目标:
1、联系生活实际理解百分数的意义。
2、掌握百分数的读、写方法,明确百分数与分数的区别。
3、体会百分数在生活实际中的应用价值,激发学生学习数学的兴趣。
重难点:
重点:理解百分数的意义,掌握百分数的读、写方法。
难点:百分数和分数的联系和区别。
教学过程:
一、谈话导入。
1、同学们,著名的科学家爱迪生曾经说过:天才=1%的灵感+99%的汗水。
2、1%、99%,同学们,你们知道这些叫什么数吗?
板书课题:百分数的认识。
二、新课教学。
1、在生活中到处都有百分数,老师收集了几条有关百分数的信息。让我们一起来看一看这几条信息,请看大屏幕(课件出示教科书上的主题图)。
第一个图:安装程序正在格式化,已经格式化了14%。
第二个图:毛衣标价签(面料:65.5%是羊毛,34.5%是锦纶(旧称尼龙)。)
第三个图:A品牌的汽车1-2月实际销售11000多辆,比去年同期增长120%,其中刚刚过去的2月份销量与去年同期相比增幅甚至达到241%。
师:你能从信息中找出百分数吗?(板书:14% 65.5% 120% )
师:这些百分数表示的是什么含义呢?
(1)14%表示已经格式化的占所要格式化的14/100。
(2)65.5%表示这件毛衣中的羊毛占毛衣的65.5/100。
(3)34.5%表示这件毛衣中的涤纶占毛衣的34.5/100。
(4)120%表示1-2月份比去年同期多销售的数量占去年同期销售数量的120/100。
(5)241%表示2月份比去年同期多销售的数量占去年同期销售数量的241/100。
2、百分数的意义。
师:通过上面的学习,你知道什么是百分数了吗?(提问不要求回答停顿一下)
3、讨论百分数与分数的区别。
课件出示:下列分母100的能改成百分数吗?为什么?
(1)本班女生约占全班人数的《百分数的认识》教学设计;
(2)去年我校体育达标率是《百分数的认识》教学设计;
(3)一堆煤,已经运走了《百分数的认识》教学设计 吨;
(4)面粉重量是大米重量的《百分数的认识》教学设计 ;
根据学生的回答,教师小结出百分数与分数的区别:
区 别
分数
可以表示两个数之间的关系,也可以表示一个具体的数,能带单位。
百分数
只能表示两个数之间的关系,不能带单位。
板书:百分数表示一个数是另一个数的百分之几。
师:(百分数是一种特殊的比率,它的后项是一个固定的数100,所以百分数也叫百分率或百分比。)
3、百分数的读、写法。
同学们,刚才我们了解了分数和百分数的区别,你会写百分数吗?
(1)让学生试写一个百分数。
小结:百分数通常不写成分数的形式,而是在原来的分子后面加上百分号“%”来表示。示范写:30%、85%、106.5%(提示:先写分子,再写百分号“%”。)
(2) 那百分号如何写呢?先写一个小圆圈,再画一条“/”,最后在“/”的右下方写一个圆圈,这两个小圆圈要写得小一些,以免混淆。
(3)、写出下面的百分数。(课件展示,学生写在本子上。)
百分之一 百分之二十八 百分之零点五
(4)同学们会写百分数了,你们能准确地读出这些百分数吗?(14%、34.5%、65.5%、100%、120%、241%)
小结:百分数的读法和分数的读法大体相同,也是先读分母,后读分子,但要注意读百分数的分母时,不能读成一百分之几,而只能读作“百分之几”。
过度:同学们,今天我们学习了百分数的读法和写法,知道了百分数表示一个数是另一个数的百分之几。关于百分数的知识,你有什么问题没有?下面我们一起来做练习。
三、练习巩固。
1、写出下面的百分数。
百分之零点六 写作
百分之四十五 写作
百分之一百 写作
百分之一百四十 写作
百分之二百 写作
师:在这组百分数中,我们可以看到,百分数的分子有的是小数,有的是整数,有的大于分母,有的小于分母,但百分数的分母都是100。
师:百分之一百知道等于多少吗?从中你发现了什么?
发现:分子大于一百,这个百分数就大于1;分子小于一百这个百分数就小于1。
2、判断。
(1)1/2吨=50%吨。( )
(2)某工厂今年产值是去年产值的108%,说明今年产值比去年多。( )
(3)最大百分数的是100%,最小的百分数是1%。( )
(4)女生人数是全班人数的45%。( )
3、妙解成语。
师:百分数不仅广泛应用于生活中,而且在一些成语里还藏着百分数呢?下面我们一起玩一个妙解成语的游戏,好不好?老师说成语,你们猜百分数:
百里挑一( ) 百发百中( ) 事倍功半( )
事半功倍( ) 九死一生( ) 十拿九稳( )
4、书上第86页练习十八,第3题,根据百分数,用涂色的方式设计出你喜欢的图案。
四、小结:
这节课马上就要结束了,我们回忆一下我们这节课学了什么?你能用百分数告诉大家你这节课的收获吗?你收获了百分之几?百分数无处不在,它就在我们身边,最后老师把爱迪生的这句名言送给同学们:天才=1%的灵感+99%的汗水。
板书: 百分数的认识
百分数表示一个数是另一个数的百分之几。
百分率或百分比
14% 读作 百分之十四
65.5% 读作 百分之六十五点五
120% 读作 百分之一百二十
作为一小学位老师,我们要让同学们听得懂我们所讲的内容。为此老师就需要在上课前准备好教案,以此来提高课堂的教学质量。让同学听的快乐,老师自己也讲的轻松。那么一份优秀的教案应该怎样写呢?以下是小编收集整理的“人教版六年级数学上册第三单元《倒数的认识》教案(六)”,希望对您的工作和生活有所帮助。
人教版六年级数学上册第三单元《倒数的认识》教案(六)
学习目标:
1、知道倒数的意义。
2、经历倒数的意义这一概念的形成过程。
3、会求一个数的倒数。 教学重点:倒数的意义与求法
数学难点:理解“互为”的意义,明确倒数只表示两个数间的关系,而不能单独地说某个数是倒数。
教学方法: 自学法、讨论法、谈话法、练习法。
教学过程:
一、问题导入
师:当你们看到“倒数的认识”这一课题时你们想知道有关倒数的哪些知识呢?(出示幻灯片)
生:
1、什么是倒数?2、怎样求倒数?
师:带着这些问题进入我们的学习探究。
(设计意图)问题是数学的心脏,是学生探究的起点和动力,引导学生发现问题、提出问题。
二、合作探究、展示交流
1、探究倒数的意义
让学生解答课本的例1的算式,然后让学生找这些算式有什么特点,当学生找出乘法算式等于1的时候,根据结果是1的特点引出倒数的意义。
师生共同归纳倒数的意义:乘积是1的两个数叫做互为倒数。(屏幕显示)生齐读
师:你认为在倒数的意义这句话中哪些词是最关键的
生:乘积 原因:不是加、减,也不是商
生:1 原因:不是0、2
生:互为 原因:相互依存 举例:我们两个互为同桌。
师:再观察例1:说出3/8、8/3的倒数关系。
生:3/8、与8/3互为倒数。
师:还可以怎么说?3/8的倒数是8/3,8/3的倒数是3/8。
师:还可以怎么说
生:3/8是8/3的倒数,8/3是3/8的倒数。
让学生说其他三组。
练习巩固:判断(出示幻灯片)
1、因为3/4+1/4=1,所以3/4是1/4的倒数。( )
2、因为1/2×4/3×3/2=1,所以1/2 4/3 3/2互为倒数。( )
3、3/8×8/3=1,所以3/8是倒数,8/3是倒数。( )
(设计意图)学生对于“互为”两个字的理解比较难,是教学中的一个难点。在自然中创设情境,让学生有一种生活体验,让学生在生活情境中知道什么是“互为同桌”,这样调动了学生的积极性,让学生在不知不觉中理解了“互为”的含义,分散了教学的难点。
2、探究求倒数的方法。
让学生观察图形的位置和汉字上下的位置变化,再观察例1,从而找到规律。(学生演示)(出示幻灯片)
生:分数的分子和分母的位置颠倒了
师生共同分析例1四组数
师:5和1/5老师怎么没看出分子和分母的位置交换
生:5可以看做分母是1的分数
学生完成课本的例2
完成例2后总结方法 (出示幻灯片)
生:看两个分数的乘积是不是1
生:看分数的分子和分母的位置是否颠倒
(设计意图):通过对第一组数的再次观察,使学生发现一个分数的倒数就是把它的分子与分母的位置颠倒,进而使学生体会到“倒数”这一概念中“倒”的含义,很自然的得出求一个分数的倒数的方法。
师:在例2中哪些数还没找到倒数
生:1 0
师:1和0有没有倒数呢?如果有,是多少?
生:1有倒数,因为1×1=1
生:还可以把1看作分母是1的分数,分子、分母的位置交换后还是1
教师板书:1的倒数是1
教师引导质疑:0有没有倒数?为什么?
生:0乘任何数都得0,不是1所以0没有倒数
生:可以把0看成0/1,分子和分母的位置交换后成了1/0,0做分母无意义,所以0没有倒数 教师板书:0没有倒数1。
(设计意图):帮助学生巩固知识,轻松、顺利地解决求“1”和“0”这个特殊数的倒数。既分散了教学难点,又让学生享受到了思维的快乐。
师:0.7的倒数是多少?
同桌讨论:把小数化为分数
师:2又3/4的倒数又是多少呢?分组讨论
小组展示:把带分数化为假分数
小结:如果是求一个带分数的倒数要先化成假分数;如果是求一个小数的倒数要先化成分数(教师补充:是一个最简分数);如果是求一个整数的倒数,可以把这个整数看成是分母是1的分数,然后再调换分子分母的位置。
求一个数(0除外)的倒数,只要把这个数的分子、分母互相交换位置就行了。
(设计意图)有目的的帮助学生把不同的数组进行了合理的分类,这样就为学生有条理的求不同数的倒数做好了铺垫。充分调动学生的学习积极性,给学生提供充足的从事数学活动的机会,引导学生进行小组合作学习,在讨论中探究知,理解并掌握倒数的意义和求法,培养学生的探究能力和探究意识。
三、巩固练习
游戏:规则:同桌两人完成,一名学生说出一个数,另一名同学说出它的倒数,看谁说的又快又准。(出示幻灯片)
师:同学们都说的非常好,会不会写呢?请写出7/8的倒数 两名学生板演
生:7/8=8/7
生:7/8的倒数是8/7 学生改错,教师强调:不能用等号连接
完成课本24页 做一做
(设计意图)多层次的练习,帮助学生巩固新知,活跃思维,伴随着学生情感参与的游戏练习,调动了学生学习的积极性和主动性,再次激起思维高潮,让学生获得愉悦的情感体验。
四、总结
说说这节课学习了什么?学会了什么?有什么收获?
(设计意图):通过回顾,帮助学生梳理本课所学知识,进一步理解并体会教学重点--倒数和要求倒数的方法。
五、达标 (出示幻灯片)
判断:
(1)求2/5的倒数:2/5=5/2 ( )
(2)得数是1的两个数叫做互为倒数 ( )
(3)9的倒数是9/1 ( )
(4)一个数的倒数一定比这个数小 ( )
填空
(1)3/8的倒数是( )
(2)7的倒数是( )
(3)1/9的倒数是( )
(4) 的倒数是( )
(5)0.3的倒数是( )
(6)2.25的倒数是( )
(设计意图):通过达标题检测学生本节课掌握的情况,有利于下一节课的学习。
拓展 7×( )=15/2×( )=( )×3又2/3=0.17×( )=1
(设计意图):新课程提出,通过学习,使不同的学生在数学上得到不同的发展,让学生跳一跳,能摘到果子。
教学反思:
本节课一开始通过问题引入新课,通过师生分析帮助学生理解“互为”的含义,从而为构建新知扫清语言理解障碍。并在课中多次强调表达的准确性,引导学生在与他人的交流中,运用数学语言清晰地、有条理地表述自己的思考过程,进行讨论与质疑。
本节课我采用了问题式教学法。教师通过组织者,引导者与合作者的身份,引导学生主动参与到整个学习过程中,让学生自己组织学习材料,给学生提供放手的思维空间,并尊重学生的自主性,允许学生在探索新知中犯错误,并在修正错误中体会成功。特别是在探究倒数的意义与求倒数的方法时,放手让学生自己去探索,去观察,去归纳,去总结。此环节的设计,是为了引导学生仔细观察细心体会分子与分母的位置关系,从而发现求倒数的方法。设计力求让学生成为学习的主人,做到“一切知识都要由学生自己获得或由他们发现”。
“倒数”的学习适于学生展开观察、比较、交流、归纳等教学活动。为了更好地指导学生,我还采用小组合作形式组织教学。这一方面可以让学生尝试发现,体验到创造的过程;另一方面也可以增强学生的合作意识,让学生在同桌交流、小组交流过程中,相互学习、相互借鉴,逐步完成对“倒数”的认识。并且充分调动学生的学习积极性,给学生提供充足的数学活动的机会,引导学生进行小组合作学习,在讨论中探究知识,理解并掌握倒数的意义和求法,培养学生的探究能力和探究意识。
在课后的巩固练习中,我设计了“我能行”、“填空”、“游戏”等题型,通过这些多层次的练习,帮助学生巩固新知,伴随着学生情感参与的游戏练习,调动了学生学习的积极性和主动性,再次激起思维高潮,让学生获得愉悦的情感体验。
最后在课堂总结中再次提出问题,总结反思,帮助学生梳理知识,反思自己的学习过程,领会学习方法,获得数学学习的经验。
点击查看更多:六年级数学上册教案
提醒:
扫码关注回复“教案”
获得上下册教案资料!
内容:人教版六年级下册认识比例尺(课本第48、49页)
教材分析:
本节内容是在比的基础上 的,教材首先说明为什么要确定图上距离与实际距离的比,明确它的意义,并给出比例尺的概念,再结合两幅地图比例尺,介绍数值比例尺和线段比例尺,又通过一个机器的放大图纸,让学生认识把实际距离放大的比例尺如何表示。最后说明为了计算方便,通常把比例尺写成前项或后项为1的比。例1教学线段比例尺改写成数值比例尺,为后面比例尺的计算作铺垫。
教学目标:
1、知识与技能:使学生认识比例尺的含义,掌握求比例尺的方法,并能用以解决简单的求比例尺的实际问题。
2、过程与方法:通过小组合作研讨,实践操作,培养学生的合作意识和创新思维能力。
3、情感态度价值观:体验数学与生活的联系,培养用数学眼光观察生活的习惯。
教学重点:理解比例尺的意义。
教学难点:能熟练解答比例尺的有关问题。
教学准备:多媒体课件、直尺、地图
教学过程:
一、情景引入,激发兴趣
师:北京是我国的首都,同学们,2008年北京奥运会取得了巨大成功,中国的悠久历史,灿烂文化,众多的名胜古迹,感受一下我们祖国的美丽!
师:今天老师把我们的祖国和首都北京搬进了课堂。(课件出示:数值比例尺为1:100000000的中国地图和线段比例尺为 的北京地图)你们知道我们的大中国和北京是如何画在这么小的地图上吗?
生:把它缩小。
师:老师可以利用地图和手中的一把直尺很快地告诉大家任意两地之间的实际距离,你想知道哪两地之间的距离呢?请出题考考老师。
生1:我想知道北京到上海之间的实际距离
生2:我想知道我们合肥到北京的实际距离
(师用地图量出地图中北京到上海、合肥到北京的图上距离,很快回答学生的问题)
师:同学们可能有这样的疑问,老师凭借这把直尺是如何知道两地之间的实际距离的呢?你们想知道其中的奥秘吗?
(设计意图:数学应该来源于生活,我在创设情景时把中国和北京搬进课堂,激发了学生的好奇心,又调动了学生探究新知的积极性)
二、揭示课题,提出疑问
师:其实老师仅靠手中的直尺是量不出两地之间的实际距离的,还需要用地图上的比例尺来帮忙。
今天这节课我们就来认识比例尺。(板书:认识比例尺)
师:关于比例尺,你想了解什么呢?
生1:什么叫比例尺?
生2:怎样求比例尺?
生3:比例尺是尺吗?
生4:比例尺有几种形式?
(设计意图:揭示本节课题,让处于对新知好奇的学生提出自己的疑问,带着问题有目的性地学习)
三、 实验对比,得出概念
师:为了解决同学们提出的疑问,我们来做一个实验。
师:我这有一条3米长的线段,你能把它画到自己的练习本上吗?你准备用图上几厘米来表示实际3米?请画在纸上。
展示学生的画图结果。
小组的同学互相讨论自己是怎么画的。
生1:我用1厘米表示实际3米。
生2:我用3厘米表示实际3米。
师:图上画的1厘米,3厘米叫“图上距离”,3米叫“实际距离”。
(设计意图:把3米长的线段画在本子上,让学生在动手实践过程中初步感受到比例尺的意义,为后面理解与把握“比例尺”的意义奠定基础)
师:为了看出图上距离和实际距离的关系,我们可以用比的形式来表示。(由于图上距离和实际距离的单位不同,要把不同单位化成相同单位)下面请各小组求出图上距离与实际距离的比。
展示学生求的比。
师:这些比的前项代表什么?后项又代表什么呢?
生:前项代表图上距离,后项代表实际距离。
师:谁能说说1:300 和 1:100表示什么意思?
生答
师:像这样的比叫做比例尺,课件出示比例尺的定义。
师:根据比例尺的定义,你能得出求比例尺的方法吗?(讨论)
生:图上距离:实际距离=比例尺或图上距离/实际距离=比例尺
师:各小组设计的比例尺不一样,为什么?按哪一个比例尺画出的线段长,哪个比例尺画出的线段短?为什么?
小组的同学互相讨论。
用1:300 或1/300 和 1:100或1/100 等比的形式表示的比例尺叫数值比例尺。它们也可以表示成 和
课件出示:中国地图上“比例尺1:100000000”表示的意义是什么?
师:你们发现1:100 1:300 1:100000000这些比例尺都是把实际距
离怎么样?
生:缩小
师:老师这儿有一个机器上的小零件,你们觉得它怎么样?
生:很小
师:这么小的零件如何把它画在图纸上。
生:把它放大
师:很好!课件出示机器零件的放大图纸。
师:你知道图中2:1表示什么吗?
生:图中2厘米表示实际的1厘米。
师:你们发现这些数值比例尺有什么相同和不同的地方吗?
相同点:
生1:前项表示图上距离,后项表示实际距离。
生2:比的前项或后项为1
不同点: 新 课标 第 一网x kb 1.com
生:1:100 1:300 1:100000000是把实际距离缩小,2:1是把实际距离放大
师:为了计算方便,通常把比例尺写成前项或后项为1的比。
出示课本第49页的“做一做”,指名板演,集体订正。
(设计意图:学生通过独立思考、讨论与交流得出比例尺的意义,并学会了怎样求比例尺,从中体会探索的乐趣)
四、 探讨数值比例尺和线段比例尺的互化
呈现北京市地图让生找出“比例尺 ”
师:这种表示方法叫线段比例尺,表示图上距离1厘米相当于地面上50千米的实际距离。
师:如何把这幅地图的线段比例尺改成数值比例尺?
小组的同学互相讨论尝试改写。师板书例1.
师:谁能说说改写时要注意什么?
师生共同小结。课件出示:(1)图上距离与实际距离的单位不同,要把不同单位化成相同单位,50千米改写成用厘米作单位的量时,50后面应补5个0(2)比例尺是一个比,不带单位名称(3)比的前项为1
师:怎样把数值比例尺改写成线段比例尺呢?
呈现课本第53页的第1题。学生独立做,集体订正。师强调实际距离的单位要改写成所要求的单位。
(设计意图:将数值比例尺与线段比例尺的互化安排在一起教学,便于学生比较,让学生在尝试性地改写、练习中理解并掌握。)
五、巩固练习,深化概念
1、我会判断
(1)比例尺是一种测量长度的尺子 ( )
(2)一副图的比例尺是80:1,表示把实际距离扩大80倍 ( )
(3)比例尺的后项一定比前项大 ( )
(4)把线段比例尺 改写成数值比例尺是1:8000000 ( )
2、教师黑板的长为3米,在图纸上的长为3厘米,求这幅图纸的比例尺。
3、精密仪表上的一个零件4毫米,量得在设计图纸上的长度是8厘米,求这幅图纸的比例尺。
(设计意图:这些练习,既巩固新知,又让学生体验思维的乐趣,既沟通数学与生活的联系,又培养了学生应用数学知识的能力,充分调动了学生学习的积极性)
六、课堂小结
通过这节课的学习,你有什么收获?你认为自己的表现如何?给自己打打分。
七、布置学生填质疑卡
八、作业 课本练习八的第2、3题
比例尺的应用
教学目标
1、知识与技能目标:联系学生的生活实际,理解比例尺的意义。根据比例尺的意义解决实际问题。
2、过程与方法目标:在师生、生生的交流活动中,体会比例尺在实际生活中的运用。结合实际,经历提出问题、分析问题、解决问题的过程,初步学会数学的思维方式,培养问题意识和解决问题的能力。
3、情感态度目标:让学生经历和体验用所学的知识解决实际生活中问题的乐趣,感受到比例尺的实用性和科学的探索方法,培养学生读图、用图以及小组合作的意识,增强学好数学的信心。培养学生热爱家乡,合作学习的情感。
教学重点:能按给定的比例尺求相应的实际距离。
教学难点:比例尺在生活实际中的运用
教学过程:
一、复习引入:
1 、复习比例尺的意义:
刚才老师了解到同学们的五一安排非常丰富,其实在我们学校周围也有许多美丽的景点。老师给同学们带来了一幅地图,你能看到什么?还能看到什么?(观察的非常细致)比例尺1:10000你是怎么理解的?你还了解比例尺的哪些知识?
预设生1:图上一厘米表示实际中的一万厘米,实际距离是图上距离的一万倍。
2:图上距离/实际距离=比例尺。(板书)
3:同样的知道(比例尺)、(图上距离))我们就可以求(实际距离)
那么知道 (比例尺)、(实际距离)我们就可以求(图上距离)
也就是说知道其中的两个量,我们就可以求出第三个量.()
2、揭示课题。
大家对比例尺有了深刻的了解,其实比例尺在我们生活中有着广泛的应用。今天,我们就一起来研究比例尺的应用。(贴出课题)
二.教学求实际距离.
1、求东门小学到铁塔寺的实际距离。
下面,我们就带上比例尺,进行一次地图上的旅行吧。现在我们从东门小学出发到铁塔寺。
(1)出示课件:
仔细观察所以信息,你能提出哪些数学问题?
预设一:生提:图上距离是多少? (测量)
预设二:从东门小学到铁塔寺实际距离大约多少米?(评:真了不起,这个问题很有价值,我们可以共同研究一下!)
仔细观察所有信息与问题, 要求从东门小学到铁塔寺的实际距离,我们就必须先知道什么? 老师给同学们也提供了同样的地图,请你想一想、量一量、算一算,求出从我们东门小学到铁塔寺的实际距离。
生做,师巡视
汇报交流:
师:谁愿意来说说你的想法?
方法一:方程。
说说你为什么这样列式?
使用这种方法还有什么要提醒大家的吗?
刚才我们根据比例尺的数量关系,利用比例尺的意义直接解决了这个问题。
其他同学还有不同方法吗?
方法二:生:“4÷1/10000”求出的是实际距离。我们组是这样想的:因为“图上距离∶实际距离=比例尺”,在这里图上距离是比的前项,相当于除法中的被除数;实际距离是比的后项,相当于除法中的除数;比例尺相当于图上距离和实际距离的商。而“除数=被除数÷商”,所以可以推出“实际距离=图上距离÷比例尺”,我们组就是根据这种关系求实际距离的。
这种方法也不错。
方法三:我们组是这样想的:根据比例尺“1∶10000”推出实际距离是图上距离的10000倍,所以从学校到铁塔寺的实际距离可用“4×10000”求出,求出结果之后,因为单位不统一,所以还要把实际距离的单位转化为“米”,随即问:怎么列式?(教师板书)
2、比较几种算法。
同学们,很会观察,很会思考。从不同角度,想出多种方法解决了同一个问题。
这些方法中,你更欣赏哪一种?为什么?
教师小结:我们的数学就是那么奇妙,在变与不变之间存在着一定得规律。虽然方法看似不同,但都是利用比例尺的意义来灵活解答的。
3、练习:先量出铁塔寺到济宁人民公园的图上距离,再算出实际距离大约是多少米?
游览了古老的铁塔寺,让我们再一起去从新修建的济宁人民公园逛逛!
仔细观察所有信息,
想一想,要求从铁塔寺到济宁人民公园的时间?我们必须先求什么?
运用我们刚才研究的知识能解决这个问题吗 做在练习本上。
学生独立做,师巡视
生1:(方程)师:怎么想的?
生2:计算
师小结:同学们真了不起,自己解决了这个问题。根据比例尺的意义解决了地图旅行中的问题。其实在我们生活中比例尺的应用还有很多,看一下这两道题,先仔细读题,想一想,做在练习本上。
三、巩固练习。
1、基本练习
出示:按1:1000的比例尺做出的邮电大楼模型,高为16.8厘米,邮电大楼的实际高度是多少米?师读题
独立完成。
按10:1的比例尺放大的手表截面图,图中的表盘的直径是20厘米,这个表盘的实际直径是多少厘米?
学生独立解答; 汇报交流。
2、提高练习:
课前的谈话中,老师了解到同学们有的想到济宁周边游玩。
出示:课件 你能帮助他们解决这个问题吗?
想一想,再做出来。
生读
汇报:两种方法
观察这两种方法,你想说些什么?
3、老师还了解到,有的同学想到省内给地走走,看这是我们山东省的一幅地图。 自己设计出你的出游路线,算一算行程。
四、回顾小结:
在我们课本八十七页,运用我们今天所学知识就能帮助你更加科学合理的安排你的旅程。
祝愿大家能够渡过一个愉快的五一假期。
在上课时老师为了能够精准的讲出一道题的解决步骤。为了不消耗上课时间,就需要有一份完整的教学计划。才能有计划、有步骤、有质量的完成教学任务,如何才能编写一份比较全面的教案呢?以下是小编为大家收集的“人教版六年级数学上册第三单元《倒数的认识》教案(十)”,仅供参考,希望可以帮助到您。
人教版六年级数学上册第三单元《倒数的认识》教案(十)
一、教学目标:
1、引导学生通过体验、研究、类推等实践活动,理解倒数的意义,让学生经历提出问题、自探问题、应用知识的过程,自主总结出求倒数的方法。
2、通过合作活动培养学生学会与人合作,愿与人交流的习惯。
3、通过学生自行实施实践方案,培养学生自主学习和发展创新的意识。
二、教学重点:
理解倒数的意义和怎样求倒数。理解倒数的意义,掌握求倒数的方法。
三、教学难点:
掌握求倒数的方法。
四、课时安排:
1课时
五、课前准备:
PPT课件
教学过程
⊙复习导入
趣味比赛:直接在本子上写出每组算式的得数,对且快的组胜利。
1.口算下面各题。(课件出示)
2.公布结果,启发思考。
(1)哪组快?
(2)为什么有同学说不公平?你发现了什么才觉得不公平?
3.导入新课。
今天我们就来研究乘积是1的两个数的关系--互为倒数。(板书:倒数的认识)
设计意图:通过口算及相关问题,让学生在计算、观察、比较中对乘积是1的两个数有了初步的认识,为学生进一步理解倒数的意义、学会求一个数的倒数的方法奠定基础。
⊙探究新知
1.探究倒数的意义。(课件出示)
先计算,再观察,看看有什么规律。
(1)自主学习。
在数学上,乘积是1的两个数是什么关系呢?我们来看看书上是怎么叙述的。(学生看书自学,小组交流、汇报。板书:乘积是1的两个数互为倒数)
(2)引导学生理解关键词并适时点拨。
“互为”是什么意思?(互为是指两个数之间的关系,这两个数相互依存,一个数不能叫倒数)
(3)深入理解。
①互为倒数的两个数有什么特点?(互为倒数的两个数的分子、分母正好交换了位置)
②谁还能举出几组两个数互为倒数的例子?(引导学生规范表述互为倒数的两个数之间的关系。如3/8和8/3互为倒数,3/8的倒数是8/3,8/3的倒数是3/8,教师多让几名学生说说例子,并让其他学生根据倒数的意义来检验是否正确)
(4)小结。
倒数是对两个数的关系而言的,它们是相互依存的,不能孤立地说某一个数是倒数。
2.探究求一个数的倒数的方法。(课件出示例1)
(1)自主尝试。
①求3/5的倒数。
a.小组合作求3/5的倒数。
b.交流、汇报求3/5的倒数的方法。
c.小结求一个分数的倒数的方法。(求一个分数的倒数,交换分子、分母的位置即可)
d.运用求一个分数的倒数的方法求7/2的倒数,并汇报。
②求6的倒数。
a.小组合作求6的倒数。
b.交流、汇报求6的倒数的方法。
c.小结求一个整数的倒数的方法。(先把整数看成分母是1的分数,再交换分子和分母的位置)
(2)深入理解。
①请学生举出其他的求一个数的倒数的例子。
②1有没有倒数?1的倒数是多少?(因为1×1=1,根据“乘积是1的两个数互为倒数”可知,1的倒数是1。板书:1的倒数是1)
③0有没有倒数?为什么?(0没有倒数,因为0与任何数相乘都不等于1。板书:0没有倒数)
(3)总结求一个数的倒数的方法。
求一个数(0除外)的倒数,只要交换分子、分母的位置即可。0没有倒数,1的倒数还是1。
3.明确倒数的书写格式。
(1)学生举例。(结合学生的回答,教师板书:3/5的倒数是5/3 6的倒数是1/6)
(2)明确写法特点:数+文字+数。
(3)明确注意事项:切勿把互为倒数的两个数用等号连接。
设计意图:充分利用教材提供的算式,通过观察、讨论等活动,让学生理解倒数的意义,归纳出倒数的定义,培养学生的自学能力;通过求一个数的倒数的活动,让学生初步感知求一个数的倒数的方法,并引导学生交流、探究、归纳出求一个数的倒数的方法,使学生经历自主探究的过程;通过提出问题并引导学生讨论,让学生知道0没有倒数,1的倒数是它本身的结论及理由,为准确、快速地求出一个数的倒数打下基础。
⊙巩固练习
1.完成教材28页“做一做”。
(1)学生独立解答,教师巡视指导。
(2)汇报时有意识地让有困难的学生说一说求一个数的倒数的方法。
2.完成教材29页1题。
学生根据倒数的意义和求一个数的倒数的方法独立解答。
3.判断正误,并说明理由。
(1)4/13和13/4都是倒数。(错,倒数的概念中有关键词“互为”,不能孤立地说一个数是倒数)
(2)1/4+3/4=1,所以1/4和3/4互为倒数。(错,倒数的概念中有“乘积是1”这个前提条件)
(3)2/7×7/8×4=1,所以2/7、7/8、4互为倒数。(错,倒数的概念中有“两个数”这个限制条件)
4.完成教材29页2题。
⊙课堂总结
你知道了关于“倒数”的哪些知识?
⊙布置作业
教材29页3、4、5题。
板书设计
倒数的认识
意义 乘积是1的两个数互为倒数。
特例 0没有倒数,1的倒数是1。
写法 3/5的倒数是5/3 6的倒数是1/6
点击查看更多:六年级数学上册教案
提醒:
扫码关注回复“教案”
获得上下册教案资料!
单元要点分析
内容
本单元 内容主要是探究制作扇形统计图和折线统计图的技能问题。
教材分析
本单元内容大在学生已经学习过一些简单的数据整理以及学会制作一些简单的统计图的基础上,来进一步学习有关扇形统计图和折线统计图的绘制技能。
教材编排的内容比较简单,通过两道例题分别说明如何合理制作扇形统计图和折线统计图,使之正确、充分地反映出有关数据,正确体现各统计图的特征,使学生进一步掌握统计图的特点和作用。
三维目标
知识与技能
1、使学生进一步认识统计的意义,掌握扇形统计图和折线统计图的特征与作用,能正确描述统计图中的数据。
2、使学生能正确地制作统计图,充分利用统计图的特征准确、合理、规范地反映出有关数据。
过程与方法
1、经历描述和分析数据的过程,针对统计图提供的数据不清问题,能提出质疑和修改建议,提高制作统计图的技能。
2、在运用统计图解决问题的过程中,发展学生的统计观念。
3、初步形成评价与反思的意识。
情感、态度与价值观
1、能积极参与探究活动,对自己得到的结果正确与否有一定的把握,相信自己在学习中可以取得不断的进步。
2、形成实事求是的态度以及进行质疑的习惯。
重难点、关键
重点:绘制扇形统计图和折线统计图。
难点:根据折线统计图正确描述数量变化情况。
关键:根据统计图进行比较、判断时要统一标准。
课时划分
本单元计划课时数:2课时
第一课时:扇形统计图
教学内容
扇形统计图(课文第68页的例1,练习十一相应的练习)
教学目标
1、使学生进一步掌握扇形统计图的特征和作用,能正确描述扇形统计图所反映的有关数据.
2、使学生能正确运用扇形统计图反映有关数据,提高处理数据的技能,发展学生的应用意识和实践能力.
3、初步形成评价与反思的意识.
重难点、关键
重点:扇形统计图.
难点:发现统计图中存在的数据不清的问题.
关键:认真分析统计图中所反映的数据.
教学过程
一、旧知铺垫
电脑课件呈现扇形统计图
某校学生最喜欢的文艺节目情况统计图
(图略)
1、问:从图中你能了解到哪些信息?
(1)喜欢同一首歌的人数占调查人数的45﹪
喜欢相声的人数占调查人数的18﹪
喜欢小品的人数占调查人数的25﹪
喜欢其他文艺节目的人数占调查人数的12﹪
(2)喜欢同一首歌的人数最多
绝大部分同学都喜欢同一首歌,小品和相声
喜欢其他文艺节目的人数最少
2、说一说这是什么统计图,它有什么特征?
(1)扇形统计图
(2)特征:可以清楚地反映出各部分量占总量的百分之几
二探索新知
教学例1
电脑课件出示课文例题统计图
下面是一幅彩电市场各部分品牌占有率的统计图
(图略)
(1)从图中你了解到哪些信息?
A牌彩电占市场销售量的20﹪
B牌彩电占市场销售量的15﹪
C牌彩电占市场销售量的10﹪
D牌彩电占市场销售量的8﹪
其他品牌彩电占市场销售量的47﹪
(2)有人认为A牌彩电最畅销,你同意他的观点吗?
①学生独立思考,分析题中的数量
○2小组交流,学生在小组中说一说自己的看法
○3汇报交流结果
经过讨论,交流,使全体同学懂得:在“其他”里面还可能包含有比A牌更畅销的彩电.所以,从这个统计图不能判断出哪个品牌的彩电最畅销.
(3)建议
上面这幅统计图提供的数据不清,无法全面地反映有关彩电市场各品牌占有率的情况,你有什么修改建议?
①通过交流,使学生懂得:“其他”所占有的份额应该是最小的部分,这样才能全面地反映各个数量占有率的情况,突出扇形统计图的特征和作用.
②建议:在进行数据整理时,将“其他”当中的一些品牌彩电所占份额单单独计算,在统计图中详细标出它的占有率
三巩固练习
完成课文练习十一第1题
(1)说一说,你从图中得到哪些信息.
(2)从图中你能判断出喜欢哪种文艺节目的人数最多吗?为什么?
(3)你有什么修改建议?
四、布置作业
第二课时:折线统计图
教学内容:
折线统计图(教科书第68页的例2,练习十一相应的练习)
教学目标:
1.使学生进一步了角折线统计图的特征和作用,能根据统计图正确描述有关数据的变化情况,发展学生的统计观念。
2.初步形成评价与反思的意识。
教学重点:折线统计图。
教学难点:正确判断数量变化趋势。
教学过程:
一旧知铺垫
1.出示统计图。
2003年北京地区新增“非典”病人数量统计图(4月26日~5月31日)
(图略)
2.回答问题。
(1)这是什么统计图?
(2)这种统计图有什么特征?
(3)说一说这里病人数量的变化情况。
二探索新知
教学例2。
1.出示课文例题。
学生认真观察,分析图中的数量变化情况。
(1)、7月份到12月份的月薪逐月上升。
(2)、7月份:1000元 8月份:1100元 9月份:1170元
10月份:1240元 11月份:1300元 12月份:1400元
(3)、8月份和12月份增加较大。
(4)、两幅统计图反映的员工月薪增长情况是一样的。
3、初看这两幅统计图,你有什么感觉?为什么?
初看时感觉左图中反映的月薪增加比较大。
原因:左图纵轴上每格表示的数量比较小,折线向上的趋势不明显。
右图纵轴上每格表示的数量比较大,折线向上的趋势不明显。
4、你认为哪一幅统计图更能准确反映员工月薪变化情况?为什么?
(1)、学生汇报自己的看法。
(2)、说明理由。(左图每格表示50元,最高1格又表示100元,标准不统一)
5、说一说你有什么体会。
师生共同交流、讨论,使全体学生明白:在根据统计图进行比较,判断时要注意统一标准。
三、巩固练习。
完成课本练习十一第2题。
(1)、初看统计图,你感觉气温的变化剧烈吗?为什么?
(2)、月平均气温的实际差距有多大?
(3)、你会制作折线统计图吗?根据图中数据再绘制一个你认为较为合理反映气温变化的折线统计图。
四、布置作业
为了使每堂课能够顺利的进展,老师需要做好课前准备,编写一份教案。才能有计划、有步骤、有质量的完成教学任务,你们知道那些比较有创意的教学方案吗?下面是由小编为大家整理的人教版六年级数学上册第三单元《倒数的认识》教案(七),仅供参考,希望能为您提供参考!
人教版六年级数学上册第三单元《倒数的认识》教案(七)
[教学内容]:倒数的认识
[教材简析]
学生在前几课时已经学过了分数乘法,会计算分数乘整数,分数乘分数的计算方法,本课以分数乘法为基础,通过计算认识“乘积是1的两个数互为倒数”这一概念,接着教学求倒数的方法,练习六通过一系列的练习,进一步巩固倒数的概念及求一个数的倒数的方法。
[学情简析]
“倒数的认识”是在学生掌握了整数乘法、分数加法和减法计算、分数乘法的意义和计算法则、分数乘法应用题等知识的基础上进行教学的。“倒数的认识”是分数的基本知识,学好倒数不仅可以解决有关实际问题,而且还是后面学习分数除法、分数四则混合运算和应用题的重要基础。内容看似简单,但对学生来说比较抽象,难理解。教材首先让学生了解倒数的意义,编排了几组乘积为1的乘法算式,通过学生观察、讨论等活动,找出他们的共同特点,从而导出倒数的定义。例1教学求倒数的方法,从让学生自主找一个数的倒数的活动中,体验并概括求一个数倒数的方法,最后提出1和0的倒数问题,让学生讨论得出结论。
[教学目标]
1.在举例、观察、比较、分类、归纳的过程中帮助学生理解倒数的意义。
2.通过推理、探究,帮助学生掌握求一个数的倒数的方法。
3.通过学习使学生体会到学习数学的兴趣,发展学生的数学思维能力和质疑的习惯。
[教学重点]
倒数的意义与求法。
[教学难点]理解“互为”的意义,明确倒数只是表示两个数间的关系,而不能单独的说某个数是倒数。
[教学过程]
一、复习旧知,作好铺垫
1、创设情景激趣
师:请同学们仔细观察,(课件演示风景图片)
师问:你发现图画上的景物有什么特点?
生:这些图画都倒过来了,出现了倒影。
师:是啊,这些图片有了倒影,显得更加漂亮了。在我国的文字里,也有很有趣的汉字,让我们一起找找看。(课件演示有趣的汉字)
师:你们发现汉字的特点了吗?
生:这些汉字上下交换位置以后,都成了新的汉字。
师:今天我们要研究学习倒数,一个数是不是把它倒过来就是它的倒数呢?
板书:倒数
[设计意图:学生已经学过分数的乘法,会计算分数乘整数、分数乘分数,因此,在课始,让学生通过完成练习十的第1题,既可以复习分数乘法,也为引出倒数的概念和为求一个数的倒数做好准备。]
二、合作探究,揭示倒数的意义。
1.学生交流自己写的乘积是1的两个数
(估计学生写的数中,两个数都是分数的较多,也可能有分数与小数、分数与整数、小数与小数、小数与整数的等。如:
师:你认为倒数是怎么样的数?(估计学生可能会提出:倒数应该是两个数之间的关系;称为“倒数”是否与“颠倒”有关,怎么求倒数……)
[设计意图:通过学生自己举例两个乘积是1的不同的数,引出“倒数”的概念--乘积是1的两个数互为倒数,知道了倒数的概念,学生一定会产生“倒数”究竟是些什么样的数,怎么求一个数的倒数等疑问。学生有了疑问,才会有探索的动力,使枯燥的求倒数的方法成为学生内在的需要而主动地进行研究。]
三、观察比较,探讨求倒数的方法。
探讨研究黑板上板书的几组数。
点击查看更多:六年级数学上册教案
提醒:
扫码关注回复“教案”
获得上下册教案资料!
在上课时老师为了能够精准的讲出一道题的解决步骤。要根据班级同学的具体情况编写教案。在上课时遇到各种教学问题都能够快速解决,你知道有哪些教案是比较简单易懂的呢?下面是小编帮大家整理的《人教版六年级数学上册第三单元《倒数的认识》教案(一)》,仅供参考,希望可以帮助到您。
人教版六年级数学上册第三单元《倒数的认识》教案(一)
教学目标:
1、使学生理解倒数的意义,掌握求不同种类数的倒数的方法,并能发现一些规律。
2、培养学生的分析、推理、判断等思维能力,发展学生的思维。
教学重点:理解倒数的意义,会求不同种类数的倒数。
教学难点:熟练正确的求小数、带分数的倒数,发现不同种类数的倒数的一些特征。
教学过程设计:
一、激发兴趣,揭示课题。
1、(投影)这节课老师就要把这里面的奥秘告诉你们,相信你们得知后比老师说得还快。
2、同学们认真观察这些算式,你有什么发现?
板书:乘积是1的两个数
3、你能很快说出乘积是1的两个数吗?你为什么说的这么快?有什么窍门?
板书:分子、分母颠倒位置
4、起名。(师指着分子、分母颠倒位置的两个分数)你能给这样的两个分数起个名吗?
5、根据学生的评价,引出“倒数”一词,板书课题。
(设计说明:通过师生比赛“看谁填得快”这一情境的创设,激发了学生的学习兴趣和强烈的探究欲望。让学生很快说出乘积是1的两个数,并说说有什么窍门,目的是让学生初步感受互为倒数的两个数的特征,即分子、分母颠倒位置。此时让学生给倒数起名,已是水到渠成,同时也让学生获得了积极的情感经验。)
二、探究新知
(一)教学倒数的意义
1、你能根据自己的理解说说怎样的两个数叫互为倒数吗
学生此时回答有两种可能:一种是乘积是1 的两个数互为倒数,一种是分子、分母颠倒位置的两个数互为倒数。
3、注重学生的评价,引出并板书倒数的意义:乘积是1的两个数互为倒数。
4、进一步理解意义:在倒数的意义中,你认为哪几个字比较重要?你是怎么理解“互为”一词的?请举例说明。
5、(投影)辨析:下面的说法对吗?为什么?
(1)、是倒数。 ( )
(2)、得数为1的两个数互为倒数。 ( )
(设计说明:让学生根据自己的理解说说怎样的两个数叫互为倒数,并找出概念中的关键词语,举例说明对“互为”一词的理解,处处无不显示出学生是学习活动中的主体,教师是学习活动中的组织者和引导者。)
(二)教学倒数的求法
1、通过刚才的学习,我们已经知道了什么是倒数。那你会求一个数的倒数吗?你会求什么数的倒数呢?怎么求的?能举例说明吗?
生:我会求分数的倒数,如 ,把分子、分母颠倒位置就是 ,所以 的倒数是 。
师:是个真分数,这位同学求的是一个真分数的倒数,还有谁能说出几个真分数的倒数的?(师板书三、四个例子)
(设计说明:通过 “你会一个数的倒数吗?你会求什么数的倒数?”这一问题,激起了学生思维的涟漪。此时,同学们首先想到的是求一个分数的倒数,教师强调求的是一个真分数的倒数,并让学生再举几个例子,目的是为了后面让学生发现不同种类数的倒数的特征做准备。)
师:真分数有什么特点?那真分数的倒数有什么特征?
板书:真分数的倒数都大于1。
2、求假分数的倒数,研究假分数的倒数的特征。
师:你还会求什么数的倒数?怎么求的?能举例说明吗?
生举三、四个例子。师板书。
师:假分数有什么特点?假分数的倒数有什么特征呢?
组织学生讨论、交流。
板书:假分数的倒数都大于或等于1。
4、求整数的倒数,讨论“0”和“1”的倒数。
继续问“你还会求什么数的倒数?”当学生说会求整数的倒数时,让学生举几个例子说说怎么求的。
师:“1”也是整数,谁会求“1”的倒数的?怎么想的?
板书:1的倒数还是1。
师:有没有哪个整数的倒数你不会求的呢?
组织学生讨论:0为什么没有倒数?
师:仔细观察:整数的倒数有什么特征?
板书:非0、非1的整数的倒数都是分数单位。
追问:那分数单位的倒数呢?(都是整数)
5、求小数、带分数的倒数。
师:你还会求什么数的倒数?怎么求的?能举例说明吗?
学生的回答有两种可能:一是求小数的倒数;二是求带分数的倒数。
(1)、让学生讨论如何求小数的倒数。
学生会想出两种求法:第一种:把小数化成分数,再颠倒分子、分母的位置,继而求出倒数;第二种:根据倒数的意义,用1除以这个小数。
引导比较两种求法,得出第一种方法比较通用。
(2)、让学生讨论如何求带分数的倒数。
(3)出示几个小数(0.15、2.5、1.25等)和几个带分数让学生求出它们的倒数。
(设计说明:人的思维活动往往由简单到复杂的,小学生更是这样。所以在老师提出“你会求什么数的倒数时”,他们首先想到的是怎样求一个分数的倒数,然后在考虑整数的倒数的求法,最后想到小数、带分数倒数的求法。这样层层深入,丝丝入扣,有效的突出了重点,突破了难点。教师教得轻松,学生学得兴趣昂然。)
(三)学生自行总结求倒数的方法。
板书:求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。
三、巩固练习
1、呼应开头。现在你知道老师为什么填的这么快了吗?谁愿意在和老师比一次。(投影出示复习题)
2、下面哪两个数互为倒数? (做练习六第二题)
3、辨析(用手势判断对错).投影出示练习六第5题。
4、谁会填?
(1) ×( )= ×( )=3×( )=025×( )
(2) ×( )= ÷( )= +( )= -( )
师:你是根据什么填的?
(设计说明:练习设计,力求扎实而质朴,平淡中透新意.开放题的设计,给学生广阔的思维空间,学生综合运用已学知识解决问题,让课堂教学既有“深度”,又有“温度”。)
四、反思
这节课你有什么收获?印象最深的是什么?
(设计说明:通过回顾,引导学生对本节课学到的知识和方法进行总结,让学生亲身感受到数学学习是有意义的。)
五、课后作业
练习六第6、7题。
点击查看更多:六年级数学上册教案
提醒:
扫码关注回复“教案”
获得上下册教案资料!
1、比例的意义和基本性质
第一课时
内容:P32~34 比例的意义和基本性质
目的:1、使学生理解比例的意义和基本性质,能正确判断两个比是否能组成比例。
2、通过引导探究、概括归纳、讨论、合作学习,培养学生抽象概括能力。
3、使学生初步感知事物间是相互联系、变化发展的。
教学重点;比例的意义和基本性质
教学难点:应用比的基本性质判段两个数能否成比例,并正确的组成比例。
教学过程:
一、回顾旧知,复习铺垫
1、请同学们回忆一下上学期我们学过的比的知识,谁能说说什么叫做比?并举例说明什么是比的前项、后项和比值。
教师把学生举的例子板书出来,并注明比的各部分的名称。
2、我们知道了比的前后项相除所得的商叫做比值,你们会求比值吗?教师板书出下面几组比,让学生求出它们的比值。
12:16 : 4.5:2.7 10:6
学生求出各比的比值后,再提问:哪两个比的比值相等?
(4.5:2.7的比值和10:6的比值相等。)
教师说明:因为这两个比的比值相等,所以这两个比也是相等的,我们把它们用等号连起来。(板书:4.5:2.7=10:6)像这样表示两个比相等的式子叫做什么呢?这就是这节课我们要学习的内容。(板书课题:比例的意义)
二、引导探究,学习新知
1、教学比例的意义。
(1)出示P32例1。
每面国旗的长和宽的比分别是多少?指名分别算出一面国旗长和宽的比。
5: 2.4:1.6 60:40 15:10
每面国旗长和宽的比值有什么关系?(都相等)
5: =2.4:1.6 60:40=15:10 2.4:1.6=60:40
象这样表示两个比相等的式子叫做比例。
比例也可以写成: = =
(2)我们也学过不同的两个量也可以组成一个比,如:
一辆汽车第一次2小时行驶80千米,第二次5小时行驶200千米。列表如下:
时间(时) 2 5
路程(千米) 80 200
指名学生读题。
教师:这道题涉及到时间和路程两个量的关系,我们用表格把它们表示出来。表格的第一栏表示时间,单位“时”,第二栏表示路程,单位“千米”。 这辆汽车第一次2小时行驶多少千米?第二次5小时行驶多少千米?(边问 边填写表格。)
“你能根据这个表,分别写出第一、二次所行驶的路程和时间的比吗?”教师根据学生的回答,板书:
第一次所行驶的路程和时间的比是80:2
第二次所行驶的路程和时间的比是200:5
让学生算出这两个比的比值。指名学生回答,教师板书:80:2=40,200:5=40。让学生观察这两个比的比值。再提问:你们发现了什么?”(这两个比的比值都是40,这两个比相等。)
教师说明:因为这两个比相等,所以可以把它们用等号连起来组成比例。(板书:80:2=200:5)像这样表示两个比相等的式子叫做比例。
指着比例式4.5:2.7=10:6提问: “谁能说说什么叫做比例?”引导学生观察是表示两个比相等。然后板书:表示两个比相等的式子叫做比例。并让学生齐读一遍。
“从比例的意义我们可以知道,比例是由几个比组成的?这两个比必须具备什么条件?因此判断两个比能不能组成比例,关键是看什么?如果不能一眼看出两个比是不是相等的,怎么办?”
根据学生的回答,教师小结:通过上面的学习,我们知道了比例是由两个相等的比组成的。在判断两个比能不能组成比例时,关键是看这两个比是不是相等。如果不能一眼看出两个比是不是相等,可以先分别把两个比化简以后再看。例如判断10:12和35: 42这两个比能不能组成比例,先要算出 10: 12= ,35: 42= ,所以 10:12=35:42。(以上举例边说边板书。)
(3)比较“比”和“比例”两个概念。
教师:上学期我们学习了“比”,现在又知道了“比例”的意义,那么“比”和“比例”有什么区别呢?
引导学生从意义上、项数上进行对比,最后教师归纳:比是表示两个数相除,有两项;比例是一个等式,表示两个比相等,有四项。
(4)巩固练习。
①用手势判断下面卡片上的两个比能不能组成比例。(能,就用张开拇指和食指表示;不能就用两手的食指交叉表示。)
6:3和12:6 35:7和45:9 20:5和16:8 0.8:0.4和0.3:0.6
学生判断后,指名说出判断的根据。
②做P33“做一做”。
让学生看书,不抄题,直接把能组成比例的两个比写在练习本上,教师边巡视边批改,对做得不对的,让他们说说是怎样做的,看看自己做得对不对。
③给出2、3、4、6四个数,让学生组成不同的比例(不要求举全)。
④P36练习六的第1~2题。
对于能组成比例的四个数,把能组成的比例写出来。组成的比例只要能成立就可以。
第4小题,给出的四个数都是分数,在写比例式时,也要让学生写成分数形式。
2、教学比例的基本性质
(1)教学比例各部分的名称。
教师:同学们能正确地判断两个比能不能组成比例了,那么比例各部分的名称是什么?请同学们翻开教科书P34,看看什么叫比例的项、外项、内项。
指名让学生指出板书中的比例的外项、内项。
(2)教学比例的基本性质。
教师:我们知道了比例各部分的名称,那么比例有什么性质呢?现在我们就来研究。(在比例的意义后面板书:比例的基本性质)请同学们分别计算出这个比例中两个内项的积和两个外项的积。教师板书:
两个外项的积是80×5=400
两个内项的积是 2×200=400
“你发现了什么?”(两个外项的积等于两个内项的积。)板书:80×5=2×200“是不是所有的比例都是这样的呢?”让学生分组计算前面判断过的比例式。
通过计算,大家发现所有的比例式都有这个共同的规律,谁能用一句话把这个规律说出来?
最后教师归纳并板书出:在比例里,两个外项的积等于两个内项的积。并说明这叫做比例的基本性质。
“如果把比例写成分数形式,比例的基本性质又是怎样的呢?”(指着80:2=200:5)教师边问边改写成: =
“这个比例的外项是哪两个数呢?内项呢?”
“因为两个内项的积等于两个外项的积,所以,当比例写成分数的形式,等号两端的分子和分母分别交叉相乘的积怎么样?
学生回答后,教师强调:如果把比例写成分数形式,比例的基本性质就是等号两端分子和分母分别交叉相乘,积相等。
3.巩固练习。
前面要判断两个比是不是成比例,我们是通过计算它们的比值来判断的。 学过比例的基本性质以后,也可以应用比例的基本性质来判断两个比能不能成比例。
(1)应用比例的基本性质判断3:4和6:8能不能组成比例。
(2)P34“做一做”。
三、巩固深化,拓展思维
1、说说比和比例有什么区别?
2、填空
5:2=80:( ) 2:7=( ):5 1.2:2.5=( ):4
3、先应用比例的意义,再应用比例的基本性质,判断下面那组中的两个比可以组成比例。
(1) 6:9和 9:12 (2)1.4:2 和 7:10 (3) 0.5:0 .2和 :
4、下面的四个数可以组成比例吗?把组成的比例写出来。
2 、3 、4和6
四、全课小结,提高认识
通过这节课,我们学到了什么知识?什么是比例?比例的基本性质是什么?应用比例的基本性质可以做什么?
五、课堂练习,辅助消化
P36~37第3~6题。
六、课外补充,拓展延伸
1、判断。
(1)如果3×a=5×b,那么5:a=3:b。
(2) : 和 : 中,能与 : 组成比例的是 : 。
(3)在一个比例中,两个外项分别是7和8,那么两个内项的和一定是15。
2、用 、8、 、12四个数分别作为比例的项,你能组成几个比例?
3、请你用20以内的四个合数组成一个两个比的比值都是 的比例。
第二课时 解比例
教学内容:P35~37 解比例
教学目的:1、使学生学会解比例的方法,进一步理解和掌握比例的基本性质。
2、通过合作交流、尝试练习,提高学生运用比例的基本性质解比例的能力。
3、培养学生的知识迁移的能力,增强学生的合作意识。
教学重点:使学生掌握解比例的方法,学会解比例。
教学难点:引导学生根据比例的基本性质,将比例改写成两个内项的积等于两个外项积的形式,即已学过的含有未知数的等式。
教学过程:
一、回顾旧知,复习铺垫
1、上节课我们学习了一些比例的知识,谁能说一说什么叫做比例?比例的基本性质是什么?应用比例的基本性质可以做什么?
2、判断下面每组中的两个比是否能组成比例?为什么?
6:3和8:4 : 和 :
3、这节课我们继续学习有关比例的知识,学习解比例。(板书课题)
二、引导探索,学习新知
1、什么叫解比例?
我们知道比例共有四项,如果知道其中的任何三项,就可以求出这个比例中的另外一个未知项。求比例中的未知项,叫做解比例。解比例要根据比例的基本性质来解。
2、教学例2。
(1)把未知项设为X。解:设这座模型的高是X米。
(2)根据比例的意义列出比例:X:320=1:10
(3)让学生指出这个比例的外项、内项,并说明知道哪三项,求哪一项。
根据比例的基本性质可以把它变成什么形式?3x=8×15。
这变成了什么?(方程。)
教师说明:这样解比例就变成解方程了,利用以前学过的解方程的方法就可以求出未知数X的值。因为解方程要写“解:”,所以解比例也应写“解:”。
(4)学生说,教师板书解比例的过程。
教师:从刚才解比例的过程,可以看出,解比例可以根据比例的基本性质把比例变成方程,然后用解方程的方法来求未知数x。
3、教学例3。
出示例3:解比例 =
提问:“这个比例与例 2有什么不同?”(这个比例是分数形式。)
这种分数形式的比例也能根据比例的基本性质,变成方程来求解吗?
学生回答后,教师说明在写方程时,含有未知数的积通常写在等号的左边,然后板书:1.5X=2.5×6
让学生在课本上填出求解过程。解答后,让他们说一说是怎样解的。
4、总结解比例的过程。
刚才我们学习了解比例,大家回忆一下,解比例首先要做什么?(根据比例的基本性质把比例变成方程。)
变成方程以后,再怎么做?(根据以前学过的解方程的方法求解。)
从上面的过程可以看出,在解比例的过程中哪一步是新知识?(根据比例的基本性质把比例变成方程。)
5、P35“做一做”。学生独立解答,订正时,让学生说说是怎么做的。
三、巩固深化,拓展思维
P37第7题。
四、全课小结,提高认识
什么叫解比例?解比例的根据是什么?解比例的书写格式应注意什么?
五、课堂练习,辅助消化
P37~38第8~11题。
六、课外补充,拓展延伸
1、P38第12、13题。
2、4:8=12:24,如果将第二项减少1,要使比例成立,则第四项减少多少?
3、把两个比值都是 的比组成比例,已知比例的两个内项都是15,请分别求出这个比例的两个外项,并写出比例。
4、一个比例的四个项都是大于0的整数,它的两个比的比值都是 ,且第一项比第二项少3,第三项是第一项的3倍。请写出这个比例。
2、正比例和反比例的意义
第一课时 成正比例的量
教学内容:P39~41 成正比例的量
教学要求:1、使学生理解正比例的意义,能根据正比例的意义判断是不是成正比例。
2、培养学生概括能力和分析判断能力。
3、培养学生用发展变化的观点来分析问题的能力。
教学重点:成正比例的量的特征及其判断方法。
教学难点:理解两个变量之间的比例关系,发现思考两种相关联的量的变化规律.
教学过程:
一、四顾旧知,复习铺 垫
1、已知路程和时间,求速度
2、已知总价和数量,求单价
3、已知工作总量和工作时间,求工作效率
二、引导探索,学习新知
1、教学例1:
出示:一列火车1小时行驶90千米,2小时行驶180千米,
3小时行驶270千米,4小时行驶360千米,
5小时行驶450千米,6小时行驶540千米,
7小时行驶630千米,8小时行驶720千米……
(1)出示下表,填表
一列火车行驶的时间和路程
时间
路程
填表,思考:在填表中你发现了什么?
时间变化,路程也随着变化,我们就说时间和路程是两个相关联的量。(板书:两种相关联的量)
根据计算,你发现了什么?
相对应的两个数的比的比值一样或固定不变,在数学上叫做一定。
用式子表示他们的关系是:路程/时间=速度(一定)(板书)
(2)教师小结:
同学们通过填表,交流,知道时间和路程是.两种相关联的量,路程随着时间的变化而变化.时间扩大,路程随着扩大;时间缩小,路程也随着缩小。即:路程/时间=速度(一定)
2、教学例2:
(1)花布的米数和总价表
数量 1 2 3 4 5 6 7 ……
总价 8.2 16.4 24.6 32.8 41.0 49.2 57.4 ……
(2)观察图表,发现什么规律?
用式子表示它们的关系:总价/米数=单价(一定)
3、抽象概括正比例的意义。
(1)比较例1、例2,思考并讨论:这两个例题有什么共同点?
(2)两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两个量就叫做成正比例的量,它们的关系叫做正比例关系。
(3)看书P39,进一步理解正比例的意义。
(4)如果用x和y表示两种相关联的量,用k表示它们的比值(一定),正比例关系怎样用字母表示出来?
x/y=k(一定)
(5)根据正比例的意义以及表示正比例的式子想一想:构成正比例关系的两种量必须具备哪些条件?
4、看书P40例2。
(1)题中有几种量?哪两种量是相关联的量?
(2)体积和高度的比的比值是多少?这个比值是什么?是不是一定?
(3)它们的数量关系式是什么?
(4)从图中你发现了什么?
(5)不计算,根据图像判断,如果杯中水的高度是7厘米,那么水的体积是多少?225立方厘米的水有多高?
三、课堂小结:
什么是成正比例的量?它必须具备什么条件?怎样判断成正比例的量?
四、课堂练习:
1、P41做一做
2、P43~44练习七第1~5题。
第二课时 成反比例的量
教学内容:P42 成反比例的量
教学目的:1、理解反比例的意义,能根据反比例的意义,正确的判断两种量是否成反比例。
2、通过引导学生讨论探究,分析合作,使学生进一步认识事物之间的联系和发展变化的规律。
3、初步渗透函数思想。
教学重点:引导学生总结出成反比例的量,是相关的两种量中相对应的两个数积一定,进而抽象概括出成反比例的关系式.
教学难点:利用反比例的意义,正确判断两个量是否成反比例.
教学过程:
一、复习铺垫
1、下面两种量是不是成正比例?为什么?
购买练习本的价钱0.80元,1本;1.60元,2本;3.20元,4本;4.80元6本.
2、成正比例的量有什么特征?
二、探究新知
1、导入新课:这节课我们继续学习常见的数量关系中的另一种特征——成反比例的量。
2、教学P42例3。
(1)引导学生观察上表内数据,然后回答下面问题:
A、表中有哪两种量?这两种量相关联吗?为什么?
B、水的高度是否随着底面积的变化而变化?怎样变化的?
C、表中两个相对应的数的比值各是多少?一定吗?两个相对应的数的积各是多少?你能从中发现什么规律吗?
D、这个积表示什么?写出表示它们之间的数量关系式
(2)从中你发现了什么?这与复习题相比有什么不同?
A、学生讨论交流。
B、引导学生回答:
(3)教师引导学生明确:因为水的体积一定,所以水的高度随着底面积的变化面变化。底面积增加,高度反而降低,底面积减少,高度反而升高,而且高度和底面积的乘积一定,我们就说高度和底面积成反比例关系,高度和底面积叫做成反比例的量。
(4)如果用字母x和y表示两种相关的量,用k表示它们的积一定,反比例可以用一个什么样的式子表示?板书:x×y=k(一定)
三、巩固练习
1、想一想:成反比例的量应具备什么条件?
2、判断下面每题中的两个量是不是成反比例,并说明理由。
(1)路程一定,速度和时间。
(2)小明从家到学校,每分走的速度和所需时间。
(3)平行四边形面积一定,底和高。
(4)小林做10道数学题,已做的题和没有做的题。
(5)小明拿一些钱买铅笔,单价和购买的数量。
(6)你能举一个反比例的例子吗?
四、全课小节
这节课我们学习了成反比例的量,知道了什么样的两个量是成反比例的两个量,也学会了怎样判断两种量是不是成反比例。
五、课堂练习
P45~46练习七第6~11题。
第三课时 正比例和反比例的比较
教学内容:正比例和反比例的比较
教学目标:1、进一步理解正比例和反比例的意义,弄清它们的联系和区别。掌握它们的变化规律。
2、使学生能正确判断正、反比例。
3、发展学生分析、比较、抽象、概括能力,激发学生的学习兴趣。
教学难点:正反比例的联系和区别 。
教学重点:能判断正、反比例。
教学过程:
一、复习:
判断:下面每组中的两个量成什么关系?
1、单价一定,数量和总价。
2、路程一定,速度和时间。
3、正方形的边长和它的面积。
4、时间一定,工效和工作总量。
二、新知:
1、出示课题:
2、教学补充例题
出示表1
路程(千米) 5 10 25 50 100
时间(时) 1 2 5 10 20
表2
速度(千米/时) 100 50 20 10 5
时间(时) 1 2 5 10 20
分组讨论、交流:说一说怎样想的,同时填空。引导学生讨论回答。
总结路程、速度、时间三个量中每两个量之间的比例关系。
速度×时间=路程 路程÷时间=速度 路程÷速度=时间
判断:
(1)速度一定,路程和时间成什么比例?
(2)路程一定,速度和时间成什么比例?
(3)时间一定,路程和速度成什么比例?
3、比较正比例、反比例的关系
正反比例的相同点:都有两种相关联的量,一种量随着另一种量变化。
不同点:正比例使变化相同,一种量扩大或缩小,另一种量也扩大或缩小。相对应的每两个数的比值(商)一定,反比例是变化相反,一种量扩大(或缩小),另一种量反而缩小(扩大)相对应的每两个量的积一定。
三、巩固练习
1、做一做
判断单价、数量和总价中的一种量一定,另外两种量成什么关系。为什么?
单价一定,数量和总价—
总价一定,数量和单价—
数量一定,总价和单价—
2.判断下面一些相关联的量成什么比例?为什么?
(1)除数一定, 和 成 比例。
被除数—定, 和 成 比例。
(2)前项一定, 和 成 比例。
(3)后项一定, 和 成 比例。
(4)长方形的长、宽和面积三总量,如果长是一定的,宽和面积成正例关系。这三种量再什么条件下还能组成比例关系,是哪种比例关系。
苏教版六年级上册《倒数的认识》数学教案
第二单元 分数乘法
第7课时 倒数的认识
教学内容:
课本第36页例7和“练一练”,练习六第16-21题。
教学目标:
1、认识倒数的概念,掌握求倒数的方法,能熟练地求一个数的倒数。
2、培养数学思考的能力。
教学重点:
掌握求倒数的方法。
教学难点:
能熟练地求一个数的倒数。
课前准备:
多媒体课件
教学过程:
一、导入新课
问:每个算式中两个数相乘的积有什么共同的地方?你还能举几个这样的例子吗?
二、教授新知
1、教学例题。
(1)出示例7。
下面的几个分数中,那两个数的乘积是1?
3/8 5/4 3/5 7/10 4/5 2/3 10/7 8/3
(2)学生回答。
(3)引出概念。
乘积是1的两个数互为倒数。例如3/8 和8/3互为倒数。可以说3/8 是8/3的倒数,8/3是3/8的倒数。
(4)学生举例来说。进行及时的评议。
(5)追问:怎样的两个数互为倒数?为什么要说“互为倒数?”
2、归纳方法。
小组讨论:
观察倒数和原数的关系,想一想一个数的倒数与原数相比,分子、分母的位置发生了什么变化?
全班交流。
求一个数的倒数时,只要把这个数的分子和分母调换位置即可。
问:5的倒数是几?1的倒数是几?
学生回答,并说原因。
追问:0有倒数吗?为什么?
指出:因为0和任何数相乘的积都不会是1,所以0没有倒数。
除0以外,在求一个数的倒数时,只要把这个数的分子和分母调换位置即可。
3、完成“练一练”。
学生回答。
指出:分子是1的分数,它的倒数就是分母,整数的倒数就是这个整数做分母,分子是1。
三、巩固练习
1、做练习六第16题。
学生填书上后,集体订正。
2、做练习六第17题。
指名口头回答。
3、做练习六第18题。
学生填书上后,集体订正。
4、做练习六第19题。
重点引导学生讨论每一组数的规律。
四、课堂总结
这节课学习了什么内容?什么是倒数?怎样求一个数的倒数?
五、布置作业
练习六第20、21题和思考题。
教学反思:
目标:通过用切割拼合的方法借助长方体的体积公式推导出圆柱的体积公式;使学生理解圆柱的体积公式的推导过程,能够运用公式正确地计算圆柱的体积。
重点:能够正确计算圆柱体体积
教学难点:圆柱体体积公式的推导过程。
教具准备:圆柱的体积公式演示教具(把圆柱底面平均分成16个扇形,然后把它分成两部分,两部分分别用不同颜色区别开)。
教学过程:
一、复习
1.圆柱的侧面积怎么求?
(圆柱的侧面积=底面周长×高。)
2.长方体的体积怎样计算?
学生可能会答出“长方体的体积=长×宽×高”,教师继续引导学生想到长方体和正方体体积的统一公式“底面积×高”。
板书:长方体的体积=底面积×高
3.拿出一个圆柱形物体,指名学生指出圆柱的底面、高、侧面、表面各是什么圆柱有几个底面?有多少条高?
二、导入新课
教师:请大家想一想,在学习圆的面积时,我们是怎样把圆变成已学过的图形再计算面积的?
先让学生回忆,同桌的相互说说。
然后指名学生说一说圆面积计算公式的推导过程:把圆等分切割,拼成一个近似的长方形,找出圆的面积和所拼成的长方形面积之间的关系,再利用求长方形面积的计算公式导出求圆面积的计算公式。
教师:怎样计算圆柱的体积呢?大家仔细想想看,能不能把圆柱转化成我们已经学过的图形来求出它的体积?
让学生相互讨论,思考应怎样进行转化。
指名学生说说自己想到的方法,有的学生可能会说出将圆柱的底面分成扇形切开教师应该给予表扬。
教师:这节课我们就来研究如何将圆柱转化成我们已经学过的图形来求出它的体积。
板书课题:圆柱的体积
三、新课
1.圆柱体积计算公式的推导。
圆的面积是怎样推导出来的?
圆柱体积计算公式的推导又会怎样呢?(看模型,联想长方体)
推导其体积计算公式
板书:圆柱的体积=底面积×高
教师:如果用V表示圆柱的体积,S表示圆柱的底面积,h表示圆柱的高,可以得到圆柱的体积计算公式: V=Sh
2.教学例1
出示例1
(1)教师指名学生分别回答下面的问题:
这道题已知什么?求什么?
能不能根据公式直接计算?
计算之前要注意什么?
通过提问,使学生明确计算时既要分析已知条件和问题,还要注意要先统一计量单位。
(2)用投影出示下面几种解答方案,让学生判断哪个是正确的?
V=Sh=50×2.l=105
答:它的体积是105立方厘米。
2.1米=110厘米。
V=Sh=50×210=10500
答:它的体积是1050O立方厘米。
50平方厘米=0.5立方米
V=Sh=0.5×2.1=1.05答:它的体积是1.05立方米。
50平方厘米=0.005平方米
V=Sh=0.005×2.1=0.0105立方米
答:它的体积是0.0105立方米。
先让学生思考,然后指名学生回答哪个是正确的解答,并比较一下哪一种解答更简单i对不正确的第、种解答要说说错在什么地方。
五、作业:
数学书: 9页 第2、3、4、
作为大家敬仰的人民教师,要对每一堂课认真负责。这时就需要自己去精心研究如何做一份学生爱听老师爱讲的教案。上课自己轻松的同时,学生也更好的消化课堂内容。如何才能编写一份比较全面的教案呢?请您阅读小编辑为您编辑整理的《人教版六年级数学上册第三单元《倒数的认识》教案(八)》,欢迎大家阅读,希望对大家有所帮助。
人教版六年级数学上册第三单元《倒数的认识》教案(八)
九、课后反思:
学生学习数学有两种体验,一种是成功体验,另一种是生活体验,在平时的数学教学中,做为教师要尽可能与学生的生活实际相联系来进行教学。这节课是一节概念课的教学,什么是倒数呢?乘积是1的两个数叫做互为倒数,学生对于《倒数》是教学中的一个难点.在这节课的教学中,我利用“汉字”这一关系的多次转化,让学生在具体的情境中知道什么是“互为倒数”,.调动了同学们学习的积极性,让学生在不知不觉中理解了“倒数”的含义,分散了教学的难点.
一节课的成功与否,不是看教师教得如何,关键是看学生学得怎样.我们要在平时的课堂教学中多给学生一些质疑问难的机会,让学生敢提问题,会提问题.在课堂教学中,我是利用色彩课件给学生提出问题,学生无论在什么时候,只要有疑惑,就交流,提问。教师就要给学生解决疑问.这样在提出问题和解决问题的过程中来培养学生的质疑问难精神。这节课在求整数的倒数时,学生提出如何求0的倒数,为课堂教学增加了活力,增加了色彩, ,让学生经历探索的过程,解决了学生的困惑,同时也让学生体验了成功的快乐,形成了学习的经验,人生的经验。
点击查看更多:六年级数学上册教案
提醒:
扫码关注回复“教案”
获得上下册教案资料!
老师讲课学生爱听,还愿意自学的情况下,往往少不了一份教案。因此,老师会想尽一切方法编写一份学生易接受的教案。上课自己轻松的同时,学生也更好的消化课堂内容。你们有没有写过一份完整的教学计划?小编收集整理了一些“人教版六年级数学上册第三单元《倒数的认识》教案(五)”,仅供参考,欢迎大家来阅读。
人教版六年级数学上册第三单元《倒数的认识》教案(五)
目标
1. 通过观察、分类、讨论等活动认识倒数,能说出倒数的意义。
2. 体验找倒数的方法,会求一个数的倒数。
3. 在探索交流的活动中,经历观察、归纳、推理和概括的学习过程。
教学重点:理解倒数的意义,掌握求倒数的方法。
教学难点:掌握求倒数的方法。
教学过程
一、创设情境,引入新课
1、 创设活动“造反”游戏。
师:同学们,在学习新课之前,先让我们来玩一个游戏,游戏的名字是“造反”游戏
反说:
刷牙-牙刷 球台-台球 唱歌-歌唱
反写:
杏-呆 吴-吞 干-士
师:在我们的语文上有许多这样有趣的文字,那么在我们的数学王国里,也有这样有趣的数学,大家一起来试一试。
像这样有趣的现象,在数学上叫什么呢?这就是我们这一节要学习的
板书“倒数的认识”
看到这个题目,你有什么问题吗?
生1:
生2:
师:带着这些问题,我们来深入探究一下“倒数”
我们先来算一算
谁能照上面的例子,再说一说?
通过上面的算式,你有什么发现?
生1:
生2:
师:大家都是活眼金睛啊!那么大家的这些发现之间有没有什么必然的联系呢?
下面请大家打开课本,自学一下下面的知识。
请学习完的同学坐端正。
回答:什么是倒数?
怎样叙述它们之间的关系?
生1:
生2:
生3:
板书:乘积是1的两个数互为倒数。
师:你认为在这句话中,哪些字或词语比较重要呢?
那么,根据上面的两组算式,谁来叙述一下它们之间的关系。
生1 :
生2:
大家的叙述都非常准确,老师这有两道题,请你也来试一试
师:通过上面的学习,你认为怎样求一个数的倒数呢?
板书:求一个数的倒数,只要把分子和分母调换位置就可以了。
评价要点:知道交换位置
除了这些,老师还带来两个特殊的朋友0和1
下面请大家讨论下面的两个问题
(1)1的倒数是(1)
(2)0有没有倒数?为什么?
0和1都来了,那么还有一些老朋友也来凑热闹了。
动脑筋:整数,带分数、小数如何找倒数
怎么办?
整数都可以看成分母是1的假分数
带分数也可以化成假分数。小数也可以化成分数。
今天,大家的表现都棒棒的,下面我们来试试身手吧.
想一想:找朋友
练习1:写倒数
练习2:整数、假分数的倒数填空
既然大家都这么棒,那么我们一起来智慧屋里去闯一闯吧!
第一关:填空(积是1)
第二关:我来当裁判(以书信的形式出现)
第三关:修改日记。
希望大家也能把本节课学习的知识,用日记的形式写下来。
其实,在我们的学习中,各学科之间都是有一定的联系的,下面大家来看一看下面几道题。
最后,我们来猜谜语。
点击查看更多:六年级数学上册教案
提醒:
扫码关注回复“教案”
获得上下册教案资料!
相信很多老师都希望自己的课堂上同学们能够积极的与自己互动。老师需要做好课前准备,编写一份教案。上课自己轻松的同时,学生也更好的消化课堂内容。那么老师怎样写才会喜欢听课呢?下面是小编为大家整理的“人教版六年级数学上册第三单元《倒数的认识》教案(四)”,供大家参考,希望能帮助到有需要的朋友。
人教版六年级数学上册第三单元《倒数的认识》教案(四)
教学内容:
人教版六年级上册教材P28页中的例1,完成相关练习题。
教学目标:
1、知识与技能:
(1)使学生理解倒数的意义,在众多的数中说出哪两个数互为倒数,学生能用完整、正确的语言表达倒数的意义。
(2)掌握求倒数的方法,并能正确熟练的求出倒数。
2、过程与方法:
引导学生通过体验、观察、比较、交流、归纳等活动,理解倒数的意义,让学生经历体验知识的过程,自主总结出求倒数的方法。
3、情感、态度与价值观:
(1)通过合作交流培养学生学会与人合作,愿与人交流的习惯。
(2)通过亲身参与探究活动,获得积极成功的情感体验。
教学重点:理解倒数的意义,掌握求倒数的方法。
教学难点:掌握求倒数的方法。
教 法:创设情境、启发引导、自学与讲授相结合等。
学 法:联系生活实际、观察、比较、交流、归纳。
教学准备:多媒体课件
教学过程:
一、情境导入
1、教师举例同桌之间的关系,理解“互为”的含义。
2、课件出示文字游戏,引导学生说一说,理解“倒”。
吞---------( 吴 ) 杏---------(呆 )
板书:交换位置
教师:指名口答。像这种颠倒文字游戏有很多,那么数学中的数也有这种规律吗?课件出示:倒数的认识
板书:倒数的认识
3、让学生说一说你想知道些什么?
4、课件出示学习目标,引导学生进入今天的课堂。
二、探究新知
(一)引导质疑(教学例1)
1、课件出示两组算式,分两组比赛,在卡片上完成计算。
2、宣布比赛结果,观察找一找快的规律。
引导说出倒数的意义,试着说一说倒数文字叙述。
3、课件出示倒数的意义:乘积是1的两个数互为倒数。
讨论:互为倒数的条件是什么?板书:意义
4、让学生说一说,并板书:(乘积是1、两个数、互为)
5、课件出示判断,学生讨论,说明理由。
(二)求一个倒数的方法
1、课件出示3/5、7/2的倒数,让学生在卡纸上写。课件订正。
2、1的倒数是什么?0有没有倒数?板书:1的倒数是1,0没有倒数。
3、总结求倒数的方法。板书:分子与分母。课件出示方法,齐读。
(三)延伸练习
1、课件出示:6的倒数是( )。0.2的倒数是( )
1.75的倒数是( )。的倒数是( )。
2、学生讨论,教师巡视指导,指名回答,课件订正。强调书写格式,互为倒数,并不是相等,所以两数之间不能用等号。
3、课件出示综合练习。
4、小结:整数,小数,分数求倒数的方法。
5、课件出示分类练习,找一找一个数(0除外)的倒数与1的关系。
三、巩固提高
1、课件出示:连一连。
2、同桌互说倒数,指名挑战。
3、课件出示:《马小虎日记》让学生读一读,找出错因。
四、课后小结
通过这节课的学习,你有什么样的收获?
五、布置作业:完成数学书29页1、2、3、4题。
六 、板书设计
倒数的认识
意义:乘积是1 方法 :
两个数 分子与分母
互为 交换位置
特殊: 1的倒数是1,0没有倒数。
点击查看更多:六年级数学上册教案
提醒:
扫码关注回复“教案”
获得上下册教案资料!
《2022年秋六年级数学上册《倒数的认识》教案设计》一文就此结束,希望能帮助您在小学教学中起到作用,如还需更多,请关注我们的“小学六年级数学比教案”专题。
文章来源:http://m.jab88.com/j/113562.html
更多