千瓦时电和b立方米水,一共要付水费()元。

2.第2题

(1)完成后交流,并让学生说出解每个方程的过程,分别运用了等式的哪些性质?

(2)说说解答每题时应注意什么?

3.电视节目现在能收看56套节目,比开通有线电视前的5倍少4套,开通有线电视前只能收看几套节目?

学生交流、完成

4.京沪高速公路全长1262千米。两辆汽车同时从北京和上海出发,相向而行,每小时分别行120千米和95千米。用计算器算一算,大约经过几小时两车相遇?(得数保留整数)

学生交流、完成

5.长江三峡水库总库容大约是黄河小浪底水库的3倍,黄河小浪底水库的总库容比长江三峡水库少260亿立方米。黄河小浪底水库的总库容是多少亿立方米?长江三峡呢?

学生交流、完成

4.第6题

强调:根据题目的情况,合理选择方法,列算式或列方程

三、小结

通过今天的复习,你对数学知识与日常生活的联系有了哪些新的认识?

学生交流

四、作业

完成《练习与测试》相关作业。

板书设计

关于式与方程的复习

关于式与方程的复习

教学内容:教科书93页 “练习与实践”第7~9题。

教学目标:

使学生进一步认识用字母表示数及其作用,培养学生抽象,概括的能力。

教学重点:

能正确地用含有字母的式子表示数量及数量关系、计算公式。

教学难点:

会用等式的性质解一些简单的方程。

教学准备: 多媒体

教学过程:

一、练习与实践

1.完成“练习与实践”第7题

理解“一种药品降价10%”的含义。指名板演,集体交流,说说解题思路

2.完成“练习与实践”第8题

两种衬衫的原价相同,由于打的折扣不同,所以现价不同。108元原是这两中衬衫现价的和。

3.完成“练习与实践”第9题

组织学生分组开展活动,适时互换角色,也可以让学生在小组里开展竞赛,以提高练习效果。

二、小结

通过今天的复习,你对数学知识与日常生活的联系有了哪些新的认识?

学生交流

三、作业

完成《练习与测试》相关作业。

板书设计

关于式与方程的复习

关于正比例和反比例的复习

教学内容:教科书94页“整理与反思”,完成“练习与实践”的第1~6题。

教学目标:

1、使学生进一步理解比的意义和基本性质以及比与分数、除法的关系的理解。

2、能运用比和比例的知识解决一些简单实际问题,积累解决问题的经验。

教学重点:

使学生加深认识比例的意义和基本性质。

教学难点:

能判断两个比能能不能组成比例,能比较熟练地解比例。

教学准备: 多媒体

教学过程:

一、整理与反思

今天我们一起来复习正比例和反比例相关知识。

(一)比的知识:

1.谁来举个例子说说什么是比?什么是比的基本性质?

(引导学生列举:“按比例分配”、“比例尺”、“图形的放大与缩小”等例)

2.说一说用比的知识可以解决哪些实际问题。

让学生体会比在解决实际问题时的应用。

(二)比和分数、除法的联系

出示:a∶b=( )( ) =( )÷( )(b=?0)

那么比和分数、除法的联系是什么?它们的区别呢?

谁来说说比的基本性质与分数的基本性质、商不变的规律?它们有什么联系吗,谁来说说?

(三)比例的知识

1.什么是比例?

2.比和比例有什么关系?(小组讨论后交流)

3.比例有怎样的基本性质?

二、练习与实践

1、完成“练习与实践”第1、2题

(1)第一题:学生独立数出班上男女生人数,再完成此题。

(2)第二题:两人一组,互相量一量,算一算合作完成后,全班交流结果,让学生比较后回答有什么发现。

2、完成“练习与实践”第3、4题

(1)先让学生估计,再说估计的理由 ,再算一算。

(2)解比例,做好后选两题验算一下。

3、完成“练习与实践”第5、6题

(1)先学生独立做最后交流,弄清东部地区的耕地面积占全国耕地面积的93%,可理解为东部地区的耕地面积占全国耕地面积的93100 。使学生加深对比与百分数关系的理解。

(2)让学生独立得出:深色与浅色地砖铺地面积的比是20∶40,化简得1∶2。

三、小结

通过学习你有什么收获?

学生交流

四、作业

完成《练习与测试》相关作业。

板书设计

关于正比例和反比例的复习

关于正比例和反比例的复习

教学内容:教科书94页 “练习与实践”的第7~10题。

教学目标:

1、使学生进一步理解比的意义和基本性质以及比与分数、除法的关系的理解。

2、能运用比和比例的知识解决一些简单实际问题,积累解决问题的经验。

教学重点:

使学生加深认识比例的意义和基本性质。

教学难点:

能判断两个比能能不能组成比例,能比较熟练地解比例 。

教学准备: 多媒体

教学过程:

一、整理与反思

今天我们一起来复习正比例和反比例相关知识。

怎样判断两种量是否成正比例或反比例关系?

学生交流

二、练习与实践

1.完成“练习与实践”第7题

让学生先独立完成,再点评。

2.完成“练习与实践”第8题

引导学生列举几组对应的数值

再分析每组中两个数的关系,再判断。

3.完成“练习与实践”第9题

第1小题让学生根据图中标出的点的位置算出相应的耗油量与行驶路程的比值,再作判断。(行驶75千米的耗油量是6升。)

第2小题让学生在教材提供的方格图上描点、连线,

引导学生联系画出的图象判断汽车在市区行驶时,行驶的路程与耗油量成不成正比例。

体会数形结合在解决问题方面的价值。

4.完成“练习与实践”第10题

什么叫比例尺?比例尺有几种类型?举例说说它的意思?(重点是线段比例尺)

怎样求图上距离?怎样求实际距离

学生量出的图上距离。

利用提供的线段比例尺,求出相应的实际距离

三、小结

通过学习你有什么收获?

学生交流

四、作业

完成《练习与测试》相关作业。

板书设计

关于正比例和反比例的复习

2022年北师大版六年级下册《比例尺》数学教案


《比例尺》教案

教学目标:

1、知识与技能:使学生理解比例尺的意义,学会求比例尺、实际距离和图上距离。

2、过程与方法:使学生经历比例尺产生过程和探究比例尺应用的过程,提高学生解决实际问题的能力。

3、情感态度与价值观:结合具体情境,使学生体验到数学与生活的密切联系,进一步激发学生学习数学的兴趣。

教学重点:

理解比例尺的意义,根据比例尺的意义求比例尺、实际距离和图上距离。

教学难点:

运用比例尺的有关知识,学会解决生活中的一些实际问题。

教学准备:多媒体课件。

教学过程:

一、展示目标,引入本课。

二、探究新知,意义建构

1、看一看

下面几幅地图的比例尺分别是多少。①中华人民共和国这幅地图的比例尺是多少?(1:6000000)②安庆市这幅地图的比例尺是多少?(1:2500000)③笑笑家的平面图按照一定的比例画在纸上,这幅平面图的比例尺是多少?(1:100)

2、说一说

(1)比例尺1:100表示什么意思呢?

生:图上1厘米长的线段表示实际距离100厘米。

(2)在比例尺1:2000的地图上,图上距离1厘米,表示实际距离(2000)厘米。

(3)在比例尺1:40000的地图上,实际距离是图上距离的(40000)倍。

3、议一议

(1)什么是比例尺呢?

图上距离和实际距离的比,叫做比例尺。

(2)比例尺怎样表示呢?

比例尺=图上距离:实际距离或比例尺=图上距离/实际距离(板书:比例尺=图上距离:实际距离:)

(3)比例尺有什么特征呢?

①比例尺与一般的尺子不同,它是一个比,不带计量单位;②图上距离和实际距离的单位是统一的;③比例尺的前项,一般应化简成“1”,如果写成分数的形式,分子也是“1”。

【意图】数学概念不是老师灌输给学生的,而是在学生有了感性认识之后,自己总结和概括出来的,自己发现特征的,不仅知其然,还要知其所以然,学生只有经历知识和概念的形成过程,才能真正理解。

三、拓展延伸,巩固新知

1、有时,比例尺的图上距离比实际距离大。一个精密零件的长度只有3.5毫米,画在一张图纸上是70毫米,这幅设计图纸的比例尺是多少?

70:3.5=700:35=20:1

答:这幅设计图纸的比例尺是20:1。

2、有的地图上的比例尺用线段来表示。小明家在学校的正西方,到学校的实际距离是900米。你有办法找到小明家在图上的位置吗?1厘米相当于实际距离300米。(在学校正西方向900米。)

3、这位老师从广州坐飞机到北京开会,实际距离是多少千米呢?

32×6000000=192000000(厘米)192000000厘米=1920(千米)

答:广州到北京实际距离是1920千米。

五、总结新课,整理知识

通过今天的学习,你有什么收获呢?

板书设计:比例尺

比例尺=图上距离:实际距离

实际距离=图上距离×1厘米表示的实际距离

图上距离=实际距离÷1厘米表示的实际距离

2022北师大版六年级下册《画一画》数学教案


《画一画》

【教学内容】北师大版小学数学六年级下册第四单第3节《画一画》教学(第44页)及相应练习的内容。

【教材分析】教材安排《画一画》这一内容,一是让学生进一步认识正比例,以及正比例中两个相关联的量之间的关系;二是通过让学生在方格纸上描出成正比例的量所对应的点并能在图中根据一个变量的值估计它所对应的变量的值,从而认识正比例图像的特点。主要意图是引导学生运用已有的知识,用图的形式去直观表示两个成正比例的量的变化关系,鼓励学生发现当两个变量成正比例关系时,所绘成的图像是一条直线,在此基础上,鼓励学生利用图,进行一些估计,解决一些问题,为以后进一步学习正比例函数打下一定的基础。

【学情分析】《画一画》这一内容是在学生学习了《变化的量》和《正比例》这两节内容以后安排的,学生已经结合大量的生活情境认识了生活中存在的许多相互依赖的变量,而且体会了这些变量之间的关系,认识了正比例及其意义,能初步判断两个相关联的两是不是成正比例,感受了正比例在生活中的应用,学生对正比例的认识有了一定的基础。

【教学目标】知识目标:1、在具体情境中,通过“画一画”的活动,初步认识正比例图像。能力目标:1、会在方格纸上描出成正比例的量所对应的点,并能在图中根据一个变量的值估计它所对应的变量的值。2、利用正比例关系,解决生活中的一些简单问题情感目标:1、培养学生善于思考和积极参与的良好习惯;2、培养学生学习数学的兴趣。

【教学重、难点】

教学重点:1.在具体情境中,通过“画一画”的活动,初步认识正比例图象。2.会在方格纸上描出成正比例的量所对应的点,并能在图中根据一个变量的值估计它所对应的变量的值。

教学难点:1.会在方格纸上描出成正比例的量所对应的点,并能在图中根据一个变量的值估计它所对应的变量的值。2.利用正比例关系,解决生活中的一些简单问题突破重难点设想:以自主合作的方式进行学习,通过积极参与观察、操作、讨论、交流、验证等探究活动,经历整个知识的探究与形成过程。从而加深知识的理解,提高知识的应用能力。

【课前准备】教师准备:多媒体课件

学生准备:方格纸

【教学过程】

一.复习导入

1.复习旧知。

课件出示:(1)什么样的两个量叫作成正比例的量?

(2)判断下面的量是否成正比例。

2.导入新课,明确学习目标。

师:我们已经知道了正比例的意义,并且学会了判断两个相关联的量是否成正比例,那么我们能否用图象的形式去直观表示两个成正比例的量的变化关系呢?这节课,我们就一起来探究这个问题。

设计意图:先通过复习进一步理解正比例的意义及巩固判断两个量是否成正比例的方法,再直接揭示学习内容,使学生明确本节课的学习任务。

二.探究新知

1.认识正比例图象。

(1)课件出示教材44页表格。全班同学去看电影,看电影的人数与所付票费如表。组织学生把上表填写完整,并判断看电影的人数与所付票费是否成正比例。(学生口头回答,教师课件完成)

(2)观察、交流。

①从上表中,你发现了什么?想到了什么?

预设

生1:我发现看电影的人数和所付票费是两个相关联的量,人数扩大到原来的2倍,票费也扩大到原来的2倍,票费随人数的变化而变化。

生2:我发现看电影的人数和所付票费的比值是一定的。

生3:我想到了这两个量成正比例关系。

生4:我想到了是否可以用图象来表示这两个量的关系。

②课件出示教材44页下面的图。师:根据表格,请观察横轴表示什么?纵轴表示什么?然后说说下图中各点的含义。[引导学生结合数对知识,说出图中各点的含义,如点(4,8)表示人数是4时,所需票费是8元]

(3)操作、汇报。连接图上各点,你发现了什么?(所描的点在同一条直线上)

(4)明确正比例图象的特点。当两个变量成正比例关系时,所绘成的图象是一条直线。2.点A是直线上一点,这一点表示什么含义?小明说点(100,200)也在这条直线上,你认为他说得对吗?(小组内交流后汇报)

设计意图:让学生先填表判断全班同学去看电影,看电影的人数与所付票费是否成正比例,再将这组数据用“描点法”画在方格纸上,用图的形式去直观表示两个成正比例的量的变化关系。促使学生在合作探究中认识并掌握正比例图象的特点,提高学生学习数学及应用数学的能力。

三.反馈应用

1.课件出示教材45页“练一练”1题。

(1)乘船的人数与所付船费如表。说一说你从表中获得的信息,并把上表填写完整。(指名汇报)

(2)把表中的数据用下图表示。

(3)先根据上表描点,再顺次连接各点,你发现了什么?(这些点都在同一条直线上)

(4)点(8,40)在这条直线上吗?这一点表示什么含义?

(5)根据图象判断,5个人乘船所需的船费是多少钱?付船费35元,乘船的人数是多少?(5个人乘船所需的船费是25元;付船费35元,乘船的人数是7人)

2.出示课堂活动卡。

四.课堂总结通过这节课的学习,你获得了哪些知识?

五.布置作业教材45页“练一练”2题。

【板书设计】

画一画

方法:填表格→描点→连线

应用:直线→找点→求值

正比例的图象是一条直线。

【教学反思】

一、对正比例图像的学习,把它看做是理解正比例意义的一种途径,通过分析图像,更好的理解成正比例的两个量之间的变化规律,进行函数思想的渗透。所以在教学时,我没有简单地停留在描点、连线和机械叙述等技能训练上,而是引导学生观察图像、分析图像,加深了对正比例意义的理解,减少学生枯燥的学习,节省了时间。

二、让学生亲身经历图像形成的全过程。课堂中引导学生用“描点法”画出表示正比例关系的图像,通过观察帮助学生体会成正比例的量的变化规律,进而掌握利用图像由一个量的数值估计另一个量的数值的方法,使学生能逐步利用正比例关系的图像解决实际问题。

总之,课堂效果反应良好。

2022年六年级数学下册统计教案


单元要点分析

内容

本单元 内容主要是探究制作扇形统计图和折线统计图的技能问题。

教材分析

本单元内容大在学生已经学习过一些简单的数据整理以及学会制作一些简单的统计图的基础上,来进一步学习有关扇形统计图和折线统计图的绘制技能。

教材编排的内容比较简单,通过两道例题分别说明如何合理制作扇形统计图和折线统计图,使之正确、充分地反映出有关数据,正确体现各统计图的特征,使学生进一步掌握统计图的特点和作用。

三维目标

知识与技能

1、使学生进一步认识统计的意义,掌握扇形统计图和折线统计图的特征与作用,能正确描述统计图中的数据。

2、使学生能正确地制作统计图,充分利用统计图的特征准确、合理、规范地反映出有关数据。

过程与方法

1、经历描述和分析数据的过程,针对统计图提供的数据不清问题,能提出质疑和修改建议,提高制作统计图的技能。

2、在运用统计图解决问题的过程中,发展学生的统计观念。

3、初步形成评价与反思的意识。

情感、态度与价值观

1、能积极参与探究活动,对自己得到的结果正确与否有一定的把握,相信自己在学习中可以取得不断的进步。

2、形成实事求是的态度以及进行质疑的习惯。

重难点、关键

重点:绘制扇形统计图和折线统计图。

难点:根据折线统计图正确描述数量变化情况。

关键:根据统计图进行比较、判断时要统一标准。

课时划分

本单元计划课时数:2课时

第一课时:扇形统计图

教学内容

扇形统计图(课文第68页的例1,练习十一相应的练习)

教学目标

1、使学生进一步掌握扇形统计图的特征和作用,能正确描述扇形统计图所反映的有关数据.

2、使学生能正确运用扇形统计图反映有关数据,提高处理数据的技能,发展学生的应用意识和实践能力.

3、初步形成评价与反思的意识.

重难点、关键

重点:扇形统计图.

难点:发现统计图中存在的数据不清的问题.

关键:认真分析统计图中所反映的数据.

教学过程

一、旧知铺垫

电脑课件呈现扇形统计图

某校学生最喜欢的文艺节目情况统计图

(图略)

1、问:从图中你能了解到哪些信息?

(1)喜欢同一首歌的人数占调查人数的45﹪

喜欢相声的人数占调查人数的18﹪

喜欢小品的人数占调查人数的25﹪

喜欢其他文艺节目的人数占调查人数的12﹪

(2)喜欢同一首歌的人数最多

绝大部分同学都喜欢同一首歌,小品和相声

喜欢其他文艺节目的人数最少

2、说一说这是什么统计图,它有什么特征?

(1)扇形统计图

(2)特征:可以清楚地反映出各部分量占总量的百分之几

二探索新知

教学例1

电脑课件出示课文例题统计图

下面是一幅彩电市场各部分品牌占有率的统计图

(图略)

(1)从图中你了解到哪些信息?

A牌彩电占市场销售量的20﹪

B牌彩电占市场销售量的15﹪

C牌彩电占市场销售量的10﹪

D牌彩电占市场销售量的8﹪

其他品牌彩电占市场销售量的47﹪

(2)有人认为A牌彩电最畅销,你同意他的观点吗?

①学生独立思考,分析题中的数量

○2小组交流,学生在小组中说一说自己的看法

○3汇报交流结果

经过讨论,交流,使全体同学懂得:在“其他”里面还可能包含有比A牌更畅销的彩电.所以,从这个统计图不能判断出哪个品牌的彩电最畅销.

(3)建议

上面这幅统计图提供的数据不清,无法全面地反映有关彩电市场各品牌占有率的情况,你有什么修改建议?

①通过交流,使学生懂得:“其他”所占有的份额应该是最小的部分,这样才能全面地反映各个数量占有率的情况,突出扇形统计图的特征和作用.

②建议:在进行数据整理时,将“其他”当中的一些品牌彩电所占份额单单独计算,在统计图中详细标出它的占有率

三巩固练习

完成课文练习十一第1题

(1)说一说,你从图中得到哪些信息.

(2)从图中你能判断出喜欢哪种文艺节目的人数最多吗?为什么?

(3)你有什么修改建议?

四、布置作业

第二课时:折线统计图

教学内容:

折线统计图(教科书第68页的例2,练习十一相应的练习)

教学目标:

1.使学生进一步了角折线统计图的特征和作用,能根据统计图正确描述有关数据的变化情况,发展学生的统计观念。

2.初步形成评价与反思的意识。

教学重点:折线统计图。

教学难点:正确判断数量变化趋势。

教学过程:

一旧知铺垫

1.出示统计图。

2003年北京地区新增“非典”病人数量统计图(4月26日~5月31日)

(图略)

2.回答问题。

(1)这是什么统计图?

(2)这种统计图有什么特征?

(3)说一说这里病人数量的变化情况。

二探索新知

教学例2。

1.出示课文例题。

学生认真观察,分析图中的数量变化情况。

(1)、7月份到12月份的月薪逐月上升。

(2)、7月份:1000元 8月份:1100元 9月份:1170元

10月份:1240元 11月份:1300元 12月份:1400元

(3)、8月份和12月份增加较大。

(4)、两幅统计图反映的员工月薪增长情况是一样的。

3、初看这两幅统计图,你有什么感觉?为什么?

初看时感觉左图中反映的月薪增加比较大。

原因:左图纵轴上每格表示的数量比较小,折线向上的趋势不明显。

右图纵轴上每格表示的数量比较大,折线向上的趋势不明显。

4、你认为哪一幅统计图更能准确反映员工月薪变化情况?为什么?

(1)、学生汇报自己的看法。

(2)、说明理由。(左图每格表示50元,最高1格又表示100元,标准不统一)

5、说一说你有什么体会。

师生共同交流、讨论,使全体学生明白:在根据统计图进行比较,判断时要注意统一标准。

三、巩固练习。

完成课本练习十一第2题。

(1)、初看统计图,你感觉气温的变化剧烈吗?为什么?

(2)、月平均气温的实际差距有多大?

(3)、你会制作折线统计图吗?根据图中数据再绘制一个你认为较为合理反映气温变化的折线统计图。

四、布置作业

2022年六年级数学下册比例教案


1、比例的意义和基本性质

第一课时

内容:P32~34 比例的意义和基本性质

目的:1、使学生理解比例的意义和基本性质,能正确判断两个比是否能组成比例。

2、通过引导探究、概括归纳、讨论、合作学习,培养学生抽象概括能力。

3、使学生初步感知事物间是相互联系、变化发展的。

教学重点;比例的意义和基本性质

教学难点:应用比的基本性质判段两个数能否成比例,并正确的组成比例。

教学过程:

一、回顾旧知,复习铺垫

1、请同学们回忆一下上学期我们学过的比的知识,谁能说说什么叫做比?并举例说明什么是比的前项、后项和比值。

教师把学生举的例子板书出来,并注明比的各部分的名称。

2、我们知道了比的前后项相除所得的商叫做比值,你们会求比值吗?教师板书出下面几组比,让学生求出它们的比值。

12:16 : 4.5:2.7 10:6

学生求出各比的比值后,再提问:哪两个比的比值相等?

(4.5:2.7的比值和10:6的比值相等。)

教师说明:因为这两个比的比值相等,所以这两个比也是相等的,我们把它们用等号连起来。(板书:4.5:2.7=10:6)像这样表示两个比相等的式子叫做什么呢?这就是这节课我们要学习的内容。(板书课题:比例的意义)

二、引导探究,学习新知

1、教学比例的意义。

(1)出示P32例1。

每面国旗的长和宽的比分别是多少?指名分别算出一面国旗长和宽的比。

5: 2.4:1.6 60:40 15:10

每面国旗长和宽的比值有什么关系?(都相等)

5: =2.4:1.6 60:40=15:10 2.4:1.6=60:40

象这样表示两个比相等的式子叫做比例。

比例也可以写成: = =

(2)我们也学过不同的两个量也可以组成一个比,如:

一辆汽车第一次2小时行驶80千米,第二次5小时行驶200千米。列表如下:

时间(时) 2 5

路程(千米) 80 200

指名学生读题。

教师:这道题涉及到时间和路程两个量的关系,我们用表格把它们表示出来。表格的第一栏表示时间,单位“时”,第二栏表示路程,单位“千米”。 这辆汽车第一次2小时行驶多少千米?第二次5小时行驶多少千米?(边问 边填写表格。)

“你能根据这个表,分别写出第一、二次所行驶的路程和时间的比吗?”教师根据学生的回答,板书:

第一次所行驶的路程和时间的比是80:2

第二次所行驶的路程和时间的比是200:5

让学生算出这两个比的比值。指名学生回答,教师板书:80:2=40,200:5=40。让学生观察这两个比的比值。再提问:你们发现了什么?”(这两个比的比值都是40,这两个比相等。)

教师说明:因为这两个比相等,所以可以把它们用等号连起来组成比例。(板书:80:2=200:5)像这样表示两个比相等的式子叫做比例。

指着比例式4.5:2.7=10:6提问: “谁能说说什么叫做比例?”引导学生观察是表示两个比相等。然后板书:表示两个比相等的式子叫做比例。并让学生齐读一遍。

“从比例的意义我们可以知道,比例是由几个比组成的?这两个比必须具备什么条件?因此判断两个比能不能组成比例,关键是看什么?如果不能一眼看出两个比是不是相等的,怎么办?”

根据学生的回答,教师小结:通过上面的学习,我们知道了比例是由两个相等的比组成的。在判断两个比能不能组成比例时,关键是看这两个比是不是相等。如果不能一眼看出两个比是不是相等,可以先分别把两个比化简以后再看。例如判断10:12和35: 42这两个比能不能组成比例,先要算出 10: 12= ,35: 42= ,所以 10:12=35:42。(以上举例边说边板书。)

(3)比较“比”和“比例”两个概念。

教师:上学期我们学习了“比”,现在又知道了“比例”的意义,那么“比”和“比例”有什么区别呢?

引导学生从意义上、项数上进行对比,最后教师归纳:比是表示两个数相除,有两项;比例是一个等式,表示两个比相等,有四项。

(4)巩固练习。

①用手势判断下面卡片上的两个比能不能组成比例。(能,就用张开拇指和食指表示;不能就用两手的食指交叉表示。)

6:3和12:6 35:7和45:9 20:5和16:8 0.8:0.4和0.3:0.6

学生判断后,指名说出判断的根据。

②做P33“做一做”。

让学生看书,不抄题,直接把能组成比例的两个比写在练习本上,教师边巡视边批改,对做得不对的,让他们说说是怎样做的,看看自己做得对不对。

③给出2、3、4、6四个数,让学生组成不同的比例(不要求举全)。

④P36练习六的第1~2题。

对于能组成比例的四个数,把能组成的比例写出来。组成的比例只要能成立就可以。

第4小题,给出的四个数都是分数,在写比例式时,也要让学生写成分数形式。

2、教学比例的基本性质

(1)教学比例各部分的名称。

教师:同学们能正确地判断两个比能不能组成比例了,那么比例各部分的名称是什么?请同学们翻开教科书P34,看看什么叫比例的项、外项、内项。

指名让学生指出板书中的比例的外项、内项。

(2)教学比例的基本性质。

教师:我们知道了比例各部分的名称,那么比例有什么性质呢?现在我们就来研究。(在比例的意义后面板书:比例的基本性质)请同学们分别计算出这个比例中两个内项的积和两个外项的积。教师板书:

两个外项的积是80×5=400

两个内项的积是 2×200=400

“你发现了什么?”(两个外项的积等于两个内项的积。)板书:80×5=2×200“是不是所有的比例都是这样的呢?”让学生分组计算前面判断过的比例式。

通过计算,大家发现所有的比例式都有这个共同的规律,谁能用一句话把这个规律说出来?

最后教师归纳并板书出:在比例里,两个外项的积等于两个内项的积。并说明这叫做比例的基本性质。

“如果把比例写成分数形式,比例的基本性质又是怎样的呢?”(指着80:2=200:5)教师边问边改写成: =

“这个比例的外项是哪两个数呢?内项呢?”

“因为两个内项的积等于两个外项的积,所以,当比例写成分数的形式,等号两端的分子和分母分别交叉相乘的积怎么样?

学生回答后,教师强调:如果把比例写成分数形式,比例的基本性质就是等号两端分子和分母分别交叉相乘,积相等。

3.巩固练习。

前面要判断两个比是不是成比例,我们是通过计算它们的比值来判断的。 学过比例的基本性质以后,也可以应用比例的基本性质来判断两个比能不能成比例。

(1)应用比例的基本性质判断3:4和6:8能不能组成比例。

(2)P34“做一做”。

三、巩固深化,拓展思维

1、说说比和比例有什么区别?

2、填空

5:2=80:( ) 2:7=( ):5 1.2:2.5=( ):4

3、先应用比例的意义,再应用比例的基本性质,判断下面那组中的两个比可以组成比例。

(1) 6:9和 9:12 (2)1.4:2 和 7:10 (3) 0.5:0 .2和 :

4、下面的四个数可以组成比例吗?把组成的比例写出来。

2 、3 、4和6

四、全课小结,提高认识

通过这节课,我们学到了什么知识?什么是比例?比例的基本性质是什么?应用比例的基本性质可以做什么?

五、课堂练习,辅助消化

P36~37第3~6题。

六、课外补充,拓展延伸

1、判断。

(1)如果3×a=5×b,那么5:a=3:b。

(2) : 和 : 中,能与 : 组成比例的是 : 。

(3)在一个比例中,两个外项分别是7和8,那么两个内项的和一定是15。

2、用 、8、 、12四个数分别作为比例的项,你能组成几个比例?

3、请你用20以内的四个合数组成一个两个比的比值都是 的比例。

第二课时 解比例

教学内容:P35~37 解比例

教学目的:1、使学生学会解比例的方法,进一步理解和掌握比例的基本性质。

2、通过合作交流、尝试练习,提高学生运用比例的基本性质解比例的能力。

3、培养学生的知识迁移的能力,增强学生的合作意识。

教学重点:使学生掌握解比例的方法,学会解比例。

教学难点:引导学生根据比例的基本性质,将比例改写成两个内项的积等于两个外项积的形式,即已学过的含有未知数的等式。

教学过程:

一、回顾旧知,复习铺垫

1、上节课我们学习了一些比例的知识,谁能说一说什么叫做比例?比例的基本性质是什么?应用比例的基本性质可以做什么?

2、判断下面每组中的两个比是否能组成比例?为什么?

6:3和8:4 : 和 :

3、这节课我们继续学习有关比例的知识,学习解比例。(板书课题)

二、引导探索,学习新知

1、什么叫解比例?

我们知道比例共有四项,如果知道其中的任何三项,就可以求出这个比例中的另外一个未知项。求比例中的未知项,叫做解比例。解比例要根据比例的基本性质来解。

2、教学例2。

(1)把未知项设为X。解:设这座模型的高是X米。

(2)根据比例的意义列出比例:X:320=1:10

(3)让学生指出这个比例的外项、内项,并说明知道哪三项,求哪一项。

根据比例的基本性质可以把它变成什么形式?3x=8×15。

这变成了什么?(方程。)

教师说明:这样解比例就变成解方程了,利用以前学过的解方程的方法就可以求出未知数X的值。因为解方程要写“解:”,所以解比例也应写“解:”。

(4)学生说,教师板书解比例的过程。

教师:从刚才解比例的过程,可以看出,解比例可以根据比例的基本性质把比例变成方程,然后用解方程的方法来求未知数x。

3、教学例3。

出示例3:解比例 =

提问:“这个比例与例 2有什么不同?”(这个比例是分数形式。)

这种分数形式的比例也能根据比例的基本性质,变成方程来求解吗?

学生回答后,教师说明在写方程时,含有未知数的积通常写在等号的左边,然后板书:1.5X=2.5×6

让学生在课本上填出求解过程。解答后,让他们说一说是怎样解的。

4、总结解比例的过程。

刚才我们学习了解比例,大家回忆一下,解比例首先要做什么?(根据比例的基本性质把比例变成方程。)

变成方程以后,再怎么做?(根据以前学过的解方程的方法求解。)

从上面的过程可以看出,在解比例的过程中哪一步是新知识?(根据比例的基本性质把比例变成方程。)

5、P35“做一做”。学生独立解答,订正时,让学生说说是怎么做的。

三、巩固深化,拓展思维

P37第7题。

四、全课小结,提高认识

什么叫解比例?解比例的根据是什么?解比例的书写格式应注意什么?

五、课堂练习,辅助消化

P37~38第8~11题。

六、课外补充,拓展延伸

1、P38第12、13题。

2、4:8=12:24,如果将第二项减少1,要使比例成立,则第四项减少多少?

3、把两个比值都是 的比组成比例,已知比例的两个内项都是15,请分别求出这个比例的两个外项,并写出比例。

4、一个比例的四个项都是大于0的整数,它的两个比的比值都是 ,且第一项比第二项少3,第三项是第一项的3倍。请写出这个比例。

2、正比例和反比例的意义

第一课时 成正比例的量

教学内容:P39~41 成正比例的量

教学要求:1、使学生理解正比例的意义,能根据正比例的意义判断是不是成正比例。

2、培养学生概括能力和分析判断能力。

3、培养学生用发展变化的观点来分析问题的能力。

教学重点:成正比例的量的特征及其判断方法。

教学难点:理解两个变量之间的比例关系,发现思考两种相关联的量的变化规律.

教学过程:

一、四顾旧知,复习铺 垫

1、已知路程和时间,求速度

2、已知总价和数量,求单价

3、已知工作总量和工作时间,求工作效率

二、引导探索,学习新知

1、教学例1:

出示:一列火车1小时行驶90千米,2小时行驶180千米,

3小时行驶270千米,4小时行驶360千米,

5小时行驶450千米,6小时行驶540千米,

7小时行驶630千米,8小时行驶720千米……

(1)出示下表,填表

一列火车行驶的时间和路程

时间

路程

填表,思考:在填表中你发现了什么?

时间变化,路程也随着变化,我们就说时间和路程是两个相关联的量。(板书:两种相关联的量)

根据计算,你发现了什么?

相对应的两个数的比的比值一样或固定不变,在数学上叫做一定。

用式子表示他们的关系是:路程/时间=速度(一定)(板书)

(2)教师小结:

同学们通过填表,交流,知道时间和路程是.两种相关联的量,路程随着时间的变化而变化.时间扩大,路程随着扩大;时间缩小,路程也随着缩小。即:路程/时间=速度(一定)

2、教学例2:

(1)花布的米数和总价表

数量 1 2 3 4 5 6 7 ……

总价 8.2 16.4 24.6 32.8 41.0 49.2 57.4 ……

(2)观察图表,发现什么规律?

用式子表示它们的关系:总价/米数=单价(一定)

3、抽象概括正比例的意义。

(1)比较例1、例2,思考并讨论:这两个例题有什么共同点?

(2)两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两个量就叫做成正比例的量,它们的关系叫做正比例关系。

(3)看书P39,进一步理解正比例的意义。

(4)如果用x和y表示两种相关联的量,用k表示它们的比值(一定),正比例关系怎样用字母表示出来?

x/y=k(一定)

(5)根据正比例的意义以及表示正比例的式子想一想:构成正比例关系的两种量必须具备哪些条件?

4、看书P40例2。

(1)题中有几种量?哪两种量是相关联的量?

(2)体积和高度的比的比值是多少?这个比值是什么?是不是一定?

(3)它们的数量关系式是什么?

(4)从图中你发现了什么?

(5)不计算,根据图像判断,如果杯中水的高度是7厘米,那么水的体积是多少?225立方厘米的水有多高?

三、课堂小结:

什么是成正比例的量?它必须具备什么条件?怎样判断成正比例的量?

四、课堂练习:

1、P41做一做

2、P43~44练习七第1~5题。

第二课时 成反比例的量

教学内容:P42 成反比例的量

教学目的:1、理解反比例的意义,能根据反比例的意义,正确的判断两种量是否成反比例。

2、通过引导学生讨论探究,分析合作,使学生进一步认识事物之间的联系和发展变化的规律。

3、初步渗透函数思想。

教学重点:引导学生总结出成反比例的量,是相关的两种量中相对应的两个数积一定,进而抽象概括出成反比例的关系式.

教学难点:利用反比例的意义,正确判断两个量是否成反比例.

教学过程:

一、复习铺垫

1、下面两种量是不是成正比例?为什么?

购买练习本的价钱0.80元,1本;1.60元,2本;3.20元,4本;4.80元6本.

2、成正比例的量有什么特征?

二、探究新知

1、导入新课:这节课我们继续学习常见的数量关系中的另一种特征——成反比例的量。

2、教学P42例3。

(1)引导学生观察上表内数据,然后回答下面问题:

A、表中有哪两种量?这两种量相关联吗?为什么?

B、水的高度是否随着底面积的变化而变化?怎样变化的?

C、表中两个相对应的数的比值各是多少?一定吗?两个相对应的数的积各是多少?你能从中发现什么规律吗?

D、这个积表示什么?写出表示它们之间的数量关系式

(2)从中你发现了什么?这与复习题相比有什么不同?

A、学生讨论交流。

B、引导学生回答:

(3)教师引导学生明确:因为水的体积一定,所以水的高度随着底面积的变化面变化。底面积增加,高度反而降低,底面积减少,高度反而升高,而且高度和底面积的乘积一定,我们就说高度和底面积成反比例关系,高度和底面积叫做成反比例的量。

(4)如果用字母x和y表示两种相关的量,用k表示它们的积一定,反比例可以用一个什么样的式子表示?板书:x×y=k(一定)

三、巩固练习

1、想一想:成反比例的量应具备什么条件?

2、判断下面每题中的两个量是不是成反比例,并说明理由。

(1)路程一定,速度和时间。

(2)小明从家到学校,每分走的速度和所需时间。

(3)平行四边形面积一定,底和高。

(4)小林做10道数学题,已做的题和没有做的题。

(5)小明拿一些钱买铅笔,单价和购买的数量。

(6)你能举一个反比例的例子吗?

四、全课小节

这节课我们学习了成反比例的量,知道了什么样的两个量是成反比例的两个量,也学会了怎样判断两种量是不是成反比例。

五、课堂练习

P45~46练习七第6~11题。

第三课时 正比例和反比例的比较

教学内容:正比例和反比例的比较

教学目标:1、进一步理解正比例和反比例的意义,弄清它们的联系和区别。掌握它们的变化规律。

2、使学生能正确判断正、反比例。

3、发展学生分析、比较、抽象、概括能力,激发学生的学习兴趣。

教学难点:正反比例的联系和区别 。

教学重点:能判断正、反比例。

教学过程:

一、复习:

判断:下面每组中的两个量成什么关系?

1、单价一定,数量和总价。

2、路程一定,速度和时间。

3、正方形的边长和它的面积。

4、时间一定,工效和工作总量。

二、新知:

1、出示课题:

2、教学补充例题

出示表1

路程(千米) 5 10 25 50 100

时间(时) 1 2 5 10 20

表2

速度(千米/时) 100 50 20 10 5

时间(时) 1 2 5 10 20

分组讨论、交流:说一说怎样想的,同时填空。引导学生讨论回答。

总结路程、速度、时间三个量中每两个量之间的比例关系。

速度×时间=路程 路程÷时间=速度 路程÷速度=时间

判断:

(1)速度一定,路程和时间成什么比例?

(2)路程一定,速度和时间成什么比例?

(3)时间一定,路程和速度成什么比例?

3、比较正比例、反比例的关系

正反比例的相同点:都有两种相关联的量,一种量随着另一种量变化。

不同点:正比例使变化相同,一种量扩大或缩小,另一种量也扩大或缩小。相对应的每两个数的比值(商)一定,反比例是变化相反,一种量扩大(或缩小),另一种量反而缩小(扩大)相对应的每两个量的积一定。

三、巩固练习

1、做一做

判断单价、数量和总价中的一种量一定,另外两种量成什么关系。为什么?

单价一定,数量和总价—

总价一定,数量和单价—

数量一定,总价和单价—

2.判断下面一些相关联的量成什么比例?为什么?

(1)除数一定, 和 成 比例。

被除数—定, 和 成 比例。

(2)前项一定, 和 成 比例。

(3)后项一定, 和 成 比例。

(4)长方形的长、宽和面积三总量,如果长是一定的,宽和面积成正例关系。这三种量再什么条件下还能组成比例关系,是哪种比例关系。

2022年六年级数学下册数学广角教案


数学广角

第一课时《抽屉原理》

内容:教材第70、71页的例1、例2

目标:

1、经历“抽屉原理”的探究过程,初步了解“抽屉原理”。

2、会用“抽屉原理”解决简单的实际问题。

3、通过操作发展学生的类推能力,形成比较抽象的数学思维。

教学重点:认识“抽屉原理”。

教学难点:灵活运用“抽屉原理”解决实际问题。

教学方法:小组合作,自主探究。

教学准备:若干根小棒,4个纸杯。

教学过程:

一、创设情境,导入新知

老师组织学生做“抢椅子”游戏( 请3位同学上来,摆开2条椅子),并宣布游戏规则。

师:象这样的现象中隐藏着什么数学奥秘呢?这节课我们就一起来研究这个原理。

二、自主学习,初步感知

(一)出示例1:4枝铅笔,3个文具盒。

1、观察猜测

猜猜把4枝铅笔放进3个文具盒中会存在什么样的结果?

2、自主探究

(1)提出猜想:“不管怎么放,总有一个文具盒里至少放进2枝铅笔”。

(2)小组合作操作验证:请拿出铅笔和文具盒小组合作摆一摆、放一放。

(3)交流讨论,汇报。可能如下:

第一种:枚举法。

用实物摆一摆,把所有的摆放结果都罗列出来。

第二种:假设法。

如果每个文具盒中只放1枝铅笔,最多放3枝。剩下1枝还要放进其中的一个文具盒,所以至少有2枝铅笔放进枝同一个文具盒。

第三种:数的分解。

把4分解成三个数,共有四种情况,(4,0,0)、(3,1,0)、(2,2,0)、(2,1,1),每一种结果的三个数中,至少有一个数是不小于2的。

(4)、比较优化。

请学生继续思考:如果把5枝铅笔放进4个文具盒,结果是否一样呢?把100枝铅笔放进99个盒子里呢?怎样解释这一现象?

师:为什么不采用枚举法来验证呢?

数据较小时可以采用枚举法,也可用假设法直接思考,而当数据较大时,用假设法思考比较简单。

3、引导发现

只要放的铅笔数比盒子的数量多1 ,不管怎么放,总有一个盒子里至少放进2枝铅笔。

(二)出示例2:把5本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少放进几本书? 7本书会怎样呢?9本呢?

1、学生尝试自已探究。

2、交流探究的结果,可能如下:

1)枚举法。

共有3种情况。在任何一种结果中,总有一个抽屉至少放进3本书

2)假设法。

把5本书“平均分成2份”,5÷2=2…1,如果每个抽屉放进2本书,还剩下1本。把剩下的这1本放进任何一个抽屉,该抽屉里就有3本书了。

由此可见,把5本书放进2个抽屉中,不管怎么放,总有一个抽屉里至少放进3本书。

同样,7÷2=3…1把7本书放进放进2个抽屉中,不管怎么放,总有一个抽屉里至少放进4本书。

9÷2=4…1把9本书放进放进2个抽屉中,有一个抽屉里至少放进5本书。

3、观察发现

学生讨论交流,发现“总有一个抽屉里至少有几本”只要用“商+1”就可以得到。

4、介绍原理。

师:同学们,你们知道吗?你们的这一发现,在数学里被称之为“抽屉原理”,也叫做“鸽巢原理”,最先是由19世纪的德国数学家狄利克雷提出来的,所以又称为“狄利克雷原理”。这一原理在解决实际问题中有着广泛的应用,可以用它来解决很多有趣的问题呢。

三、应用原理,解决问题

完成教材第72页 “做一做”第1题

四、全课总结,回归生活

1、通过今天的学习你有什么收获?

2、回归生活:你还能举出一些能用抽屉原理解释的生活中的例子吗?

第二课时 抽取游戏

教学目标

知识与技能目标:进一步掌握抽屉原理,掌握抽屉原理的反向求法。

过程与方法目标:通过各种活动培养学生自己动手动脑去思考的习惯。

情感、态度与价值观目标:体会数学与日常生活的联系,了解数学的价值,增强应用数学的意识。

教学重难点

1.使学生理解抽取问题中的一些基本原理。

2.找到抽屉原理问题中被分的物品。

教学过程

一、创设情境、引入新课:

师:一天晚上,有一个小女孩正要从抽屉里拿袜子。抽屉里有黑白两种颜色的袜子各10双。突然停电了。小女孩至少摸出多少只袜子,才能保证拿出相同颜色的袜子?

学生思考、发言。

师:学习了这节课我们就能解决类似的问题了。

二、活动探究、深入了解:

(一)出示例3:盒子里有同样大小的红球和蓝球各4个。要想摸出的球一定有2个同色的,至少要摸出几个球?

1、学生提出猜想。

2、用预先准备的学具,小组合作交流。4、小组反馈,师相机板书:

3、得出结论:把颜色看作抽屉。

有两种颜色,只要摸出的球比他们的颜色至少多1,就能保证有两个球同色。

(二)研究规律

师:如果盒子里有蓝、红、黄球各6个,从盒子里摸出两个同色的球,至少要摸出几个球?

分小组讨论后汇报。

再出示做一做第2题,汇报后得出:问题结论只与球的颜色种数也就是抽屉数有关。

小结:确定什么是抽屉什么是物体是解决抽屉问题的关键。

三、巩固训练,促进内化

1、做一做

2、解决课前有趣的问题

3、有红色、白色、黑色的筷子各10根混放在一起,让你闭上眼睛去摸,

(1)你至少要摸出几根才敢保证有两根筷子是同色的?

(2)至少拿几根,才能保证有两双同色的筷子?为什么?

四、全课总结,畅谈收获

1、通过今天的学习你有什么收获?

2、回归生活:你还能举出一些能用抽屉原理解释的生活中的例子吗?

第三课时 节约用水

教学目标

知识与技能目标:通过活动进一步巩固巩固比例知识、简单的统计知识,培养学生综合应用所学过的知识的能力

过程与方法目标:通过活动培养学生搜集和处理信息的能力,使学生感到数学和现实生活的联系。

情感、态度与价值观目标:增强学生“节约用水,从我做起”的责任意识,养成良好的品德。

教学重难点

所学知识的综合应用

教学过程

一、情景引入,提出问题

1、(屏幕显示:地球上最后一滴水将是人类的眼泪!)请学生说说对这则广告的理解。引出课题。

2、提出问题:为什么要节约用水呢?

二、问题讨论,明白道理

1、交流课前搜集的信息,畅谈有关水的认识。

2、课件展示相关资料,了解地球上水资源状况。

3、交流感想,强化体验。

三、参与活动,亲身体验

师:水龙头坏了或没有关紧,水一滴一滴往外流(多媒体出示相关图片),遇到这种情况,你会怎么做?

师:课前我请同学们做了一个漏水试验,我们一起来看看试验结果吧!

1、小组交流、展示成果。(一分钟大约滴水50毫升)

2、计算统计,交流感想。

师:根据上面的滴水速度,完成下面的统计表。

一个漏水水龙头漏水情况统计表

时间 1分钟 1小时 24小时 1年

水量(升)

一个水龙头一年浪费多少水?(1立方米约重1吨)

3、评价家庭用水状况,提出节水建议。

4、(课件出示)小明刷牙时不间断放水30秒,用水约6升。小刚用口杯接水刷牙,需要3口杯水,每杯用水约0.2升。

A、小明一次刷牙的用水量相当于小刚多少次刷牙的用水量?

B、采用节水刷牙的方式,如果一个三口之家按每人每日刷牙两次算,那么每月(30天计算)可节水多少升?

C、节约的这些水,如果以一户三人,每户月均用水量为8吨计算,够你家用几天?

(独立分析计算、汇报计算结果,交流想法)

四、解决问题,提出方案

分组讨论一下节约用水的措施。

1、学生分组讨论,多媒体演示生活中的节水片段。

2、出示节水倡议,生齐读:节约用水,从我做起,从节约每一滴水做起。

北师大版六年级数学下册《面的旋转》教案


一、 导入

同学们,我们生活在动的世界里,风吹树梢动,鸟儿飞翔翅膀动、就连我们身体中的血液每时每刻都在不停的流动,其实我们的数学世界也正因为有了动而变得丰富多彩。现在让我们做了实验感受一下吧!请大家选择你身边的一样物品,让它动一动,看看你发现了什么?

1、 点动成线 如果把这个小球看成是一点,那么它运动的轨迹形成了什么?(曲线)能用四个字概括一下吗?板书:点动成线

2、 线动成面 如果把这枝笔看成是一条线,那么它运动的轨迹形成了什么?(面)概括起来就是:线动成面

3、 面动成体 如果把这本数学书看成是一个长方形,那么它是怎么运动的呢 ?(旋转)板书。旋转后形成了一个圆柱体,也就是说:面动成体。

大家能举出生活中的这些现象吗 ?

小结:看来点动成线,线动成面与面动成体在我们的生活中随处可见。(课件)这节课我们就来研究面的旋转。

二、 新课

1、 以前我们学习过那么平面图形?(学生回答老师贴图)

2、 这些平面图形旋转后会形成什么立体图形呢?请大家先想一想,猜一猜并和同桌说一说。

3、 大家刚才说得对不对呢?现在我们来动手做一做。每组的黑袋子里有一些平面图形,请大家选择好以哪条线动轴旋转后贴在圆棒的双面胶处,然后旋转,最后把你的发现记录在汇报单上。

4、 小组活动,操作记录

5、 同学们,我们就做到这,谁来汇报一下。学生汇报,老师贴图。

哪个小组还有补充?

根据刚才这些同学的汇报,你又想说些什么 ?

A、不同的平面图形,旋转的立体图形是不一样的。

B、不同的平面图形,也能旋转出同样的立体图形。(正方形和长方形、圆和半圆直角三角形和等腰三角形)

C、同一个平面图形,按照不用的边为轴,旋转出的立体图形也是不一样的。

6、小结:看!同一个长方形以不同的轴旋转可以形成圆柱体。象三角形和梯形以不同的边为轴可以旋转出不同的立体图形。(课件)

7、在这些立体图形里有我们比较熟悉的圆柱体和圆锥体。现

在请大家打开书进一步来了解它们。谁来说说它们有什么相同点和不同点?(相同点:都有一个曲面和一个底面,不同点圆柱体上面也是一个底面,而圆锥体上面是一个顶点。圆柱体有无数条高,而圆锥体只有一条。)

8、在我们生活中哪些物品是圆柱体哪些物品是圆锥体呢?学生举例,相机指出各部分名称。

三、 练习

看来同学们对圆柱体和圆锥体已经很熟悉了,那接下来薛老师可要考考大家了!

1、 实物判断:是不是圆柱体?说明理由.

2、 教材四页习题。

3、开放题。

A、下列图形旋转后会形成哪个立体图性?

B、下列哪个塞子既能塞住甲盒又能塞住乙盒呢?

四、 总结

同学们,看!我们的数学世界多么丰富多彩啊!简单的动就将这些平面图象变成了我们熟悉的立体图形,今后让我们继续多观察、多操作去探索数学世界的奥秘吧!

2022年六年级数学下册《圆柱的体积》教案


目标:通过用切割拼合的方法借助长方体的体积公式推导出圆柱的体积公式;使学生理解圆柱的体积公式的推导过程,能够运用公式正确地计算圆柱的体积。

重点:能够正确计算圆柱体体积

教学难点:圆柱体体积公式的推导过程。

教具准备:圆柱的体积公式演示教具(把圆柱底面平均分成16个扇形,然后把它分成两部分,两部分分别用不同颜色区别开)。

教学过程:

一、复习

1.圆柱的侧面积怎么求?

(圆柱的侧面积=底面周长×高。)

2.长方体的体积怎样计算?

学生可能会答出“长方体的体积=长×宽×高”,教师继续引导学生想到长方体和正方体体积的统一公式“底面积×高”。

板书:长方体的体积=底面积×高

3.拿出一个圆柱形物体,指名学生指出圆柱的底面、高、侧面、表面各是什么圆柱有几个底面?有多少条高?

二、导入新课

教师:请大家想一想,在学习圆的面积时,我们是怎样把圆变成已学过的图形再计算面积的?

先让学生回忆,同桌的相互说说。

然后指名学生说一说圆面积计算公式的推导过程:把圆等分切割,拼成一个近似的长方形,找出圆的面积和所拼成的长方形面积之间的关系,再利用求长方形面积的计算公式导出求圆面积的计算公式。

教师:怎样计算圆柱的体积呢?大家仔细想想看,能不能把圆柱转化成我们已经学过的图形来求出它的体积?

让学生相互讨论,思考应怎样进行转化。

指名学生说说自己想到的方法,有的学生可能会说出将圆柱的底面分成扇形切开教师应该给予表扬。

教师:这节课我们就来研究如何将圆柱转化成我们已经学过的图形来求出它的体积。

板书课题:圆柱的体积

三、新课

1.圆柱体积计算公式的推导。

圆的面积是怎样推导出来的?

圆柱体积计算公式的推导又会怎样呢?(看模型,联想长方体)

推导其体积计算公式

板书:圆柱的体积=底面积×高

教师:如果用V表示圆柱的体积,S表示圆柱的底面积,h表示圆柱的高,可以得到圆柱的体积计算公式: V=Sh

2.教学例1

出示例1

(1)教师指名学生分别回答下面的问题:

这道题已知什么?求什么?

能不能根据公式直接计算?

计算之前要注意什么?

通过提问,使学生明确计算时既要分析已知条件和问题,还要注意要先统一计量单位。

(2)用投影出示下面几种解答方案,让学生判断哪个是正确的?

V=Sh=50×2.l=105

答:它的体积是105立方厘米。

2.1米=110厘米。

V=Sh=50×210=10500

答:它的体积是1050O立方厘米。

50平方厘米=0.5立方米

V=Sh=0.5×2.1=1.05答:它的体积是1.05立方米。

50平方厘米=0.005平方米

V=Sh=0.005×2.1=0.0105立方米

答:它的体积是0.0105立方米。

先让学生思考,然后指名学生回答哪个是正确的解答,并比较一下哪一种解答更简单i对不正确的第、种解答要说说错在什么地方。

五、作业:

数学书: 9页 第2、3、4、

2022年六年级数学下册《比例尺》教案


目标

1.知识与技能:认识比例尺;能根据图上距离、实际距离、比例尺中的两个量求第三个量。

2.过程与方法:结合具体情境,体会比例尺产生的必要性;运用比例尺的有关知识,通过测量、绘图、估算、计算等活动,学会解决生活中的一些实际问题。

3.情感、态度、价值观:体会数学与日常生活的密切联系。

重、难点

1.理解比例尺的含义。

2.能根据图上距离、实际距离、比例尺中的两个量求第三个量。

教学准备

教具准备:小黑板、中国地图一张。

学具准备:学生各自准备一张地图。

教法学法

教法:对于意义理解部分主要采用尝试法。对于运用比例尺进行相关计算时,主要用引导发现法。

学法:在老师的引导下,通过动手操作,大胆设想、自主探究的方法进行学习,必要时进行合作交流。

教学过程

一、创设情境(引入新课)

师:同学们,如果要给我们的教室画一张平面图,它应该是什么形状的?

生:长方形。

师:课前我们量过教室的长、宽各是多少?

(生:长大约9米,宽大约6米 。 )

师:请大家在练习本上画出我们教室的平面图。(生画师巡视)

(以谈话的形式,从学生熟悉的教室入手,让学生先估计教室的长和宽,再尝试画出教室的平面图,这样既复习了上节课图形的放缩知识,又为下面的学习做好准备。)

师:大家画的图是长9米,宽6米吗?(不是)谁来说说是怎么画的?

(学生的答案可能有:长方形长9厘米,宽6厘米。

或者是长3厘米,宽2厘米。)

师:同样画的都是我们的教室,却不一样大,大家赞成谁的画法(故意)?为什么?

(观点一:都可以,因为这两个图的比都是3:2。

观点二:这两种画法一样,但画的大小不一样,一个面积是54平方厘米,一个是6平方厘米。)

师:是啊,这两个平面图,别人一看会知道我们教室的大概形状, 但我们的教室不可能是长9厘米、宽6厘米,也不可能是长3厘米、宽2厘米,你能想个办法,让别人也知道我们教室有多大吗?

(生动脑想、动手写)

引导学生汇报:

(1)直接写上"教室面积大约50平方米。"

(2)在图上标出"长9米、宽6米。"

(3) 标上"1厘米=1米"。

(4)1厘米怎么能等于1米呢?我认为可以写"1厘米相当于1米。"

( 激发了学生的探究欲,激活了学生的思维,促使学生去动脑、动手、动口,探索解决问题的办法,同时让学生体会了比例尺产生的必要性。)

师:看来同学们很爱动脑筋,遇到问题会想办法。现在请拿出课前准备的地图,找一找看看上面有无类似的标注?通过汇报,让学生发现地图上有不同的标注。教师板书不同的标注。

( 引导学生利用手中的素材,让学生自己寻找、发现和观察比例尺,从而对学生进行学习方法的指导。)

二、意义建构(认识比例尺)

1.介绍各种比例尺的名称。

师:在地图上这些都叫做比例尺。根据板书教师介绍数字比例尺、文字比例尺、线段比例尺。

2.认识比例尺。

如:师问比例尺1:600000是什么意思?

生:就是图上1厘米的长度代表现实中的600000厘米。

师:比例尺1:230000是什么意思?

生:就是地图上1厘米的距离相当于现实中的230000厘米的距离。

师:同学们讲得都对,那到底什么是比例尺?

引导得出:

1.比例尺就是一种可以把实际距离放大或缩小的计量单位。

2.我认为比例尺就是图上长度比上现实中长度。

3.图上画的长度与现实距离的比。

4.图上长度与实际距离的比。

师:(规范学生语言)对,比例尺就是图上距离与实际距离的比。

板书:比例尺=图上距离/实际距离

由上列公式并推导出:图上距离=比例尺x实际距离

实际距离=图上距离/比例尺

(让学生按自己的理解用自己的语言充分描述什么是比例尺,教师再规范语言,这样,一促进了学生思考,二促进了思维外显,三促进了交流。)

三、实际应用(比例尺的应用)

1.出示小黑板(笑笑家平面图)

师:这是笑笑家的平面图。要求笑笑的卧室的实际面积是多少,需要知道哪些条件?(卧室实际的长和宽)怎么解决?

2.学习课本第30页内容。

(1)学生自己阅读。

(2)学生动手测量笑笑家的平面图的图上距离,计算出笑笑卧室的实际面积。先小组内交流自己的想法,然后全班交流。

(3)独立算出笑笑家总面积,再全班交流。

(4)先让学生理解题意,再独立思考、解决,全班交流。

(5)先尝试解决,再全班交流。

3.谁帮老师算算小黑板上的图是按比例尺多少来画的?求出比例尺并标注。

4.师:刚才我们画的教室平面图,你现在有办法让别人知道我们教室有多大了吗?

指导学生在画的长是9厘米、宽是6厘米的图上加上了"比例尺1:100"。

在画的长是3厘米、宽是2厘米的图上加上"比例尺1:300"。

5.完成第31页"试一试"第1题、"练一练"第一题。

四、课堂小结

师:通过本节课的学习,你有什么收获?还有什么问题吗?

2022年六年级数学下册整理和复习教案


整理和复习

要求

通过总复习,使学生进一步理解掌握小学阶段学过的数和数的运算、代数初步知识、应用题、量的计算、几何初步知识、简单统计等知识。

使学过的知识条理化、系统化、形成比较完整的知识结构,进一步提高学生的计算能力、解答应用题的能力和综合运用知识解决实际问题的能力。

结合复习内容,向学生进行“事物之间是互相联系的”,“每一事物都有其规律性”等观点的教育,培养学生严格认真的学习态度。

指导

本单元内容是本册教材的重点,也是小学阶段数学知识的重要组成部分,它对于学生系统完整地掌握小学阶段数学基础知识和基本技能,对于掌握这一阶段所学知识之间的联系及知识规律,对于全面复习和巩固知识等都有着重要的意义。为此,在组织学生复习时,应注意以下几个方面。

使学过的知识条理化、系统化。为了便于教师引导学生进行系统地整理和复习,本单元在内容编排上,把小学所学过的数学知识划分为六个部分。第一部分是数和数的运算;第二部分是代数初步知识;第三部分是应用题;第四部分是量与计量;第五部分是几何初步知识;第六部分是简单的统计。在复习各部分知识时,应让学生把以前不同年段学过的同类知识,通过疏理形成一定的条理,能系统地掌握知识。如在数和数和运算中,应使学生明确已经学过的数有:自然数、整数、分数、小数。这里主要包括各种数和意义、性质、数的读法、写法、有关数的运算等知识。又如在复习应用题时,教材中主要根据解答应用题步骤和方法把应用题分为四个类型,即简单应用题、复合应用题、列方程解应用题,用比例知识解应用题。为人便于学生撑,复习中还可以列出图表,更清楚地列出各类不同的知识。这样既有利于学生回顾知识,形成系统,又有利于理解掌握,同时为沟通各部分知识之间的联系奠定了基础。

在加强基础和知识复习的过程中,注重沟通各部分知识之间的联系,使学生掌握知识规律。在复习各部分知识时,应使学生在进一步理解基础知识的基础上,熟练地掌握。应注重让学生理解各部分知识之间的联系和区别,如整数、分数、小数的意义与数的读、写之间,与数的四则计算之间的关系。数的意义是基础,数的读写及四则计算是数的意义的运用过程,在运用的过程中,也是对其意义进一步理解的过程。又如,用算术与用列方程解答应用题之间的联系与区别,正比例的反比例概念之间的联系和区别,简单应用题与复合应用题之间的联系与区别,以各种应用题之间的联系与区别等。中掌握知识规律,培养学生的能力。

查漏补缺,因材施教,提高复习效益。

复习前,应全面调查了解每个学生对各部分知识掌握情况,制定相应的复习计划,有针、对性地进行复习的指导。要树立面向全体学生的思想,精心组织复习内容和方法,使各个层次的学生都有收获,都有提高,都得到发展。

(一)数与代数

整数、小数、分数、百分数的含义

复习目标

1、使学生系统地掌握整数、小数、分数、百分数的意义。

2、使学生熟练的掌握十进制计数法和整数、小数数位顺序表,并能正确的熟练的读、写整数与小数,会比较数的大小。

3、能熟练地进行小数、分数与百分数的互化。

复习过程

一、回顾与交流

1、复习数的意义。

(1)你学过哪些数?说一说它们在生活中的应用。

①学生说出自己的认识和理解。

如:整数、小数、分数、百分数、负数等等。

②联系课文情境图,说出各种数的具体含义。

如:1722是自然数。这里表示词典页码的数量:有1722个1页。

8844.43是小数。表示八千八百四十四又百分之四十三。

是分数。这里表示把全年天数平均分成5份,空气质量良好的占其中的3份。

40%、60%是百分数。这里分别表示羊毛和化纤成分占总成分的百分率。

-25℃是负数。它表示比0℃还低的气温度数。

(2)什么是整数?

①学生说一说什么是整数,整数包括哪些数。

②师生共同概括说明。

像…,-3,-2,-1,0,1,2,3,…这样的数统称整数。整数的个数是无限的。自然数是整数的一部分。“1”是自然数的单位。

③做一做

( )是正数,( )是负数。

( )是自然数,( )是整数。

2、数的读、写

(1)数位顺序表。

整数部分 小数点 小数部分

… 亿级 万级 个级

数位 … 个位 十分位 …

计数单位 … ︵个

︶ 十分之一 …

①填一填,读一读。

②什么是数位?数位与位数相同吗?

③什么是计数单位?相邻的计数单位之间的进率是多少?

④做一做。

27046=2×( )+7×( )+4×( )+6×( )

(2)读法和写法。

①读出下面各数。

106000000 0.006 25.08

a、读一读。

b、说一说读数的方法、要点。

②写出下面各数。

九十万三千 二十亿五千零十八 零点二零零八

a、写一写

b、说一说你是怎么做的。

(3)改写。

①把540000改写成以“万”作单位的数。

②把24940000000改写成以“亿”作单位的近似数。

过程要求:

a、学生改写。

b、说一说改写的方法、要点。

3、数的大小。

(1)怎样比较两个数的大小?

(2)完成练习十三第6题。

4、分数、小数、百分数的互化。

(1)填一填。

小数 分数 百分数

0.25

12.5%

(2)说一说你是怎么做的。

二、巩固练习

完成课文联系十三第1~5题。

过程要求:

(1)学生独立完成,教师巡视,了解情况,进行个别指导

(2)同学之间互相交流。

(3)提问:说一说你是怎么做的,发现问题及时纠正。

三、课堂小结

本节课中你有什么收获?还有什么疑问,请和同学交流。

复习内容:数的认识(二)

复习目标:

1、使学生进一步理解和掌握分数、小数的基本性质。

2、使学生进一步理解因数、倍数、质数、合数等意义,能熟练地找出两个数的公因数、公倍数等。

3、熟练掌握2、3、5倍数的特征,并正确解决有关问题。

复习过程:

一回顾与交流

1、分数的基本性质与小数的基本性质。

(1)分数的基本性质。

①分数的基本性质是什么?

板书:分数的分子和分母都乘或除以相同的数(0除外)分数的大小不变。

②填一填。

③分数大小不变,但什么变了?(分数单位变了)

(2)小数的基本性质。

①小数的基本性质是什么?

板书:小数末尾添上0或者去掉0,小数的大小不变。

② 把下面的小数改写成两位小数。

0.300 2.5 4.3 000

③小数大小不变,但什么变了?(小数计数单位变了)

(3)小数的基本性质与分数的基本性质是一致的.

如:0.3 = 0.30 = 0.300

(3)小数点移动位置,小数的大小会发生什么变化?

如果把小数点向右移动一位、两位、三位……这个小数比原来的数就扩大10倍、100倍、1000倍……如果把小数点向左移位一位、两位、三位……这个数就比原来的数缩小10倍、100倍、1000倍……

2.倍数与因数。

(1)什么是倍数?什么是因数?举例说明。

①4×5=20

20是5和4的倍数。 4和5都是20的因数。

②20的因数还有哪些?一共有多少个?

20的因数有1,20,2,10,4,5。一共有6个。

③4的倍数还有哪些?一共有几个?

4的倍数有4,8,12,……,有无数个。

④着重说明:

最小 最大 个数

因数 1 本身 有限

倍数 本身 / 无限

(2)2、3、5倍数的特征。

①2的倍数特征是什么?举例说明。什么是偶数?什么是奇数?

个位上是0,2,4,6,8的数都是2的倍数。是偶数。

②5的倍数特征是什么?举例说明。

个位上是0或5的数,都是5的倍数。如:10,25,45,60等。

④ 3的倍数特征是什么?举例说明。

各个数位上的数字之和是3的倍数,这个数是3的倍数。如123,303等。

(3)什么是质数?什么是合数?

①什么是质数?最小的质数是什么?

②什么是合数?最小的合数是什么?

③1是什么数?(1是奇数。既不是质数也不是合数)

(4)公因数与公倍数

12的因数 20的因数 50以内6的倍数 50以内8的因数

12和20的公因数 50以内6和8的公倍数

(5)对于“倍数和因数”这一单元,你还知道哪些知识?还有什么疑问?

同学之间互相交流,教师巡视指导,发现问题及时纠正。

二巩固练习

完成课文练习十三第7~9题。

复习内容:数的运算(一)

复习目标:

1. 通过复习使学生进一步系统地理解掌握加、减、乘、除四则运算的意义和计算方法。从而培养学生概括能力与计算能力。

2. 能综合运用所学的知识和技能解决问题,发展应用意识。

复习过程:

一回顾与交流

1.四则运算的意义。

A我们折了36颗红星,还折了28颗蓝星。

B我们买了40瓶矿泉水,每瓶0.9元。

C我们有24m彩带,用 做蝴蝶结,用 做中国结。

(1)创设情境,让学生结合情境图提问题。

问:你能提出哪些用计算解决的问题?

学生提出问题,并说 明解决方法。如:

① 一共折了多少颗星?36+28

② 折的红星比蓝星多多少颗?36-28

③ 买矿泉水用了多少钱?0.9×40

④ 做蝴蝶结用了多少彩带?做中国结用了多少彩带?

24× 24×

⑤ 做蝴蝶结用的彩带是中国结的几分之几?

(2)结合算式说明每一种运算的含义:

①什么叫做加法?小数加法、分数加法的意义相同吗?

②什么叫做减法?小数减法、分数减法的意义相同吗?

③整数乘法的意义是什么?小数、分数乘法的意义同整数乘法的意义相同吗?

④什么叫做除法?小数除法、分数除法的意义相同吗?

小结:整数、小数、分数的加法意义、减法意义与除法意义都分别相同。只有小数、分数乘法(第二个因数小于1时)是求一个数的几分之几是多少/

3.四则运算的方法。

(1)整数、小数加法、减法的计算方法各是什么?

(2)分数加法、减法的计算方法各是什么?

(3)它们有什么相同点?

整数加减时,数位对齐;

小数加减时,小数点对齐; 计数单位相同才能相加减。

分数加减时,分数单位相同。

(4)整数、小数乘法的计算方法是什么?有什么相同之处,有什么不同之处?

小数乘法,先按照整数乘法的计算方法算出积,再看乘数中有几位小数,然后在积中点上小数点。

(5)说一说整数、小数除法的计算方法。

(6)说一说分数乘法和除法的计算方法。

4. 在四则运算中,应注意一些特殊情况。

出示以下内容:

a+0=( ) a×0=( ) 0÷a=( )

a-0=( ) a×1=( ) a÷a=( )

a-a=( ) a÷1=( ) 1÷a=( )

注意:当a作除数时不能为0。

以上交流基础上,让学生进行归纳。

整数、小数 分数(百分数)

加法 意义

计算方法

特殊情况

减法 意义

计算方法

特殊情况

乘法 意义

计算方法

特殊情况

除法 意义

计算方法

特殊情况

5. 四则运算的关系。

四则运算的关系可概括如下:(以提问方式完成下面关系网)

和-一个加数=另一个加数 被减数-差=减数

减数+差=被减数

加法 减法

求相同加数和的算便运算 求相同减数个数的算便运算

乘法 除法

积÷一个因数=另一个因数 商×除数=被除数

被除数÷商=除数

小结:加法是在计数的基础上发展起来的一种连续性计数,是最基本的运算。减法是加法的逆运算,也是加法的还原。乘法又是加法的发展,是求相同加数的加法简便算法。除法是乘法的逆运算,也是乘法的还原,它是减法是发展是求相同减数的减法的简便运算。

二巩固练习

1.完成课文做一做。

2.完成课文练习十四第1、2题

3.课堂小结。

复习内容:数的运算(二)

复习目标:

1、通过复习使学生熟练地掌握四则运算定律和性质,并能根据题目灵活运用这些知识使计算简便。

2、使学生能正确地掌握整数、小数、分数四则混合运算顺序,并能熟练地进行计算。

复习过程:

一回顾与交流。

1、运算定律。

问:我们学过哪些运算定律?

(1)学生回顾曾经学过的运算定律,并与同学交流。

(2)根据表格,填一填。

名称 举例 用字母表示

加法交换律

加法结合律

乘法交换律

乘法结合律

乘法分配律

(3)算一算。

①计算:2.5×12.5×4×8

=(2.5×4)×(12.5×8)……应用乘法交换律、结合律

=10×100

=1000

2.混合运算.

(1)说一说整数四则混合运算顺序.

算一算:(710-18×4)÷2

板书 (710-18×4)÷2

=(710-72)÷2

=638÷2

=319

(2)分数、小数四则混合运算顺序与整数一样吗?

二巩固练习。

1.做一做

2.完成课文练习十四第3~7题。

复习内容:综合练习

练习目标:

1、通过综合复习使学生能牢固地掌握四则混合运算的顺序;能选择合理、灵活的计算方法。

2、能理解四则运算中的数学术语,列综合算式解答文字题;进一步提高计算能力。

练习过程:

一、选择合理的算法进行四则混合运算

1、四则混合运算的顺序是怎样的?

在一个没有括号的算式里,如果只含有同一级运算,要从左往右依次计算;如果含有两级运算,要先做第二级运算,后做第一级运算。

在一个有括号的算式里,要先算小括号里面的,再算中括号里面的。

2、练习。(让学生先练习并讲出算法,然后讲评)

二、文字题的列式计算

1、例:用 去除3与2.25的差,所得的商再减去0.9,结果是多少?(先让学生列综合算式,然后讲解)

(1)这里的“结果”是表示什么?(差)

(2)什么数与什么数的差?(商与0.9的差)

(3)那么商是多少?怎么算?

(4)在老师的引导下列出综合算式:

(3-2.25) -0.9

=0.75 -0.9

=1-0.9

=0.1

0.75除以 ,虽然是小数与分数混合运算,但是像这样情况还是要让学生掌握,以提高他们的运算能力。

2.练习

(1)25.16除以3.7的商,减去0.2乘20的积,结果是多少?

25.16÷3.7- 0.2×20

=6.8-4

=2.8

问:这里“的商”“的积”为什么可以不添上括号?

(2)174.8减去74.7,所得的差除以0.91,得出的商再减去100.95,结果是多少?

(174.8-74.7)÷0.91-100.95

=100.1÷0.91-100.95

=110-100.95

=9.05

问:这里“的差”为什么要添上括号?

从以上练习中可以看出,在文字题中数学术语的理解非常重要,特别是在除法中有几种不同的表达方式要着重掌握。

例如:

a÷b可以读着:

(1)a除以b; (2)b除a;

(3) a被b除; (3)b去除a。

可以看出:“a被b除”与“a除以b”是一样的;“b去除a”与“b除a”是一样的。

3.总结:四则混合运算要认真审题,观察题目里的运算符号决定运算顺序,选择合理的简捷算法。对于文字题列成综合算式,审题时要注意最后一步求的是什么?在列式时如果要改变运算顺序,就要合理地使用括号,以及注意题目中的叙述,如“除”与“除以”等。

复习内容:解决问题

复习目标:

1、使学生进一步理解、掌握运用分数乘法、除法知识解决有关问题,发展应用意识。

2、形成解决问题的一些策略、方法,提高学生分析问题和解决问题的能力。

3、形成评价与反思的意识。

4、对不懂的地方或不同的观点有提出疑问的意识,并愿意对数学问题进行讨论。

复习过程

一基础练习

1、算一算。

出示算式:

过程要求:

(1)利用计算卡片逐一出示算式。

(2)学生口算,直接说出计算结果。

(3)选择部分算式,说一说计算的过程、方法。

2、列式计算。

(1)200的 是多少? (2)200减少 后是多少?

(3)甲数是500,乙数是甲数的 ,乙数是多少?

(4)甲数是500,乙数比甲数多 ,乙数是多少?

(5)甲数是500,乙数比甲数多 ,乙数比甲数多多少?

过程要求:

①利用电脑课本或幻灯逐一出示以上题目。

②认真读题,说一说题中分率表示的意义。

③求一个数的几分之几是多少,用什么方法计算?

④列式计算。

二知识梳理

1、说一说解决问题,有哪些主要步骤。

学生回答时,不必要求统一表述,让学生说出自己的理解。只要内容正确都应该予以肯定。

如:

(1)认真读题,理解题意;

(2)分析题目中的数量关系;

(3)判断解决问题的方法,列出算式;

(4)计算;

(5)验算。

2、说一说分析数量关系的方法。

过程要求:

(1)学生回顾解决问题时,所采用的方法;

(2)与同学交流,互相探索、整理;

(3)不必作统一要求,让学生找到自己所理解的方法。

3、举例说明。

(1)出示例题。

六年级举行“小发明”比赛,六(1)班同学上交32件作品,六(2)班比六(1)班多交1/4 。六(2)班交了多少件作品?

(2)解决问题。

①认真读题,弄清题意。

②分析数量关系。

A、这里的1/4 表示什么?

( 表示把六(1)班作品平均分成4份,六(2)班的作品比六(1)班多其中的1份)

B、画线段图表示。

C、六(2)班作品是六(1)班的几分之几?

(六(2)班的作品是六(1)班的“1+ 1/4”)

D、求六(2)班交了多少件作品,实际是求什么?

(实际是求六(1)班的“1+1/4 ”是多少,也就是求32件作品的“1+ 1/4”是多少件)

E、求一个数的几分之几是多少,用什么方法计算?请列出算式,并计算结果。

三练习。

1、完成课本做一做。

2、完成课文练习十四第6、7题。

教学内容:式与方程

复习目标:

1、通过复习使学生进一步理解用字母表示数的意义和方法,能用字母表示常见的数量关系,运算定律,几何形体的周长、面积、体积等公式。

2、能根据字母所取的数值,算出含有字母的式子的值。

3、理解方程的含义,会较熟练地解简易方程,能通过列方程和解方程解决一些实际问题。

复习过程

一回顾与交流。

1、用字母表示数。

(1)请学生说一说用字母表示数的作用和意义。

(2)教师说明。

用字母表示数可以简明地表示数量关系、运算定律和计算公式,为研究和解决问题带来很多方便。

(3)说一说你会用字母表示什么。

学生回顾曾经学过的用字母表示数的知识,进行简单的整理后再与同学交流。然后汇报交流情况。

①说一说,在含有字母的式子里,书写数与字母、字母相乘时,应注意什么?

如:a乘4.5应该写作4.5a;

s乘h应该写作sh;

路程、速度、时间的数量关系是s=vt.

②你还知道哪些用字母表示的数量关系或计算公式?

学生汇报,教师板书。

如:用字母表示运算定律。

加法交换律:a+b=b+a

加法结合律:a+(b+c)=(a+b)+c

乘法交换律:ab=ba

乘法结合律:a(bc)=(ab)c

乘法分配律:a(b+c)=ab+ac

用字母表示公式。

长方形面积公式:s=ab

正方形面积公式:s=a平方

长方体体积公式:V=abh

正方体体积公式:V=a三次方

圆的周长:C=2πr

圆的面积:S=πR²

圆柱体积:v=sh

圆锥体积:v= sh

(4) 做一做。

完成课文做一做。

2.简易方程。

(1)什么叫做方程?

①含有未知数的等式叫做方程。

②举例。

如:X+2=16 4.5X=13.5 X÷ =30

(2)什么叫做解方程?什么叫做方程的解?

方程的解:使方程左右两边相等的未知数的值叫做方程的解.

解方程:求方程的解的过程,叫做解方程.

(3)解方程。

过程要求:

①学生独立解方程。

②请一位学生上台板演。

③师生共同评价,强调书写格式。

3.用方程解决问题。

(1)出示例题。

学校组织远足活动。原计划每小时行走3.8km,3小时到达目的地。实际2.5小时走完了原定路程,平均每小时走了多少千米?

(2)结合例题说一说用列方程的方法解决问题的步骤。

(3)学生列方程解决问题。

(4)全班反馈、交流。

路程不变

原速度×原时间=实际速度×实际时间

3.8×=实际速度×2.5

(5)做一做。

二巩固练习

完成课文练习十五。

复习内容:常见的量。

复习目标:

1. 通过复习使学生能熟练掌握长度、面积、体积的计量单位,质量单位,时间单位等。能正确使用学过的计量单位解决实际问题。

2. 熟练掌握有关计量单位之间的进率关系,并能正确进行单位换算。

复习过程:

一常见的量与计量单位

师:这一节课,我们来复习常见的量。

板书:常见的量。

问:我们学过哪些量?它们各有哪些计量单位?

过程要求:

(1) 由小组同学共同分类整理。

(2) 教师引导学生列表整理,并巡视课堂进行个别指导。

(3) 全班交流。

分类整理结果如下:

1. 长度、面积、体积单位。

(1) 板书:

长度单位 毫米 厘米 分米 米

面积单位 平方毫米 平方厘米 平方分米 平方米

体积单位 立方毫米 立方厘米 立方分米 立方米

容积单位 毫升 升

(2) 说一说。

① 什么是长度?什么是面积?什么是体积?

长度:两点之间的距离。

面积:物体表面(图形)的大小。

体积:物体所占空间的大小。

② 1厘米有多长?1分米有多长?1米呢?

③ 1平方厘米有多大?1平方分米有多大?1平方米呢?

④ 1立方厘米有多大?1立方分米有多大?1立方米呢?

要求:学生用手比划或举例说明。

(3) 单位之间的进率是多少?有什么联系?

1米=10分米 1分米=10厘米 1米=100厘米

1平方米=100平方分米 1平方分米=100平方厘米

1立方米=1000立方分米 1立方分米=1000立方厘米

(1升=1000毫升)

(4) 你还知道哪些长度、面积或体积单位?

① 学生回顾曾经学过的有关单位。

如:千米、平方千米、公顷等。

② 与同学交流,说一说你对这些计量单位的理解。

2. 质量单位。

(1)常见单位:克(g) 千克(kg) 吨

(2)进率:1吨=1000千克

1千克=1000克

(3)估一估。

①1只梨大约有多少克?1块橡皮擦大约有多少克?

②你的体重是多少千克?

3. 时间单位。

(1) 常见单位:年、月、日、时、分、秒。

(2) 进率:1年=12个月 1月有31日、30日、28日或29日

1年=365天(闰年366天)

1日=24时

1时=60分

1分=60秒

(3) 说一说

① 1节课有多长?1小时大约有多长?

② 1秒是多长?你跑100米大约要多少秒?

4. 人民币单位。

(1) 人民币单位:元、角、分

(2) 进率:1元=10角

1角=10分

二单位换算

1. 说一说。

(1) 如何把高级单位的名数改写成低级单位的名数?

(2) 如何把低级单位的名数改写成高级单位的名数?

2. 练一练。

(1)3时20分=( )分

(2)2.6吨=( )吨( )千克

(3)3080克=( )千克( )克

(4)7立方分米8立方厘米=( )立方分米=( )升

把高级单位的名数改写成低级单位的名数要乘进率,把低级单位的名数改写成高级单位的名数要除以进率。

在学生理解单位改写的原理的基础上,再引导运用小数点移动的方法进行改写。

3. 做一做

三巩固练习

完成课文练习十六

复习内容:比和比例(一)

复习目标:

1. 通过复习使学生进一步理解比和比例的意义与基本性质,能够正确、迅速地求出比值和化简比。

2.进一步理解掌握比和分数、除法的关系。能够应用比的意义求出平面图的比例尺,并根据比例尺求图上距离和实际距离。

复习过程:

一回顾与交流

1. 比和比例的意义与性质。

出示表格,通过提问进行填空。

比 意义 各部分名 称基本性质

比例

引导提问:

(1)什么叫做比?举例说明。各部分名称是什么?

(2)什么叫做比的基本性质?举例说明。

(3什么叫做比例?举例说明。各部分名称是什么?

(4)什么叫做比例的基本性质?举例说明

2.比和分数、除法的关系?

(1)比和分数有什么关系?

(2)比和除法有什么关系?

(3)出示表格。根据学生回答,适时填空。

比、分数与除法的关系

比 前项 比号 后项 比值

分数

除法

(4)举例。

5:6= ( )÷ )

3.比、比例的基本性质的用处。

(1)比的基本性质的用处?

①化简比。 0.12:2

② 化简比与求比值有什么不同之处?

一般方法 结果

求比值

化简比

(2)比例的基本性质有什么用处? 解比例:

过程要求:

①学生独立练习,教师巡视.

②请一位学生上台板演,并说明根据.师生共同评价.

4.比例尺.

(1) 什么叫做比例尺?

板书:图上距离 : 实际距离 =比例尺

(2)说出下面各比例尺的具体意义.

①比例尺1:3000000表示

②比例尺20:1表示

③比例尺0 30 60km表示

(3)求比例尺.

一条绿化带长350米,在平面图上用7厘米的线段表示。这幅图纸的比例尺是多少?

(4)求实际距离。

在比例尺是 的地图上,量得A地到B地的距离是5厘米。求AB两地的实际距离。

二巩固练习。

1.求图上距离。

甲乙两地相距200千米,在比例尺是 的地图上,甲乙两地用多少厘米表示?

2.完成课本练习十七第1、2题。

复习内容:比和比例(二)

复习目标:

1.使学生进一步理解正、反比例的意义,能正确判断两种量是否成正比例或反比例。

2.使学生能熟练地运用比例来解决有关问题。

复习过程:

一回顾与交流

1.正、反比例的意义。

(1)你是怎样判断两种量成正比例还是成反比例的?

学生回答要点:

正比例:

① 两种相关联的量;

② 其中一种量增加,另一种量也随着增加,一种量减少,另一种量也减少;

③ 两种量的比值一定。

反比例:

① 两种相关联的量;

② 其中一种量增加,另一种量反而减少,一种量减少,另一种量反而增加;

③ 两种量的积一定。

(2) 你能用字母表示正、反比例的关系吗?

板书: (一定)……正比例

(一定)……反比例

(3) 举例说明。

①牛奶的袋数与质量的变化情况如下。

牛奶的袋数 1 2 3 4 5

质量(g) 220 440 660 880 1100

说一说:

A这里两种量的变化情况。

B什么量是一定的?

C这两种量成什么比例?

D写一个等量关系式。

②每袋面包个数与所装袋数。

每袋面包个数 2 3 4 6

所装袋数 24 16 12 8

说一说:

A这里两种量的变化情况。

B什么量是一定的?

C这两种量成什么比例?

D写一个等量关系式。

(4) 判断下列各题中两种量是否成比例,成什么比例。

① 速度一定,路程和时间。

② 正方形的边长和它的面积。

③ 订《少年报》数量和所需钱数。

④ 小明从家到学校,行走的速度和时间。

⑤ 圆的周长和半径。

⑥ 圆的面积和半径。

2. 用比例解决问题。

(1) 说一说用比例解决问题的步骤。

① 学生回顾用比例解决问题的过程、步骤。

② 师生共同概括。

A认真审题找出两种相关联的量;B判断两种量成什么比例;C设未知数X;D列出比例式(含有未知数);E解比例;F检验。

(2) 举例。

修一条公路,全长12千米,开工3天修了1.5千米。照这样计算,修完这条公种一共需要多少天?

要求按照解题步骤一步一步完成。

① 两种相关联的量是什么?路程(工作量)和时间

② 两种量成什么比例?说明理由:路程(工作量)

题中的等量关系应该怎样表示?

3天工作量=全部工作量

3天 全部时间

设未知数X,解比例。(过程略)

③检验。

二巩固练习

完成课文练习十七第3~5题。

复习内容:数学思考(一)

复习目标:

1.使学生学会用数学思想方法解决问题,形成一些基本策略,发展实践能力与创新精神。

2.进一步体验数学活动充满着探索与创造。

复习过程:

一回顾与交流

1.教学例5。

6个点可以连多少条线段?

(1) 学生根据题意,画图连线。

问:这样连线方便吗?如果是8个点、10个点呢?

(2)探索解决问题的方法。

①教师引导学生探索点的个数与连线条数的关系。

②小组交流。

③汇报思维的过程与结果。

教师整理后板书。

3个点连成线段的条数:1+2=3(条)

4个点连成线段的条数:1+2+3=6(条)

5个点连成线段的条数:1+2+3+4=10(条)

6个点连成线段的条数:1+2+3+4+5=15(条)

④你有什么发现?

⑤根据规律,你知道8个点、12个点、20个点能连成多少条线段?

学生交流后得出结果:

8个点连成线段的条数:1+2+3+4+5+6+7=28(条)

12个点连成线段的条数:1+2+3+4+5+6+7+8+9+10+11=66(条)

20个点连成线段的条数:1+2+3+……+19=190(条)

2.教学例6。

学校为艺术节选送节目,要从3个合唱节目中选出2个,2个舞蹈节目中选出1个。一共有多少种选送方案?

(1)说一说你的思路。

第一步:从3个合唱节目中选出2个,看有几种选法。

第二步:从2个舞蹈节目中选出1个,看有几种选法。

第三步:把两次选法进行搭配,看共有几种选法。

(2)小组合作,画示意图说明各种选法。

(3)汇报,师生共同完成。

第一步:从3个合唱节目中选出2个。

有3种选法。

第二步:从2个舞蹈节目中选出1个,有2种选法。

第三步:把第一步的3种选法和第二步的2种选法进行搭配。

所以,选送的方案共有6种。

二巩固练习

完成练习十八第1~4题。

复习内容:数学思考(二)

复习目标:

1.使学生学会用列表的方法解决有关问题,提高学生分析能力和解决问题的能力。

2.形成一些解决问题的策略,发展学生的实践能力。

复习过程:

一回顾与交流。

教学例6。

六年级有三个班,每班有2个班长。开班长会时,每次每班只要一个班长参加。第一次到会的有A、B、C;第二次有B、D、E;第三次有A、E、F。

请问哪两位班长是同班的?

1、 通过读题你能判断出哪两位班长是同班的?

学生很难做出判断。

2、 可以用什么方法把题意给整理、表示出来?

教师引导学生用列表的方法把题意表示出来。

如:用“∕”表示到会,用“○”表示没到会。

A B C D E F

第一次 / / / ○ ○ ○

第二次 ○ / ○ / /

第三次 / ○ ○ ○ / /

3、引导提问。

(1)从第一次到会的情况,你可以看出什么?可以看出:A只可能和D、E或F同班。

(2)从第二次到会的情况,你可以判断出什么?可以判断:A只可能和D或E同班。

(3)从第三次到会的情况,你可以判断出什么?可以判断:A只可能和D同班。

4、那么B和C分别与谁同班。

从第一次到会的情况可以看出,B只可能和E或F同班。

所以,C只可能与E同班。

二巩固练习。

完成课文练习十八第5~7题。

2022年六年级数学下册估算总复习教案


目标:

1.整理和复习估算的方法,结合具体情境进行估算,并解释估算的过程

2.在解决具体问题的过程中,能选择合适的估算方法和策略,养成估算的习惯

3.培养估算意识,发展估算能力

教学重点:

整理和复习估算的方法,能具体情境能选择合适的估算方法和策略

学情分析:

估算在日常生活中有着广泛的应用,它有利于人们是先把握运算的结果的范围,是发展学生数感的重要方面,同时估算也有利于减少运算错误,有利于人们对运算结果进行检验。在实际生活中,我们在解决一些对计算结果要求不太严格,或者难于精确计算的问题时,也经常用到估算的方法,学生有一定的认知基础和生活经验,但学生的估算意识比较薄弱,已经形成根深蒂固的精确极端的习惯,估算的能力也有待进一步加强。

教学过程:

一、感受估算的价值

1.创设情境 提出问题 解决问题

(1) 创设情境:

创设情境:同学们,在这阳光灿烂的日子里,在这优美的环境下学习,估计同学们心情都不错。上次帮三年级同学搬桌子,有兴趣再帮他们一个忙吗?新教学楼建好后,小星星剧场将被拆迁,三年级同学举行“义方百家讲坛”不知该如何选择场地,你能帮忙吗?

2) 现在大家看到的是三年级各班人数的统计表

(3)你会选择那个场所呢?

(4) 指名回答:说一说,你选择了哪个场所,说明理由。

预设1:

将每班的学生人数都看作40个,三个年级就有240人,至少要能容纳240人,因此可以排除食堂。40×6=240(人)——最少

预设2:

将每班的学生人数都看作50个,三年级就有300人,最多只要容纳300人,因此可以选择五楼综合教室。50×6=300(人)——最多

预设3:四舍五入法50×5+40=290(人)大约要290人,所以选择五楼综合教室。

预设4:选中间数47×6=282(人)所以选择五楼综合教室。

预设5:235÷6

预设6:计算出三年级的总人数,再于两个场所能容纳的人数进行比较。

(5)小结:你怎么想到用估算的?问题——只需近似值——估算(更方便)

刚才我们用了这么多的估算方法,每种方法一样吗?(进一法、去尾法、四舍五入法、选中间数法)

这些方法有什么共同点?(根据结果的要求把原始的数据看作整百数或者整十数,便于计算)

三、说一说:生活中和学习中哪些时候用到过估算?

(1)、在我们六年的学习、生活中哪些时候要用到估算、怎么估算呢?课前请同学们收集有关的信息,谁来交流一下,好吗?

如1:买东西的时候要估算带的钱购买几件商品。

2:计算题时要估算结果是多少。

(2)、四人小组交流

(3)老师这里也收集了一些:我们还曾经学会了如何估算一张报纸的字数,也会估算一堆黄豆大约有多少粒。一个操场大约能站下多少人。一个没拧紧的水龙头一年会浪费多少水。看来在我们生活中经常会用到估算。

四、判断下列情景中哪些可以估算。如何估算。

1、那是不是生活中的问题都能用估算来解决呢?老师也有几个问题,你们能帮我看看哪些情况可以用估算解决问题吗?

判断下列4种情况哪些可以用估算解决问题。

1、判断791+118=809 结果是否正确。

2、小红1分钟最多能打49个字,一篇作文共1025个字,小红能在20分钟内打完这篇作文吗?

3、奶奶在超市买了6.70元的蔬菜和12.8元的鱼,当营业员计算奶奶应付多少钱时。

4、牛排每斤12.40元,爷爷买了1.9斤,店主说一共26.60元。店主说的对吗?

2、选择汇报 3为什么不可以?

3、可以估算的分别说说该如何估算。

下面我们就来分析这五种情况如何用估算解决问题

(1)790+110=900(最少)所以结果不正确。

(2)50×20=1000(个)( 最多)所以不能

(4)13×2=26(元) (最多) 所以店主说错了。

五、课堂总结

这节课,通过复习,你有哪些收获?

总结:生活中很多时候要用到估算,在估算时,我们要具体情况具体分析,灵活运用估算的方法,更好的解决实际问题。

六、组织练习:下面我们来看看哪些同学能灵活的运用估算。

在( )里填上合适的数。

七、数学万花筒

在小学阶段我们学习了估算的这么多知识,在你们以后的学习中还将继续学习。比如当在测量或估计一个较大量时,常常用到数量级。

八、布置课堂作业

2022年六年级数学下册《面的旋转》复习学案


面的旋转知识点

1.“点、线、面、体”之间的关系是:点的运动形成线;线的运动形成面;面的旋转形成体。

2.圆柱的特征:

(1)圆柱的两个底面是半径相等的两个圆。

(2)两个底面间的距离叫做圆柱的高。

(3)圆柱有无数条高,且高的长度都相等。

3.圆锥的特征:

(1)圆锥的底面是一个圆。

(2)圆锥的侧面是一个曲面。

(3)圆锥只有一条高。

练习题

1. 圆柱的上下两个面叫做______,它们是________的两个___。圆柱有一个曲面,叫做______。圆柱两个底面之间的距离叫做___。

2. 下面图形中是圆柱或圆锥的在括号里写出图形的名称,并标出地面的直径和高。

1. 圆柱的上下两个面叫做__底面__,它们是___完全相同___的两个_圆_。圆柱有一个曲面,叫做__侧面__。圆柱两个底面之间的距离叫做_高_。

2. 略。

北师大版六年级数学下册《图形的放缩》教案


教学目标:

1、知识和能力:能在方格纸上按要求将图形按一定的比放大或缩小。能在方格纸上准确建立一个点和一个数对得对应。理解图形按相同的比扩大或缩小的实际意义。

2、过程和方法:结合具体情境,通过观察、操作、思考、交流、展示等活动,体会图形按相同的比扩大或缩小的实际意义。

3、情感态度和价值观:使学生在研究图形的放缩的过程中,初步感受图形的相似。感受学习比例尺的必要性。 欣赏图形的美感。

教学过程:

一、创设情境,激趣导入

出示照片:集体照

师:谢老师想把咱们班的集体照放进想框里,怎样把它放进去呢?(复制粘贴)

师:看着这张照片,有什么感觉?

师:是的,生活中有很多缩小和放大的现象,今天我们就一起来研究图形的放大与缩小(投影出示课题:图形的放缩)!

二、笑脸图大变身

1、初步感受图形的放缩

师:(出示1张贺卡图片)这是一张贺卡,(边说,边操作,得到的三张贺卡)与原来的贺卡相比,怎么样?

生:一样(不一样)。

师:看完之后,你想说点儿什么?你认为哪一张跟原图最像?为什么?(记住和原图比:都是长方形的,是长变了还是宽变了?)

学生小组讨论,发言。

2、深入探究图形的放缩

师:为什么同样的贺卡,在进行了变化之后,有的与原图相像,有的不像呢?接下来我们就来研究这其中的奥秘。(教师出示将方格图照贺卡图片。)

师:请大家认真观察,并结合相关数据思考并分析:谁画得像?为什么?

请代表把你们刚才交流的想法与大家分享。

代表发言,集体指正。

师:看来只有长和宽都按照相同的比来画,才能画得和原图相像。

(说明:教师根据学生的发言适当的板书写出比。)

【设计意图】通过引导学生结合教材中的三幅图研究所画图的长和宽与原图的长和宽有什么关系,让学生体会只有按照相同的比来画,画的图才像。在此过程中,让学生初步感受到比例尺产生的必要性和它的实际意义。让学生在操作活动中领悟图形放缩的规律和奥秘。

三、画一画

师:有了图形放缩的经验,接下来我们要画一画。拿出自己的作业纸,自由设计图案,并将图形进行一次放大或缩小,画完后,在四人小组里面把你自己画的情况、画的方法向组内同学介绍一下,同时告诉大家你所画的这个图长和宽与原图的长和宽的比分别是多少。开始吧。(作业纸上分别有长方形、正方形和三角形)

活动后,教师引导学生进行集体展示、反馈。

【设计意图】大胆放手让学生独立完成画图过程,培养了学生灵活的思维能力,提高了学生创造思维的能力。学生在思考中去操作,在操作后再思考,不但形成了技能,而且对图形的放大与缩小有一个完整的认识。

四、生活中的应用

师:今天我们大家一起研究了图形的放缩,请同学们想一想,你知道日常生活中有哪些地方会应用到图形放缩的知识呢?

【设计意图】让学生感知在生活中,把物体放大或缩小的现象是经常遇到的,学习并运用这些数学知识可以给生活和工作带来很大的方便。

五、神奇的小猫

师:看来同学们是非常留心生活中的数学,现在,老师要和大家一起到游戏中去体会图形的放缩。(出示探究活动)

师:这是一只名叫乐乐的小猫。根据我们学过的数对的知识,你能将表示小猫乐乐轮廓的点的数对正确的填写出来么?(可尝试标出相应的坐标图,便于找出具体的位置)

教师指名补充表示小猫乐乐轮廓的点的数对。

师:小猫家族中还有三只小猫:天天、晶晶和欢欢,(表格中呈现名称)请你根据具体的要求讲表示它们轮廓的点填写在表格中,并观察数对的规律,猜一猜:哪只小猫最像乐乐?之后通过在方格纸上描点、连线来验证自己的猜测。

学生活动、探索。

汇报展示(说一说你的猜测、依据以及验证结果)。

【设计意图】本环节结合具体的活动和实例,贴近学生的生活经验,设计了“神奇的小猫”的探究活动,通过在方格纸上画小猫图,以及讨论哪只小猫长得更像乐乐,使学生充分的感受到比例尺的广泛应用。

六、小结

今天我们在活动和游戏中体验了图形的放缩,下课后就请同学们到生活中继续去体验生活中的放大与缩小。

《2022年北师大版六年级数学下册全册集体备课教案2》一文就此结束,希望能帮助您在小学教学中起到作用,如还需更多,请关注我们的“小学六年级数学比教案”专题。

文章来源:http://m.jab88.com/j/113946.html

更多

猜你喜欢

更多

最新更新

更多