88教案网

人教版六年级数学上册全册教案1

在上课时老师为了能够精准的讲出一道题的解决步骤。所以老师在写教案时要不断修改才能产出一份最优质的教案。从而在课堂上与学生更好的交流,你们见过哪些优秀教师的小学教案吗?以下是小编为大家收集的“人教版六年级数学上册全册教案1”,仅供参考,欢迎大家来阅读。

人教版六年级数学上册全册教案1

本册教案的说明:

1、单元有 目标、 重点、教学难点。课时教案由教学目标、教学重点、教学难点、教学准备、教学过程、设计意图和教学后记等7部分组成。其中教学过程由旧知铺垫(或情境创设)、新知探究、当堂测评和课堂总结4部分组成。

2、整个教学去掉了以往的“作业布置”环节,使学生课堂紧张,课外轻松。提高学习效率。

3、课件内容融于教案之中。

4、注重情境教育,激发学生的求知欲,感受数学的实用性。

5、采用“先学后教、当堂训练”的教学模式。重视学生自学。

教学内容及课时 :

第一单元: 位置 共 2 课时

第二单元: 分数乘法 共12课时

第三单元: 分数除法 共13课时

第四单元: 圆 共10课时

第五单元: 百分数 共13课时

第六单元: 统计 共 2 课时

第七单元: 数学广角 共 1 课时

第一单元 第一课时 位置

教学目标:

1.使学生学会在具体情境中探索确定位置的方法,懂得能用数对表示物体的位置。

2.经历探索确定物体位置的方法的过程,让学生在学习的过程中发展空间观念。

3.使学生感受确定位置的丰富现实情景,体会数学的价值,产生对数学的亲切感。

教学重点:能用数对表示物体的位置。

教学难点:能用数对表示物体的位置,正确区分列和行的顺序。

教学准备:投影仪、本班学生座位图

教学过程:

一、复习旧知,初步感知

1、教师提问:同学们,你能介绍自己座位所处的位置吗?

学生介绍位置的方式可能有以下两种:

(1)用“第几组第几个”描述。

(2)用在我的“前面”、“后面”、“左面”、“右面”来描述。让学生先说说

2、我们全班有48名同学,但大部分的同学老师都不认识,如果我要请你们当中的某一位同学发言,你们能帮我想想要如何表示才能既简单又准确吗?

3、学生各抒己见,讨论出用“第几列第几行”的方法来表述。

二、新知探究

1、教学例1(出示本班学生座位图)

(1)如果老师用第二列第三行来表示××同学的位置,那么你也能用这样的方法来表示自己的位置吗?

学生对照座位图初步感知,说出自己的位置。个别汇报,集体订正。

(2)学生练习用这样的方法来表示其他同学的位置。(注意强调先说列后说行)

(3)教学写法:××同学的位置在第二列第三行,我们可以这样表示:(2,3)。按照这样的方法,你能写出自己所在的位置吗?(学生把自己的位置写在练习本上,指名回答)

2、小结例1:

(1)确定一个同学的位置,用了几个数据?(2个)

(2)我们习惯先说列,后说行,所以第一个数据表示列,第二个数据表示行。如果这两个数据的顺序不同,那么表示的位置也就不同。比较(2,3)与(3,2)的不同。

{在比较中发现不同之处,从而加深学生对数对的更深了解。}

3、 练习:

(1)教师念出班上某个同学的名字,同学们在练习本上写出他的准确位置。

(2)生活中还有哪里时候需要确定位置,说说它们确定位置的方法。

(电影院里的座位、地球仪上的经纬度、我国古代围棋等。)

{拓宽学生的视野,让学生体会数学在生活中的应用。}

三、当堂测评

教师课件出示,学生独立完成。小组内评比纠错。

{做到兵强兵、兵练兵。}

四、课堂总结

我们今天学了哪些内容?你觉得自己掌握的情况如何?还有什么不懂的?

{让学生说出,了解对知识的掌握情况。}

第二课时:位置(二)

教学目标:

1.使学生能结合方格纸用两个数据来确定位置,能依据给定的数据在方格纸上确定位置。

2.通过学习活动,增强学生运用所学知识解决实际问题的能力,提高应用意识。

教学重点:

在方格纸上用数对确定点的位置

教学难点:

利用方格纸正确表示列与行。

教学准备:

教师准备:投影机。

学生准备:方格纸

教学过程

一、复习巩固

标出下列班上同学的位置(图略)

{借助教师操作台上的学生座位图,迅速将实际的具体情境数学化}

二、新知探究

(一)教学例2

1.我们刚刚已经懂得如果表示班上同学所在的位置。现在我们一起来看看在这样的一张示意图上(出示示意图),如何表示出图上的场馆所在的位置。

2.依照例1的方法,全班一起讨论说出如何表示大门的位置。(3,0)

(在教学的过程中,教师要特别强调0列、0行,并指导学生正确找出。)

3.同桌讨论说出其他场馆所在的位置,并指名回答。

4.学生根据书上所给的数据,在图上标出“飞禽馆”“猩猩馆”“狮虎山”的位置。(投影讲评)

{充分利用学生已有的生活经验和知识,鼓励学生自主探索、合作交流。在教学时应充分利用这些经验和知识为学生提供探究的空间,让学生通过观察、分析、独立思考、合作交流等方式,将用生活经验描述位置上升为用数学方法确定位置,发展数学思考,培养空间观念。}(二)、课堂提高

练习一第6题

(1) 独立写出图上各顶点的位置。

(2) 顶点A向右平移5个单位,位置在哪里?哪个数据发生了改变?点A再向上平移5个单位,位置在哪里?哪个数据也发生了改变?

(3)照点A的方法平移点B和点C,得出平移后完整的三角形。

(4)观察平移前后的图形,说说你发现了什么?小组内相互说说。

(图形不变,右移时列也就是第一个数据发生改变,上移时行也就是第二个数据发生改变)

{。让学生看到在平面上用数对表示点的位置的方法,架起了数与形之间的桥梁,加强了知识间的相互联系。}

三、当堂测评

练习一第4题

学生独立完成,然后同学之间互相检验交流,最后,教师再展示学生的作品,学生评价。

练习一第5题

(1)学生自己在方格纸上画一个简单的多边形。各顶点用两个数据表示。

(2)同桌互相合作,一人描述,一人画图。

{继续渗透数形结合的思想.}

四、课堂自我评价

这节课你觉得自己表现得怎样?哪些方面还需要继续努力?

五、设计意图:

本节知识,我充分利用学生已有的生活经验和知识,从学生熟悉的座位顺序出发,让学生在口述“第几组几个”的练习过程中,潜移默化地建立起“第几列第几行”的概念,让学生从习惯上培养起先说“列”后说“行”的习惯。然后再过度到用网格图来表示位置,让学生懂得从网格坐标上找到相应的位置。这样由直观到抽象、由易到难,符合孩子的学习特点。

课后小记

第二单元 分数乘法

单元目标:

1、使学生理解分数乘法的意义,掌握分数乘法的计算法则,并能熟练地进行计算。

2、使学生掌握分数乘加、乘减混合运算,理解整数乘法运算定律对于分数乘法同样适用。

3、使学生理解分数乘法应用题中的数量关系,会解答求一个数的几分之几是多少的应用题。

4、使学生理解倒数的意义,掌握求倒数的方法。

单元重点:

分数乘法的意义和计算法则。

单元难点:

1、 理解分数乘法的意义,根据分数乘法的意义去解答这类应用题。

2、 分数乘法计算法则的推导。

第一课时 :分数乘整数

教学目标:

1、在学生已有的分数加法及分数基本意义的基础上,结合生活实例,通过对分数连加算式的研究,使学生理解分数乘整数的意义,掌握分数乘整数的计算方法,能够应用分数乘整数的计算法则,比较熟练地进行计算。

2、通过观察比较,指导学生通过体验,归纳分数乘整数的计算法则,培养学生的抽象概括能力。

3、 引导学生探求知识的内在联系,激发学生学习兴趣。通过演示,使学生初步感悟算理,并在这过程中感悟到数学知识的魅力,领略到美。

教学重点:使学生理解分数乘整数的意义,掌握分数乘整数的计算方法。

教学难点:引导学生总结分数乘整数的计算法则

教具准备:多媒体课件、

教学过程:

一、复习引入

1.课件出示复习题。

(1)列式并说出算式中的被乘数、乘数各表示什么?

5个12是多少? 9个11是多少? 8个6是多少?

(2)计算:

+ + = + + =

2.引出课题。

+ + 这题我们还可以怎么计算?今天我们就来学习分数乘法。

二:新知探究

1.出示课题明确学习目标。

2.课件出示自学题纲,让学生自学课本。

(1)分数乘以整数的意义是什么?与整数乘法的意义相同吗?

(2)分数乘以整数的计算方法是怎样的?它是怎样推导出来的?

(3)分数乘以整数的意义。

3、 课件出示例1

教师引导学生画出线段图。

学生根据线段图列出不同的算式,并解答。

(1) 引导学生看图,理解“人跑一步的距离相当于袋鼠跳一下的

”,就是把袋鼠跳一下的距离即这一整条线段看作单位“1”。把这条线段平均分成11份,其中的2份就表示人跑一步的距离。

(2) 引导学生根据线段图理解,人跑一步是袋鼠跳一下的 ,那么“人跑3步的距离相当于袋鼠跳一下的几分之几?”就是求3个 是多少?

2/11 + 2/11 + 2/11 =

2/11 × 3 =

(3).分数乘以整数的法则。

A.导出计算方法。

你会计算吗?看哪些同学不用老师讲解就能依据转化思想把分数乘以整数这个新知识转为已经学过的旧知识来进行计算。(可以互相说互相看。)

B.归纳法则。

通过以上计算,想一想分数乘以整数怎样计算呢?

师:比一比,看哪个组的同学总结的语言准确又简练。

小组讨论,总结出法则:分数乘以整数,用分数的分子和整数相乘的积作分子,分母不变。(板书)

C.应用法则计算。

讨论,这两种方法哪种简单?为什么?

强调:能约分,要先约分;结果是假分数一定要化成整数或带分数。

4、 教学例2

(1)出示 ×6,学生独立计算。

(2)根据计算结果,学生观察讨论:乘得的积是不是最简分数?应该怎么办?

(3)学生通过自己的想法的来约分:A、先约分再计算;B、先计算得出乘积后约分。

(4)对比,让学生体会先约分再计算的方法比较简便,同时向学生说明先约分的书写格式。

三、当堂测评(课件出示)

1.看图写算式

2.先说算式意义,再填空。

3.看算式,约分计算。(提醒学生,计算前先观察分数的分母与整数是否可以约分,养成先约分在计算的习惯)

四、学生课堂自评

1、这节课你有什么收获?

2、每个学生给自己在课堂上的表现进行评价。

板书设计

分数乘以整数

意义:求几个相同加数 和的简便运算。

法则:分数乘以整数,用分数的分子和整数相乘的积作分子,分母不变。

2/11 ×3

= 2×3/11

= 6/11

教学后记

第二课时 :一个数乘分数

教学目标:

1、创设自主探索的学习情境,使学生在合作交流、尝试练习、归纳领悟等过程中,理解一个数乘分数的意义,掌握分数乘以分数的计算法则,学会分数乘分数的简便计算。

2、通过组织学生进行迁移、类推、归纳、交流等数学活动,培养学生的类推、归纳能力。

3、通过一个数乘以分数应用的广泛性事例,对学生进行学习目的性教育,激发学生学习动机和兴趣。

教学重点:理解一个数乘分数的意义,掌握分数乘分数的计算方法。

教学难点:推导算理,总结法则。

教具准备: 多媒体课件

教学过程:

一、复习引入

1、计算下列各题并说出计算方法。

× × ×

2、上面各题都是分数乘以整数,说一说分数乘以整数的意义。

3、引入:这节课我们来学习一个数乘以分数的意义和计算方法。

二、新知探究

1、课件出示教学目标

理解一个数乘分数的意义。

掌握分数乘以分数的计算法则。

学会分数乘分数的简便计算。

2、教学例3

(1)出示条件和问题:每小时粉刷这面墙的 , 小时粉刷这面墙的几分之几?根据公式“工作效率×工作时间=工作总量”,学生列式: ×

(2)引导学生动手操作,把一张纸张看作一面墙,第一步先涂出1小时粉刷的面积,即这面墙的 ,第二步再涂出 小时粉刷这面墙的面积,即 的 ,由此得出 × 这个乘法算式表示“ 的 是多少?”

(3)根据直观的操作结果,得出 × = ,根据刚才操作的过程和结果推导出计算方法: × = = 。

(4)提出问题: 小时粉刷多少呢?让学生用前面的方法涂色、推导、计算,自主解决问题。

3、小结一个数乘分数的意义和计算方法。

(1)意义:一个数乘分数,表示求这个数的几分之几是多少。

(2)计算法则:分数乘分数,用分子乘分子,分母乘分母。

4、教学例4

(1)引导学生分析题意,根据“速度×时间=路程”的数量关系列出算式: × 。

教学目标:

1、通过创设自主探究,尝试迁移、合作交流的探究情境,使学生理解整数乘法运算定律对于分数乘法同样适用,并能应用这些定律进行一些简便计算。

2、在观察、迁移、尝试练习、交流反馈等活动中,培养学生的推理能力及思维的灵活性。

3、创设开放、民主、有趣的自主探究空间,鼓励学生大胆猜测,培养他们勇于实践的思维品质。

教学重点:

理解整数乘法运算定律对于分数乘法同样适用,并能应用这些定律进行一些简便计算。

教学难点:熟练掌握运算定律,灵活、准确、合理地进行计算。

教具准备:多媒体课件

教学过程:

一、旧知铺垫

1、整数混合运算的运算顺序是怎么样?(先算二级运算,后算一级运算)

2、哪些运算属于二级运算,哪些运算属于一级运算?(乘、除法属于二级运算,加、减法属于一级运算)遇到有括号的题目该怎么来计算?(有括号的要先算小括号里面的,再算中括号里面的)

3、观察下面各题,先说说运算顺序,再进行计算。

(1)36×2+15 (2)5×6+7×3 (3)15×(34-27)

二、新知探究

1、向学生说明:分数混合运算的顺序和整数的运算顺序相同。按照此规则,学生仔细确定运算顺序后计算下面各题。(课件出示)

(1) + × (2) × -

(3) - × (4) × +

2、复习整数乘法的运算定律

(1)乘法交换律:a×b=b×a

乘法结合律:(a×b)×c=a×(b×c)

乘法分配律:(a+b)×c=a×c+b×c

(2)这些运算定律有什么用处?你能举例说明吗?

(3)用简便方法计算:25×7×4 0.36×101

3、推导运算定律是否适用于分数。

(1)鼓励学生大胆猜测并勇于发表自己的个人意见。

(2)验证:有些同学认为整数乘法的运算定律能适用于分数乘法,而有些同学认为不能,你们能找到证据证明自己的观点吗?

(利用例5的三组算式,小组讨论、计算,得出两边式子的关系)

(3)各四人小组汇报讨论和计算结果。

4、教学例6

(1)课件出示: × × ,学生先独立计算,然后全班交流,说一说应用了什么运算定律?(应用乘法交换律)

(2)课件出示: + × ,学生先观察题目,然后指名说说这道题适用哪个运算定律,为什么?(适用乘法分配率,因为 ×4和 ×4都能先约分,这样能使数据变小,方便计算)

(3)小结:应用乘法交换律、结合律和分配律,可以使一些计算简便,在计算时,要认真观察已知数有什么特点,想想应用什么定律可以使计算简便。

三、课堂检测

练习三的第一题,第三题。

(1) 先让学生观察题目中的已知数的特点,想想怎样做简便?应用

了什么运算定律。再独立完成练习。教师巡回指点,发现存有问题。

(2)小组内评比,解决疑难问题。

(3)教师讲解疑难。

四、课堂自我评价

每个学生对自己这节课的表现进行自我评价,并提出问题。

设计意图

体现学生学习的主动性和自主性。这堂课我设计以学生的自主学习为主,放手给学生,鼓励学生大胆猜想,再利用四人学习小组相互探讨,利用实例进行验证,最后在班级这个大氛围内最后验证。

教学后记

第五课时 : 练习课

第六课时:解决问题(一)

求一个数的几分之几是多少

教学目标:

1、联系生活实际,创设探究情境,使学生初步掌握分数乘法应用题的数量关系,学会应用一个数乘以分数的意义解答分数乘法一步应用题。

2、在观察、猜想、尝试练习、交流反馈等活动中,培养学生分析能力,发展学生思维。

3、创设开放、民主、有趣的自主探究空间,鼓励学生大胆质疑,培养他们的创新能力。

教学重点:理解题中的单位“1”和问题的关系。

教学难点:抓住知识关键,正确、灵活判断单位“1”。

教具准备:多媒体课件。

教学过程:

一、旧知铺垫(课件出示)

1、先说下列各算式表示的意义,再口算出得数。

12× ×

2、列式计算。

(1)20的 是多少? (2)6的 是多少?

3、学生得出:求一个数的几分之几用乘法。

二、新知探究

(一)课件出示自学目标

1、通过学习掌握求一个数的几分之几是多少的应用题的解

题方法并会分析数量关系。

2、知道解这类应用题的关键是什么?

3、知道如何找单位“1”。

(二)、教学例1

1、课件出示自学提示

(1)、正确理解关键句“我国人均耕地面积仅占世界人均耕地面积的 ”。

(2)、结合线段图理解题意,找到解题思路。

(3)、如何来理解单位“1”?(小组讨论,理解这句话是把“我们人均耕地面积”与“世界人均耕地面积”相比较,其中“世界人均耕地面积”是表示单位“1”的量,知道世界人均耕地面积为2500平方米,求我国人均耕地面积就是求2500的 是多少)

(4)、在分析题意的基础上,学生独立列式、计算。

2、学生根据提示自学

全班交流汇报:

2500× =1000(平方米)

3、结合计算结果,让学生说说自己的想法,培养学生分析数据的能力,进行国情教育。

4、巩固练习:“做一做”,让学生画线段图表示题意,说说自己是怎样想的?依据是什么?然后独立解答。

三、当堂测评

练习四第2题、第3题。

学生独立完成,教师巡回指点,照顾差生。

小组内订正后

四、课堂总结

解答“求一个数的几分之几是多少”的应用题的解题步骤是什么?(找出关键句、确定单位“1”,画出线段图帮助理解题意,最后再列式解答)

设计意图:

本堂课是解决“求一个数的几分之几是多少”的问题,教学中,我紧扣分数乘分数的意义进行复习,并事先复习如“20的 是多少?”的文字题,为解决与此相似的应用题做好准备。

由于本节课是分数应用题学习的初始,因而教学中,我除了帮助学生分析、理解题意之外,更重要的还在于教给学生分析、解答分数应用题的方法,特别是在如何找单位“1”这个关键点上,更是花了较多的时间,但我认为这是十分必要的。

教学后记:

第七课时:练习课

第八课时:解决问题(二)

稍复杂的“求一个数的几分之几是多少”的问题

教学目标:

1、使学生掌握分数乘法应用题的数量关系,学会应用一个数乘以分数的意义解答分数乘法的两步应用题。

2、发展学生思维,侧重培养学生分析问题的能力。

教学重点:理解数量关系。

教学难点:根据多几分之几或少几分之几找出所求量是多少。

教具准备:多媒体课件。

教学过程:

一、 旧知铺垫(课件出示)

1、口答:把什么看作单位“1”的量,谁是几分之几相对应的量?

(1)一块布做衣服用去 。 (2)用去一部分钱后,还剩下 。

(3)一条路,已修了 。 (4)水结成冰,体积膨胀 。

(5)甲数比乙数少 。

2、口头列式:

(1)32的 是多少? (2)120页的 是多少?

(3)绿化造林对可降低噪音,原来80分贝的汽笛噪音,经绿化隔离带后,降低了 ,降低了多少分贝?

(4)绿化造林对可降低噪音,原来80分贝的汽笛噪音,经绿化隔离带后只剩下原来的 ,人现在听到的声音是多少分贝?

3、你能把口头列式计算中的第(3)(4)题合并成一道题吗?

4、根据学生回答,出示例4,并指出:这就是我们今天要学习的“稍复杂的分数乘法应用题”。

二、新知探究

(一)教学例2

1、课件出示自学提纲:

1)画出线段图,分析题意,寻找解题方法。

2)小组间说出图中各部分表示什么?哪些是已知的,哪些是要求的,哪一个是表示单位“1”的量?让后把线段图表示完整。

3)四人小组讨论,根据线段图提出不同解决办法,并列式计算。

2、学生汇报:

解法一:80-80× =80-10=70(分贝)

解法二:80×(1- )=80× =70(分贝)

3、学生讨论两种解法的不同:两种方法都是从整体与部分的关系入手。第一种思路是从

总量里减去一个部分量;第二种方法是求出部分量与总量的比较关系,再运用求一个数的

几份之几是多少的方法求出这个部分量。

4、巩固练习:P20“做一做”

(二)教学例3

1、读题理解题意后,提出“婴儿每分钟心跳的次数比青少年多 ”表示什么意思?(组织学生讨论,说说自己的理解)

2、引导学生将句子转化为“婴儿每分钟比青少年多跳的次数是青少年每分钟心跳次数的 ”。着重让学生说说谁与谁比,把谁看作单位“1”。

3、出示线段图,学生讨论交流,结合例2的解题方法,学生独立列式计算后全班交流两种解题方法。

解法一:75+75× =75+60=135(次)

解法二:75×(1+ )=75× =135(次)

4、巩固练习:P21“做一做”(列式后让学生说说算式各部分表示什么)

三、当堂测评

练习五第2、3、4、5题。

1、学生依据例题引导的解题方法,引导学生抓住题目中关键句子分析,找到谁与谁比,

谁是表示单位“1”的量。独立完成。教师巡回指点,照顾差生。

2、小组间解决疑难,全班汇报,教师讲评。

四、谈收获、找疑难

这节课你有什么收获?还有什么不懂的吗?

设计意图:

例2和例3都是在理解和掌握了求一个数的几分之几是多少的问题的思路和方法的基础上,学习解决稍复杂的求一个数的几分之几是多少的问题。

教学中,我依然依据教学例1时教给学生的解答步骤进行分析解答,找出单位“1”,并画出线段图帮助理解。教学中,我引导学生紧扣线段图,直观地理解题意,并引导学生从数量和分率两方面入手,培养学生思维的多样性。但本堂课,老师讲解的部分似乎多了一些,留给学生讨论、练习的时间稍为稀薄。

教学后记 :

第九课时 :练习课

第十课时:倒数的认识

教学目标:

1、引导学生通过体验、研究、类推等实践活动,理解倒数的意义,让学生经历提出问题、自探问题、应用知识的过程,自主总结出求倒数的方法。

2、通过合作活动培养学生学会与人合作,愿与人交流的习惯。

3、通过学生自行实施实践方案,培养学生自主学习和发展创新的意识。

教学重点:

理解倒数的意义和怎样求倒数。理解倒数的意义,掌握求倒数

的方法。

教学难点:掌握求倒数的方法。

教具准备:多媒体课件。

教学过程:

一、旧知铺垫(课件出示)

1、口算:

(1) × × 6× ×40

(2) × × 3× ×80

2、今天我们一起来研究“倒数”,看看他们有什么秘密?出示课题:倒数的认识

二、新授

1、课件出示知识目标:

(1)什么叫倒数?怎样理解“互为”?

(2)怎样求一个数的倒数?

(3)0、1有倒数吗?是什么?

2、教学倒数的意义。

(1)学生看书自学,组成研讨小组进行研究,然后向全班汇报。

(2)学生汇报研究的结果:乘积是1的两个数互为倒数。

(3)提示学生说清“互为”是什么意思?(倒数是指两个数之间的关系,这两个数相互依存,一个数不能叫倒数)

(3)互为倒数的两个数有什么特点?(两个数的分子、分母正好颠倒了位置)

3、教学求倒数的方法。

(1)写出 的倒数: 求一个分数的倒数,只要把分子(数字3闪烁后移至所求分数分母位置处)、分母(数字5闪烁后移至所求分数分子位置处)调换位置。

(2)写出6的倒数:先把整数看成分母是1的分数,再交换分子和分母的位置。

6=

4、教学特例,深入理解

(1)1有没有倒数?怎么理解?(因为1×1=1,根据“乘积是1的两个数互为倒数”,所以1的倒数是1。)

(2)0有没有倒数?为什么?(因为0与任何数相乘都不等于1,所以0没有倒数)

5、同桌互说倒数,教师巡视。

三、当堂测评

1、练习六第2题:

2、辨析练习:练习六第3题“判断题”。

3、开放性训练。

3/5×( )=( )×4/7=( )×5=1/3×( )=1

四、课堂总结

你已经知道了关于“倒数”的哪些知识?

你联想到什么?

还想知道什么?

设计意图

倒数的认识一课,教学内容较为简单,学生通过预习、自学,完全可以自行理解本课的内容。针对本课的特点,教学中我放手给学生,让学生通过自学、讨论理解“倒数”的意义,而在这其中,有一些概念点犹为关键,如“互为”,因此我也适当的加以提问点拨。对于求倒数的方法,我同样给学生自主的空间,自学例题,按自己的理解、用自己的话概括出求一个数的倒数的方法。但对于“0”“1”的倒数这种特例,我并没有忽视它,而是充分发挥教师“导”的作用,帮助学生加强认识。

教学后记

第十一、十二课时:整理和复习

第三单元 分数除法

单元目标:

1. 理解并掌握分数除法的计算方法,会进行分数除法计算。

2. 会解答已知一个数的几分之几是多少求这个数的实际问题。

3. 理解比的意义,知道比与分数、除法的关系,并能类推出比的基本性质。能够正确地化简比和求比值。

4. 能运用比的知识解决有关的实际问题。

单元重点:

理解并掌握分数除法的计算方法,理解比的意义,能用比的知识解决实际问题

单元难点:

理解分数除法的算理,列方程解答分数除法问题

第一课时:分数除法的意义和分数除以整数

教学目标:

1、 通过实例,使学生知道分数除法的意义与整数除法的意义是相同的,并使学生掌握分数除以整数的计算法则。

2、 动手操作,通过直观认识使学生理解整数除以分数,引导学生正确地总结出计算法则,能运用法则正确地进行计算。

3、 培养学生观察、比较、分析的能力和语言表达能力,提高计算能力。

教学重点:

使学生理解算理,正确总结、应用计算法则。

教学难点:

使学生理解整数除以分数的算理。

教具准备:多媒体课件

教学过程:

一、旧知铺垫(课件出示)

1、复习整数除法的意义

(1)引导学生回忆整数除法的计算法则:已知两个因数的积与其中一个因数,求另一个因数的运算。

(2)根据已知的乘法算式:5×6=30,写出相关的两个除法算式。(30÷5=6,30÷6=5)

2、口算下面各题

×3 × ×

× ×6 ×

二、新知探究

(一)、教学例1

1、课件出示自学提纲:

(1)出示插图及乘法应用题,学生列式计算。

(2)学生把这道乘法应用题改编成两道除法应用题,并解答。

(3)将100克化成 千克,300克化成 千克,得出三道分数乘、除法算式。

2、学生自学后小组间交流

3、全班汇报:

100×3=300(克)

A、3盒水果糖重300克,每盒有多重? 300÷3=100(克)

B、300克水果糖,每盒100克,可以装几盒? 300÷100=3(盒)

×3= (千克) ÷3= (千克) ÷3=3(盒)

4、引导学生通过整数题组和分数题组的对照,小组讨论后得出:

分数除法的意义与整数除法相同,都是已知两个因数的积与其

中一个因数,求另个一个因数。都是乘法的逆运算。

(二)、巩固分数除法意义的练习:P28“做一做”

(三)、教学例2

(1)学生拿出课前准备好的纸,小组讨论操作,如何把这张纸的 平均分成2份,并通过操作得出每份是这张纸的几分之几。

(2)小组汇报操作过程,得出:将一张纸的 平均分成2份,每份是这张纸的 。

(3)引导学生数形结合,对照不同的折法,说出两种不同的计算方法。

A、 ÷2= = ,每份就是2个 。

B、 ÷2= × = ,每份就是 的 。

(4)如果把这张纸的 平均分成3份呢?让学生从上面两种方法中选择一种进行计算,通过操作对比,让学生发现第二种方法适用的范围更广。

4、引导学生观察 ÷2和 ÷3两个算式,概括出分数除以整数的计算法则:分数除以整数,等于乘上这个整数的倒数。

三、当堂测评(课件出示)

1、计算

÷3 ÷3 ÷20 ÷5 ÷10 ÷6

2、解决问题

(1)、一辆货车2小时耗油10/3升,平均每小时耗油多少升?

(2)、正方形的周长是4/5米,它的边长是多少米?

学生独立完成。

教师讲评,小组间批阅。

四、课堂总结

1、今天我们学习了哪些内容?(分数除法的意义及分数除以整数的计算法则)

2、谁来把这两部分内容说一说?

教学后记

第二课时:一个数除以分数

教学目标:

1、在学生学习了分数除以整数、整数除以分数、一个数除以分数计算法则基础上,引导学生总结出分数除法的计算法则,能利用计算法则,正确、迅速地进行分数除法的计算。

2、培养学生的语言表达能力和抽象概括能力。

3、培养学生良好的计算习惯。

教学重点:

总结出一个数除以分数的计算法则,并抽象概括出分数除法的计算法则。

教学难点:

利用法则正确、迅速地进行计算,并能解决一些实际问题。

教具准备:多媒体课件、实物投影。

教学过程:

一、旧知铺垫(课件出示)

1、计算下面,直接写出得数

×4 ×3 ×2 ×6

÷4 ÷3 ÷2 ÷6

2、列式,说清数量关系

小明2小时走了6 km,平均每小时走多少千米?

(速度=路程÷时间)

二、新知探究

(一)、例3,

1、实物投影呈现例题情景图。

理解题意,列出算式:2÷ ÷

2、探索整数除以分数的计算方法

(1)2÷ 如何计算?引导学生结合线段图进行理解。

(2)先画一条线段表示1小时走的路程,怎么样表示 小时走了2 km这个条件?(将线段平均分成3份,其中2份表示的就是 小时走的路程)

(3)引导学生讨论交流:已知 小时走了2 km,要求1小时走了多少千米?可以先算什么,再算什么?

(4)根据学生的回答把线段图补充完整,并板书出过程。

先求 小时走了多少千米,也就是求2个 ,算式:2×

再求3个 小时走了多少千米,算式:2× ×3

(5) 综合整个计算过程:2÷ =2× ×3=2×

(二)、小结出计算法则:从上面这个推算过程,我们发现——整数除以分数,等于用整数乘这个分数的倒数。

(三)、计算 ÷ ,探索分数除以分数的计算方法

1、学生根据整数除以分数的计算方法,自己独立尝试分数除以分数的计算。

÷ = × =2(km)

2、学生用自己的方法来验证结果是否正确。

3、总结计算法则:无论是整数除以分数,还是分数除以分数,都可以转化成乘法来计算,也就是说除以一个不等于0的数,等于乘上这个数的倒数。

三、当堂测评

1、P31“做一做”的第1、2题。

2、练习八第2、4题。

学生独立完成,教师巡回指点,帮助学困生度过难关。

小组内讲评,发挥组长的作用,以求“兵强兵、兵练兵”。

四、课堂总结

1、这节课你们有什么收获呢?

2、在这节课上你觉得自己表现得怎样?

设计意图:

这两节课的教学我从以下着手:

1、重视分数除法的意义过程性。我只是让学生理解,并没有强调口述,而是重点让学生应用分数除法的意义,根据给出的一个乘法算式写出两道除法算式,使得对除法的意义有更深的理解。

2、在分数除以整数的教学上,我把学习的主动权交给学生。让他们动手操作、集思广益,根据操作计算方法。让学生从小养成自主学习、勇于探究的好习惯。

教学后记

第三课时:练习课

第四课时:分数混合运算

教学目标:

1、通过观察、分析、使学生掌握分数四则混合运算的运算顺序,能应用计算法则较熟练地进行计算。

2、 通过练习,培养学生的计算能力及初步的逻辑思维能力。

3、通过观察、类推,使学生进一步理解整数四则混合运算的运算定律在分数四则运算中同样适用,并能应用运算定律及有关性质进行简便运算。

4、通过练习,培养学生观察、类推的思维能力和灵活计算的能力。

教学重点:确定运算顺序再进行计算。

教学难点:明确混合运算的顺序。

教具准备:多媒体课件。

教学过程:

一、旧知铺垫(课件出示)

1、复习整数混合运算的运算顺序

(1)在一个没有小括号的算式里,只有乘除法或加减法,应该从左往右依次计算;如果既有加减法又有乘除法,应该先算乘除法,后算加减法。

(2)在一个有小括号的算式里,应该先算小括号里面的,后算小括号外面的。

(3)在一个既有小括号又有中括号的算式里,应该先算小括号里面的,后算中括号里面的,最后算中括号外面的。

2、说出下面各题的运算顺序。

(1)428+63÷9―17×5 (2)1.8+1.5÷4―3×0.4

(3)3.2÷[(1.6+0.7)×2.5] (4)[7+(5.78—3.12)]×(41.2―39)

3、小红用长8米的彩带做一些花,每朵花用2/3米彩带,一共可以做多少朵?

二、新知探究

(一)、教学例4(1)

1、教师课件出示例4

2、课件出示自学提纲:

(1)例4中的哪些条件和复习中的3相同?问题相同吗?

(2)自己读题,明确已知条件及问题,想:要求小红还剩几朵花,应先求……

(3)尝试说说自己的解题思路并解答。

3、学生根据提纲尝试解题。

4、全班汇报

(1)根据学生的回答,归纳出两种思路:

A、可以从条件出发思考,根据彩带长8m ,每朵花用 m 彩带,可以先算出一共做了多少朵花。

B、从问题入手想:要求小红还剩几多花,根据题意,应先求小红一共做了几朵花。

(2)说说运算顺序,再进行计算。

(二)、教学例4(2)

(1)计算1/5÷(2/3+1/5)×15

让个别学生说出运算顺序并计算题目的得数。

教师巡回指点,搜集存在问题。

教师黑板出示问题,学生上台改正,并说明理由。

(2)小组间讨论带有中括号的计算题,并正确计算。然后全班校对。

三、当堂测评

练习九第1、2、3题:

注:第2题求楼的楼板到地面的高度,但要注意引导学生意识6

楼楼板到地面的高度实际上只有5层楼的高度。

学生独立完成教师点评,解决疑难。

学生相互得分,评选优胜小组。

四、课堂小结

这节课有什么收获?说一说。

还有什么不懂的?提出来小组内解决。

设计意图

1、 在课初始,我便从复习整数及小数的运算顺序入手,

重点让学生回忆、熟悉运算顺序,然后再以例题为载体,让学生发

现分数的运算顺序同整数、小数的运算顺序相同,继而配合课后练

习加强计算的训练。

2、 当堂测评题将学生置于提高之处,联系实际生活解决问

题,让学生体会到数学知识的广泛性和严谨性

教学后记

第五课时:练习课

第六课时:解决问题(一)

已知一个数的几分之几是多少求这个数的应用题

教学目标:

1、使学生学会掌握“已知一个数的几分之几是多少,求这个数”的应用题的解答方法,能熟练地列方程解答这类应用题。

2、进一步培养学生自主探索问题解决的能力和分析、推理和判断等思维能力,提高解答应用题的能力。

教学重点:

弄清单位“1”的量,会分析题中的数量关系。

教学难点:

分数除法应用题的特点及解题思路和解题方法。

教具准备:多媒体课件。

教学过程:

一、旧知铺垫(课件出示)

1、根据题意列出关系式。

(1)一个数的3/4等于12.

(2)男生人数的11/12等于220人。

(3)甲数的5/8是40.

(4)乙数的4/5刚好是1/6.

2、解决问题

根据测定,成人体内的水分约占体重的 ,而儿童体内的水分约占体重的 ,六年级学生小明的体重为35千克,他体内的水分有多少千克?

(1)看看题目中所给的三个条件是否都用得上,并说说为什么。

选择解决问题所需的条件,确定出单位“1”,并引导学生说出数量关系式。

小明的体重× =体内水分的重量

(2)指名口头列式计算。

二、新知探究

(一)教学例1.

1、课件出示自学提纲:

(1)这一例题和复习中的题有什么不同和相同呢?想一想。

(2)有几个问题?都和哪些条件有关?

(3)读题、理解题意,并画出线段图来表示题意

(4)独立解决第一个问题。

2、全班汇报

(1)学生结合线段图理解题意,分析题中的数量关系式,并写出等量关系式。

小明的体重× =体内水分的重量

(2)相同点和不同点(相同点是它们的数量关系是一样的;不同点是已知条件和问题变了)。

(3)列方程来解决问题。这道题什么是单位“1”?单位“1”是已知的还是未知的?怎样求?(引导学生根据数量关系式,将未知的单位“1”设为χ,)

(4)用算术解来解答应用题。(根据数量关系式:小明的体重× =体内水分的重量,反过来,体内水分的重量÷ =小明的体重)

3、解决第二个问题:小明的体重是爸爸的 ,爸爸的体重是多少千克?

(1)启发学生找关键句,确定单位“1”。

(2)让学生选择一种自己喜爱的解法进行计算,独立解决第二个问题。

(3)指名说说自己是怎样理解题意的,并与其他同学交流自己的解题思路。(出示线段图)

爸爸的体重× =小明的体重

①方程解:解:设爸爸的体重是χ千克。

χ= 35

χ=35÷

χ=75

②算术解: 35÷ =75(千克)

4、巩固练习:P38“做一做”(学生先独立审题完成,然后全班再一起分析题意、评讲)

三、当堂测评(课件出示)

1、根据题意列出算式,不必计算(每题15分)。

(1)一个数的2/5是40,这个数是多少?

(2)一个数的3/8是24,这个数是多少?

(3)甲数是100,占乙数的4/5,乙数是多少?

(4)甲数是乙数的2/3,已知甲数是12,乙数是多少?

2、解决问题(40分)。

某校有女生160人,正好占男生的8/9,男生有多少人?

学生独立完成,教师巡回指点,注重学困生的提高。

小组内订正、互评,做到兵强兵。

四、课堂总结

这节课我们学习了分数应用题中“已知一个数的几分之几是多少求这个数的应用题”,我们知道了,如果关键句中的单位“1”是未知的话,可以用方程或除法进行解答。

设计意图:

本堂课我设计了“题目——线段图——等量关系式——解决问题”这样四个环节来教学例题的第(1)个问题,以使学生很清晰地掌握解题思路,引导学生解决问题的同时教给他们此类问题的解决方法。

教学后记:

第七课时:解决问题(二)练习课

扩展阅读

人教版六年级数学上册全册教案3


人教版六年级数学上册全册教案3

第八课时:圆的周长和面积的练习课

目标:

1、通过 使学生理解并掌握圆的周长和面积计算方法。

2、培养学生分析问题和解决问题的能力,发展学生的空间观念。

3、灵活解答几何图形问题。

教学重点:认真审题,分辨求周长或求面积。

教具准备:多媒体课件

教学过程:

一、旧知铺垫(课件出示)

1、求出下面圆的周长和面积并用彩笔描出周长,用阴影表示出面积。

2、分辨面积与周长有什么不同?

(1)概念

圆的周长是指圆一周的长度

圆的面积是指圆所围成的平面部分的大小。

(2)计算公式

求圆的周长公式:C=πd 或 C=2πr

求圆的面积公式:S=πr2

(3)使用单位

计算圆的周长用长度单位

计算圆的面积用面积单位

二、练习巩固

1、判断下面各题是否正确,对的打“√”,错的打“?”。

(1)计算直径为10毫米的圆的面积的列式是3.14×(10÷2)?。 ( )

(2)半径为2厘米的圆的周长和面积相等。 ( )

(3)把一头牛栓在木桩上,木桩到牛之间的绳长3米,牛能吃到地上草的最大面积是28.26平方米。(栓绳处不计算在内) ( )

(4) 面积:3.14×62=3.14×12=37.68 ( )

2、量出求半圆面积所需的数据,测量时保留整厘米数。再计算出它的周长和面积。

⑴半圆的周长是多少厘米?

2×3.14+2×2

=6.28+4

r=2cm =10.28(cm)

(2)半圆的面积:

3.14×22 + =3.14×4

=12.56(平方厘米)

3、一个圆的周长是25.12米,它的面积是多少:

已知:C=25.12米 求:S=?

r=25.12÷(2×3.14) S=πr2

=4(米) =3.14×42

=50.24(平方米)

4、一个环形的铁片,外圆半径是7厘米,内圆半径是0.5分米,这个环形的面积是多少平方分米?

已知:R=7厘米=0.7分米 r=0.5分米 求:S=?

S环=π×(R2-r2)

3.14×(0.72-0.52)

=3.14×0.24

=0.7536(平方分米)

三、课堂提高

1、思考题p71 (8)

一条绳子长31.4米,用它围成长方形或正方形的面积大,还是围成圆的面积大?(分组讨论,探讨面积的大小)

(1)围成长方形: 31.4÷2=15.7(m)(长和宽的和)

长 × 宽 = 面积

当长和宽越接近面积也就越大,长和宽相等时,此时正方形面积最大.

(2)围成圆形

直径:31.4÷3.14=10(m)

半径:10÷2=5(m)

面积:3.14× 52=78.5(m2 )

(3)比较:长方形面积:61.6 m2 正方形面积:61.6225 m2 圆面积:78.5 m2

围成圆的面积最大。

2、思考题 p71 (9)、(10)

四、课堂总结

设计意图

本节课是是为避免学生把圆的面积与周长混淆。因此我特意设计了本堂对比课。对比我,我引导学生分清以下几点:

(1)圆的面积是指圆所围平面部分的大小,而圆的周长是指圆一周的长度。

(2)求圆面积公式是S=πr2 ,求圆周长的公式是 C=πd 或 C=2πr。

(3)计算圆的面积用面积单位,计算圆的周长用长度单位。

根据以上三方面,帮助学生理清了圆的面积和周长的不同之处,我想练习中反映出来的情况会较好。

教学后记:

第九课时:整理和复习

第十课时:确定起跑线

教学目标:

1、通过该活动让学生了解椭圆式田径跑道的结构,学会确定跑道起跑线的方法。

2、让学生切实体会到数学在体育等领域的广泛应用。

教学重点:如何确定每一条跑道的起跑点。

教学难点:确定每一条跑道的起跑点。

教具准备:多媒体课件

教学过程:

一、 提出研究问题。(出示运动场运动员图片)

1、小组讨论:田径场400m跑道,为什么运动员要站在不同的起跑线上?(终点相同,但每条跑道的长度不同,如果在同一条跑道上,外圈的同学跑的距离长,所以外圈跑道的起跑线位置应该往前移。)

2、各条跑道的起跑线应该向差多少米?

二、 收集数据

1、看课本75页了解400m跑道的结果以及各部分的数据。

2、出示图片、投影片让学生明确数据是通过测量获取的。

直跑道的长度是85.96m,第一条半圆形跑道的直径为72.6m,每一条跑道宽1.25m。(半圆形跑道的直径是如何规定的,以及跑道的宽在这里可以忽略不计)

三、 分析数据

学生对于获取的数据进行整理,通过讨论明确一下信息:

1、两个半圆形跑道合在一起就是一个圆。

2、各条跑道直道长度相同。

3、每圈跑道的长度等于两个半圆形跑道合成的圆的周长加上两个直道的长度。

四、 得出结论

1、看书P76页最后一图:

2、学生分别计算各条跑道的半圆形跑道的直径、两个半圆形跑道的周长以及跑道的全长。从而计算出相邻跑道长度之差,确定每一条跑道的起跑线。(由于每一条跑道宽1.25m,所以相邻两条跑道,外圈跑道的直径等于里圈跑道的直径加2.5m)

3、怎样不用计算出每条跑道的长度,就知道它们相差多少米?(两条相邻跑道之间的差是2.5π)

五、 课外延伸

200m跑道如何确定起跑线?

设计意图

此节知识虽不是很重要,但我独列出来进行教学,主要原因有;

1、 此节知识的综合性很强。

2、 密切联系生活,能提高学生的应用能力。

3、 培养学生收集数据的良好习惯,重视科学性。

第五单元 百分数

单元目标:

1、理解百分数的意义,了解它在实际生活中的应用,会正确地读、写百分数。

2、能够进行小数、分数和百分数的互化。

3、理解折扣、纳税、利息的含义,知道它们在生活中的简单应用,会进行这方面的简单计算。

4、在理解、分析数量关系的基础上,使学生能正确地解答有关百分数的问题。

单元重点:

百分数的意义,求一个数是另一个数的百分之几的应用题。

单元难点:

比较复杂的百分数应用题。

第一课时:百分数的意义和写法

教学目标:

1、结合学生生活实际,借助学生的生活经验,使学生理解和掌握百分数的概念,知道百分数与分数之间的区别,会正确读、写百分数,会解释日常生活中常见的百分数。

2、在理解百分数的意义的过程中,培养学生的分析比较能力和抽象概括能力。

3、通过搜集学习材料并进行一系列的讨论和研究,使学生体验数学与日常生活的联系,激发学生学习数学的兴趣,树立学好数学的信心。

教学重点:理解和掌握百分数的意义。

教学难点:正确理解百分数和分数的区别。

教具准备:多媒体课件、投影机。

教学过程:

一、情境创设(投影出示)

1.说出下面各个分数的意义,并指出哪个分数表示具体数量,哪个分数表示倍比关系。

(1)一张桌子的高度是 米。

(2)一张桌子的高度是长度的 。

(引导学生说出: 米表示0.81米,是一具体的数量; 表示把长度平均分成100份,桌子高度占81份,表示倍比的关系。)

2、出示课本第77页情境图,让学生圈出其中的数字,初步感知百分数在生活中的应用,激发学生求知欲。

二、新知探究

(一)教师讲解……像98%、60%、65%这样的数叫做“百分数”。

(二)自学探究

1、教师课件出示自学提纲:

(1)理解百分数的意义。

(2)百分数和分数的联系及区别:

(3)会读、写百分数。

2、学生自学课本第77、78页。

教师巡回视察,掌握学生的自学情况。以有目的的讲评。

小组内解决疑难问题。

3、全部逐步汇报。

(1)表示一个数是另一个数的百分之几的数,叫做百分数,也可以叫做百分率或百分比。

(2)分数既可以表示一个数,又可以表示两个数的关系。而百分数只表示两个数的关系,它的后面不能写单位名称。

(3)百分数的读法:百分数的读法和分数的读法大体相同,也是先读分母,后读分子。

I教师写出一个百分数让个别学生读出。

(4)百分数的写法:通常不写成分数形式,而是在原来分子后面加上百分号“%”来表示。

教师出示数个读作让学生写出如:

百分之九十 写作:90%;

百分之六十四 写作:64%;

百分之一百零八点五 写作:108.5%。

(写百分号时,两个圆圈要写得小一些,以免和数字混淆)

4、同桌互说、互写百分数。

三、当堂测评(课件出示)

1、写出下面的百分数(30分)。

百分之四十 百分之二十四点七

百分之一百二十

2、读一读下面百分数(30分)。

35% 74.8% 56.03% 102.3% 98% 66.8%

3、选择合适的百分数填空(40分)。

2% 15% 120% 98% 100% 0.0001%

(1)今天上课,积极举手的同学占全班人数的( )。

(2)小汽车的速度是卡车速度的( )。

(3)只要同学们认真听讲,这个单元的及格率一定会达到( )。

(4)大海捞针的可能性是( )。

(5)我校学生的近视率高于( )。

学生独立完成教师巡看,及时发现学生的错误。

小组内讲评、订正。

教师对学生进行用眼保健、专心听讲的教育。

四、课堂总结

这节课有什么收获?

游戏

请这节课学会的同学举手,(全班48人),谁能用百分数说一句话,说明现在同学们举手的情况。(这节课学会的人数占全班人数的 %)现在四个组的人数同样多,如果其中一组同学举手,举手的人数可用什么百分数表示?(25%)它表示的意义是什么?两组同学举手呢?三组呢?

设计意图:

1、本堂课,我从三个层次入手。第一层:联系生活实际引出百分数;第二层:理解百分数的具体含义;第三层:教学百分数的读写。三个层次,思路清晰,教学层次明显。其中,我把教学重点放在理解百分数的具体含义上,并及时与分数做了比较,教学结构较为严谨。

2、当堂测评及时检查了学生对知识的掌握情况,并适时对其进行教育。

3、提倡学生自学,教师引导 。培养学生自学习惯的养成。

教学后记

第二课时:百分数和分数、小数的互化

教学目标:

1、使学生理解并掌握百分数和小数互化的方法,能正确地把分数、小数化成百分数或把百分数化成分数、小数。

2、在计算、比较,分析、探索百分数和分数、小数互化的规律的过程中,发展学生的抽象概括能力。

3、通过探索百分数和分数、小数互化的规律,激发学生的数学探索意识。

教学重点:

掌握百分数和分数、小数互化的方法。

教学难点:

正确、熟练地进行百分数和分数、小数的互化。

教具准备:多媒体课件

教学过程:

一、旧知铺垫(课件出示)

1.百分数的意义是什么?

2.把下面的小数化成分数,并说一说是怎样化的?

0.45 1.2 0.367

3.把下面的分数化成小数,说一说是怎样化的?

4.写出下面各百分数。

百分之十六 百分之七十二点五

百分之一百八十 百分之五百

5.把下面各数扩大100倍是多少?小数点是怎样移动的?如果把它们缩小100倍是多少?小数点是怎样移动的?

2.5 5 0.48 1.25 10.3

个别学生口答。

二、新知探究

1.教学例1。

(1)出示例1:把0.24、1.4、0.123化成百分数。

(2)引导学生思考:要把小数化成百分数,要先把小数化成分母是100的分数,然后再把这个分数改写成百分数。

0.24= =24%

1.4= = = =140%

0.123= = =12.3%

(3)请大家观察一个,如果不看先化成分数的这个过程,小数可以怎样直接化成百分数的?(引导学生归纳出小数化成百分数的方法:把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号。)

(4)说明:当小数点向右移动两位时,原数就扩大100倍,再添上百分号,又使它缩小100倍。所以原数大小是不变的。

(5)完成第80页“做一做”第(1)题。

2.教学例2

(1)出示例2:把27%、135%化成小数。

(2)引导学生思考:要把百分数化成小数,可以先把百分数改写成分母是100的分数,然后再用分子除以分母,把分数转化成小数。

(3)启发学生口述每题的转化过程,板书:

27%= =27÷100=0.27

135%= =135÷100=1.35

(4)引导学生观察、归纳,百分数怎样很快地直接化成小数?(把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位)

(5)使学生明白:当把百分数的百分号去掉时,原数就扩大了100倍;然后再把它的小数点向左移动两位,又使它缩小100倍,所以原数的大小不变。

(6)完成第80页“做一做”的第(2)题。

3. 引导学生进一步综合归纳百分数和小数互化的方法:把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号;把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。

4.教学例3

(1)出示例3:春蕾小学的一项调查表明,有蛀牙的学生人数占全校学生人数的20%,没有蛀牙的学生人数占80%。

(2)引导学生:百分数是分数的一部分,可以写成分数形式。请大家运用过去所学过的知识,试着把上面几个百分数改写成分数。

(3)根据学生回答,板书:

20%= = 80%= =

(4)想一想:2.5%怎样化成分数?(如果百分数的分子是小数的,可以根据分数的基本性质,把分子、分母同时扩大相同的倍数,使分子变成整数后,再约分。)

(5)完成P81“做一做”第1题。

5、教学例4

(1)学生通过小组自学讨论,找出将分数化成百分数的方法。

(2)小组汇报,并举例说明。(分子除以分母,除不尽时,保留三位小数,也就是百分号前保留一位小数)

(3)完成P82“做一做”第1、2题。

三、当堂测评

1、练习十九第1、2题。

2、练习十九第3题。

学生独立完成,教师巡视,学生汇报交流。

四、课堂总结

这节课有什么收获,还有什么不懂的?

设计意图:

百分数和小数的互化,我并没有直接给出互化的方法,而是让学生自己探索,通过观察例题,再结合“做一做”,让学生在观察比较中发现互化的规律,从而找出快捷的互化方法。百分数和分数的互化这部分内容与百分数和小数的互化编排类似,因此我放手给学生,让他们通过自学、尝试、实践,掌握百分数与小数互化的方法。同时,通过对方法的探索、分析、比较和总结,培养学生思维的灵活性和抽象概括能力。

教学后记

第三课时:练习课

第四课时:用百分数解决问题(1)

求百分率应用题

教学目标:

1、 理解生活中百分率问题的含义,掌握求百分率的方法。

2、 理解求百分率应用题的一般结构和求百分率思考过程的主要步骤,提高应用数学知识解决问题的能力。

3、 通过解决生活中简单的实际问题,培养学生数学的应用意识。

教学重点:理解生活中百分率问题的含义。

教学难点:掌握求百分率的方法。

教学准备:多媒体课件。

教学过程

一、 旧知铺垫(课件出示)

口答:

1、24是50的几分之几?

2、13厘米是43厘米的几分之几?

3、10千克是45千克的几分之几?

提问:要求一个数是另一个数的几分之几?应怎样求?

每个题中的单位1是什么?

二、新知探究

(一)教学例1(1)

1、课件出示自学提纲:

(1)审题,理解题意,明确已知条件及问题。

(2)掌握什么是达标率.

(3)怎样求达标率。

2、学生自学,教师巡视,发现疑难。

3、学生逐步汇报。

达标率是指达标学生的人数占学生总人数的百分之几。

达标率=达标学生人数/学生总人数×100%

120/160×100%

=0.75×100%

=75%

(二)教学例1(2)

学生自学85页教学内容,了解发芽率的计算方法。并进行计算填写在表格中。

教师提问:

什么叫发芽率?(发芽率是求发芽种子数占实验种子数的百分之几。)

这三种种子哪种种子的发芽率高?(大蒜发芽率高。)

让学生感知发芽对农民伯伯的重要性,教育学生热爱劳动、珍惜粮食。

(三)其它百分率学生完成做一做第1题,了解:

出勤率=出勤人数/应出勤人数×100%

成活率=成活棵树/种植棵树×100%

命中率=命中球数/投球总数×100%

岀粉率=面粉重量/小麦重量×100%

出油率=油的重量/花生的重量×100%

学生小组讨论,教师进行总结。

三、当堂测评

练习二十的1至4题。

四、课堂小结

这节课有什么收获呢?学生畅所欲言。

设计意图

1、 教学以学生自学为主,培养学生自学习惯。

2、 从达标率到出油率,拓宽知识面。

教学后记

第五课时:练习课

第六课时:用百分数解决问题(2)

稍复杂的“求一个数是另一个数的百分之几”

教学目标:

1、 掌握稍复杂的求一个数比另一个数多(或少)百分之几的问题的解答方法。

2、 提高学生迁移类推和分析、解决问题的能力。

教学重点:

掌握解决此类问题的方法。

教学难点:

理解题中的数量关系。

教学准备:多媒体课件

教学过程:

一、 旧知铺垫(课件出示)

1、 把下面各数化成百分数。

0.63 1.08 7 0.044

2、说说下面每个百分数的具体含义,是怎么求出来的?(哪两个数相比,把谁看作单位“1”)

(1)某种学生的出油率是36%。

(2)实际用电量占计划用电量的80%。

(3)李家今年荔枝产量是去年的120%。

二、新知探究

1、根据数学信息提出问题:出示例2的情境图,让学生根据图中提供的条件提出用百分数解决的问题。

(1)计划造林是实际造林的百分之几?

(2)实际造林是计划造林的百分之几?

(3)实际造林比计划造林增加百分之几?

(4)计划早林比实际造林少百分之几?

2、让学生先解决前两个问提。解决这类问题要先弄清楚哪两个数相比,哪个数是单位“1”,哪一个数与单位“1”相比。

3、学生自主解决“实际早林比计划增加了百分之几”的问题。

(1)分析数量关系,让学生自己尝试着用线段图表示出来。

(2)让学生说说是怎样理解“实际造林比原计划增加百分之几”的?(求实际造林比原计划增加百分之几,就是求实际造林比原计划增加的公顷数与原计划造林的公顷数相比的百分率,原计划造林的公顷数是单位“1”。)

(3)明确解决问题的方法:让学生根据分析确定解决问题的方法,并列式计算出结果。

方法一:(14-12)÷12=2÷12≈0.167=16.7%

方法二:14÷12≈1.167=116.7% 116.7%-100%=16.7%

(4)小结解题方法:像这样的百分数问题有什么特点?解决它时要注意什么?(这是求一个数比另一个数增加百分之几的问题,它的解题思路和直接求一个数是另个数的百分之几的问题的分析思路基本相同,都要分清哪两个量在比较,谁是单位“1”,但是这里比较的两个量中有一个条件没有直接告诉我们,必须先求出。

(5)改变问题:问题如果是“计划造林比实际造林少百分之几?”,该怎么解决呢?

学生列出算式:(14-12)÷14

(再次强调两个问题中谁和谁比,谁是单位“1”。使学生体会到,用百分数解决问题和用分数解决问题一样要注意找准单位“1”。)

三、当堂测评

1、练习二十二第1、2题。

四、课堂质疑、谈表现

这节课都学到了什么?

还有什么不懂的?

自己表现得又怎样?

相对自己说些什么?

设计意图

紧扣线段图,帮助学生理解题意,分析数量关系,再通过讨论学习的方式,让学生自主尝试,并理解两种不同解法的含义。

教学后记

第七课时:练习课

第八课时:用百分数解决问题(3)

稍复杂的“求一个数是另一个数的百分之几”

教学目标:

1、 使学生掌握求稍复杂的已知一个数的百分之几是多少,求这个数的应用题的解题方法,并能正确地解答这类应用题。

2、感受数学与生活的联系,培养学生的应用意识和解决简单的实际问题的能力。

教学重点:

掌握比一个数多(少)百分之几的应用题的数量关系和解题思路。

教学难点:

正确、灵活地解答这类百分数应用题的实际问题。

教学准备:多媒体课件

教学过程:

一、旧知铺垫(课件出示)

1、出示复习题:学校图书室原有图书1400册,今年图书册数增加了 。现在图书室有多少册图书?

2、学生找出这道题目的分率句,确定单位“1”,并根据数量关系列式:1400×(1+ )

二、新知探究

(一)、教学例3

1、出示例题:学校图书室原有图书1400册,今年图书册数增加了12%。现在图书室有多少册图书?

2、出示自学提纲:

(1)读题,找已知条件和问题,明确这道题是把谁看成单位“1”。

(2)思考:从“今年图书册数增加了12%”这句话中,你能知道些什么?

(3)学生讨论后分小组交流,并独立列式计算:

3、学生汇报全班交流。

① 今年图书增加的部分是原有的12%。

② 今年图书的册数是原有的120%。

第一种:1400×12%=168(册)

1400+168=1568(册)

第二种:1400×(1+12%)

=1400×112%

=168(册)

4、 通过这道题的学习,你明白了什么?(求一个数的几分之几和求一个数的百分之几,都要用乘法计算)

(二)、巩固练习:完成P93“做一做”第1题。

三、当堂测评(课件出示)(每题25分)

1、(1)出示练习:

①油菜子的出油率是42%。2100千克油菜子可榨油多少千克?

②油菜子的出油率是42%。一个榨油厂榨出油菜子2100千克,用油菜子多少千克?

(2)分析理解:

A、出油率是什么意思?这两道题有什么相同和不同?

B、第(1)题是求一个数的百分之几是多少,应用什么方法计算?第(2)题是已知一个数的百分之几求这个数,可以怎样解?

(3)学生独立列式解答。

2、教科书练习二十二的第1、3、4题。

学生独立完成,教师巡回查看,小组内订正。

四、课堂回顾

这节课你有什么收获?

设计意图:

本部分内容是“求比一个数多(少)百分之几”的应用题,这部分内容与“求比一个数多(少)几分之几”的应用题相似,只是相应的分率转换成了百分率。因此,在复习上,我安排了与例题较为相似的分数应用题,通过对题目的改变,让学生了解二者的联系。因为题型及解题方法几乎都相同,学生学起来也会较为容易。

教学后记

第九课时:折 扣

教学目标:

1.明确折扣的含义。

2.能熟练地把折扣写成分数、百分数。

3.正确解答有关折扣的实际问题。

4.学会合理、灵活地选择方法,锻炼运用数学知识解决实际问题的能力。

教学重点:会解答有关折扣的实际问题。

教学难点:合理、灵活地选择方法,解答有关折扣的实际问题。

教学准备:多媒体课件

一、 创设情境(视频播放)

。节日期间各商家打折促销的活动场面:买二送一、八折、七五折、五折……

学生分析各商家搞了哪些促销活动?谁来说说他们是怎样进行促销?(学生汇报调查情况。)

教师讲解:打折出售,大家调查到的打折是商家常用的手段,是一个商业用语,

二、新知探究。

(一).教学折扣的含义,会把折扣改写。

1、课件出示自学提纲:

(1)什么叫折扣?

(2)几折如何用分数表示?百分数呢?

2、学生自学课本第97页的第一自然段。教师巡回了解学生的掌握情况。( “几折”是就是十分之几,也就是百分之几十)

3、练习检查自学情况。

八折:( )/10 ( )/% 七五折: ( )/10 ( )/%

六折:( )/10 ( )/% 四五折: ( )/10 ( )/%

( )折:9/10 ( )/% ( )折: ( )/10 25/%

个别学生回答,并说出是什么意思。集体订正。

4、小组长说出几折、十分之几或百分之几,组员轮流说出相应的数。教师各小组间查看。

5、讨论,找规律。

原价乘以( )%恰好是现价;现价除以原价是( )%;现价除以( )%是原价。

(二).运用折扣含义解决实际问题。

例4:爸爸给小雨买了一辆自行车,原价180元,现在商店打八五折出售。买这辆车用了多少钱?

1、教师提出自学问题,指导学生分析题意:打八五折怎么理解?是以谁为单位“1”?

2 、学生试做,教师在学生中了解学习情况。

3、小组内讲评。

4、教师问:谁还有什么不懂得请提出来。并讲评。

5、学生独立完成课本97页“做一做”。

三、当堂测评(课件出示)

1、判断(20分)。

① 商品打折扣都是以原商品价格为单位“1”,即标准量。( )

② 一件上衣现在打八折出售,就是说比原价降低10%。( )

2、练习(40分)。

①四折是十分之( ),改写成百分数是( )。

②六折是十分之( ),改写成百分数是( )。

③七五折是十分之( ),改写成百分数是( )。

④九二折是十分之( ),改写成百分数是( )。

3、解决问题(40分)

爸爸买了一个随身听,原价160元,现在只花了九折的钱,比原价便宜了多少钱?

学生独立完成,小组内讲评、得分。教师让学生说出“比原价便宜了多少钱?”理解情况。

四、课堂总结;

在节日里你能否购买打折的商品?

设计意图:

1、重视情景教学。让学生初步感知数学在生活中的广泛应用,激发求知欲。

2、以学生自学为主,培养学生自学习惯的养成。

3、当堂测评了解学生掌握情况,增强学生的自信心。

教学后记:

第十课时:纳 税

教学目标:

1、使学生知道纳税的含义和重要意义,知道应纳税额和税率的含义,以根据具体的税率计算税款。

2、在计算税款的过程中,加深学生对社会现象的理解,提高解决问题的能力。

3、增强学生的法制意识,使学生知道每个公民都有依法纳税的义务。

教学重点:税额的计算。

教学难点:税率的理解。

教学准备:多媒体课件

教学过程:

一、 创设情境

1、 教师课件展示课本中的4件主题图。

2、 提问:

(1)这些设施的费用是从哪儿来的?(政府投资的,国家出钱建设的。)

(2)国家的钱又是从哪里来的?国家的起源主要来自于税收。)

今天我们就来学习纳税的有关知识。

二、 新知探究

(一)纳税的意义和项目。

1、学生自学98页有关纳税的内容。

讨论(课件出示):

(1)什么是纳税?

(2)为什么要纳税?

(3)你认为国家的哪些事是国家用税款做的。

(4)你对纳税人有什么看法?

(5)税收有几类?

(6)什么叫应纳税额?

(7)什么叫税率?

2、汇报:

(1)纳税是根据国际税法的有关规定,按照一定的比例把集体或个人收入的一部分缴纳给国际家。

(2)税收是国家收入的主要来源之一。

(3)公路的建设、医院、学校、国防科技等都是国家用税款做的。

(4)依法纳税是每个公民应尽的义务。

(5)税收主要分为消费税、增值税、营业税和个人所得税几类。

(6)缴纳的税款叫做应纳税额。

(7)应纳税额与各种收入的比率叫做税率。

3、试说以下税率表示什么。

A、商店按营业额的5%缴纳个人所得税。这里的5%表示什么?

B、某人彩票中奖后,按奖金的20%缴纳个人所得税。这里的20%表示什么?

(二)税款计算

1、出示例5(课本99页)

一家大型饭店十月份的营业额是30万元。如果按营业额的5%

缴纳营业税,这家饭店十月份应缴纳营业税多少万元?

2、理解:这里的5%表示什么?(应缴纳营业税款占营业额的百分比。)

3、要求“应缴纳营业税款多少”就是求什么?

4、让学生独立完成?教师巡视,小组内讲评。

30×5% = 1.5(万元)

答:十月份应缴纳营业税约为1.5万元。

三、当堂测评。

练习二十二第4题。(要点:5%对应的单位“1”是营业额,7%对应的单位“1”是营业税。)

学生独立完成,教师巡视。

四、课堂总结

1、这节课有什么收获?

2、“培养纳税意识、从我做起”我没应该做些什么?

设计意图:

1、从生活情境中来,到生活中去。这节课的开始我先展示了四副图,让学生初步感知税收的来源。在总结课堂时又把学生引入生活,做的学以致用。

2、先学后教,当堂测评。让学生体会知识的形成过程,了解并解决问题。测评使教师掌握教学实况。

教学后记:

第十一课时:利 息

教学目的:

1、通过教学使学生知道储蓄的意义;明确本金、利息、税后利息和利率的含义;掌握计算利息的方法,会进行简单计算。

2、对学生进行勤俭节约,积极参加储蓄;支援国家、灾区、贫困地区建设的思想品德教育。

教学重点:掌握利息的计算方法。

教学难点:正确地计算利息,解决利息计算的实际问题。

教学准备:多媒体课件

教学过程:

一、 谈话引入

随着改革开放,社会经济不断发展,人民收入增加,人们可以把暂时不用的钱存入银行,储蓄起来。这样一是支援国家建设,二是对个人也有好处,既安全和有计划,同时又得到利息,增加收入。那么,怎样计算利息呢?这就是我们今天要学的内容。

二、新知探究

(一)介绍存款的种类、形式。

学生自读课本第99页,了解;

存款分为活期、整存整取和零存整取等方式。

(二) 理解本金、利息、税后利息和利率和含义。

1、 阅读P99页的内容,自学讨论。

2、 小组汇报,全班交流。

本 金 :存入银行的钱叫做本金.

利 息:取款时银行多支付的钱叫做利息。

税后利息:国家规定,存款的利息要按20%的税率纳税。

利 率:利息和本金的比值叫做利率。

3、结合具体实例分析

教师课件出示:例如:小丽2001年月1月1日把100元钱存入银行,整存整取一年,到2002年1月1日,小丽不仅可以取回存入的100元,还可以得到银行多付给的确1.8元,共101.8元。)

个别学生回答:

小丽存入的100元就是本金。

小丽实际得到的1.8元是税后利息。

4、教师讲解:

国债的利息不纳税。

利率由银行规定,根据国家的经济发展情况,利率有时会有所调整,利率有按月计算的,也有按年计算的。

5、学生阅读P99页表格,了解同一时期各银行的利率是一定的。

6、教师引导学会填写存款凭条。

课件出示空存款凭条,请学生尝试填写。然后评讲。(要填写的项目:户名、存期、存入金额,、存种、密码、地址等,最后填上日期。

(三)、利息的计算。

(1)出示利息的计算公式: 利息=本金×利率×时间

(2)讲解计算方法:

按照以上的利率,如果小丽的100元钱存整取三年,到期的利息是多少?学生计算后交流,教师板书:100×2.70%×3=8.10(元)

(3)三年后取款,小丽能得到8.10元利息吗?为什么?

学生发表意见后,教师指出:1999国家规定存款时,要按利息的确20%缴纳利息税,你能再算一算如果你存入100元,3年后实际能得多少利息吗?

(4)学生计算后回答,教师板书:

利息税金:8.10×20%=1.62元 税后利息:8.10-1.62=6.48元

加上她存入本金100元,到期时她可以实际得到本金和税后利息一共是106.48元。

(5)强调:教育储蓄课免征储蓄存款利息所得税率。

三、当堂测评(课件出示)。

1、张敏把800元压岁钱存入银行,存期三年,到期后他一共可取回多少钱?(50分)

2、李叔叔今年存入银行10万元,定期3年,年利率为2.7%,到期后扣除利息税,得到的利息购买一台6000元的彩色电视机吗?(50分)

学生独立完成,教师巡视。

小组内解决疑难后全班交流。

四、 课堂总结:

这节课你有什么收获?在你们小组内汇报一下。

学习了利息你有什么想法?以后该怎样做?

设计意图:

利息是百分数在生活中的具体应用,与人们的生活密切相关。主要是通过公式的掌握教给孩子解题的方法,快捷而实用。

教学后记:

第十二课时:整 理 和 复 习 (一)

第十三课时:整 理 和 复 习(二)

第六单元:统 计

单元目标:

1、 通过实例,认识扇形统计图的特点,知道扇形统计图可以直

观的反映部分量占总数的百分比,能从扇形统计图读出必要的信息。

2、 充分利用学生已有的知识经验,通过与所学过的条形统计图

的特点和作用的对比,体会扇形统计图的特点和用途。

3、 在学习中,应该使学生体会到,各种统计图有不同的特点,

可以从不同的角度反映数据的特征。

单元重点:使学生掌握扇形统计图的特点和作用。

单元难点:

1、 巩固对储蓄存款的认识,了解教育储蓄以及国债利率的有关知识。

2、 综合运用相关知识解决生活实际问题。

第一课时:扇形统计图

教学目标:

1、 认识扇形统计图的特点和作用。

2、 能看懂并能简单地分析扇形统计图所反映的情况。

教学重点:

看懂并能简单地分析扇形统计图所反映的情况。

教学难点:

看懂并能简单地分析扇形统计图所反映的情况。

教学准备:多媒体课件

教学过程:

一、 创设情境

教师出示课本第106页的主题图(投影出示)

1、 观察主题图的内容。

提问:主题图上都画了哪些运动项目?

2、 收集和整理数据,统计全班最喜欢的各项运动项目的人数,描述制成条形统计图和折线统计图方法。分别展示在黑板上。

3、 这两种统计图有什么特点。

如果要清楚的了解各部分数量同总数之间的关系,我们可以选用扇形统计图来表示。同时课件出示。

二、 新知探究

(一) 扇形统计图的特点。

1、教师提问

(二) 观察条形统计图,你从中得到了哪些有用的信息?

(三) 从条形统计图中,还有哪些信息不容易表示出来?(引发学生思考,从而发现条形统计图不容易看出各部分量与总量的关系)

(四) 生成扇形统计图。引导学生观察从扇形统计图中,你得到了哪些游泳的数学信息?(学生甘居直观观察,发表见解)

(五) 根据统计图上表示的情况,你对我班同学有哪些建议?

(六) 回顾知识生成,归纳扇形统计图的特点和作用。

(七) “做一做”:自主看图,说一说,你从图中得到了哪些有价值的数学信息?(分析后根据题意自主计算,全班核对)

三、 当堂测评

1、 练习二十五第1题:自主看图,说一说李明同学一天的作息安排是否合理,从中你能提出哪些合理化建议。(引导学生说说怎样安排时间才合理,才能做到劳逸结合)

2、 练习二十五第2题:自主看图,说一说从图中得到哪些信息,在小组内交流。(使学生体会到父母的辛苦和对自己的爱,激发学生对父母、对家庭的爱)

四、 课堂总结

学生总结、比较扇形统计图和条形统计图及折线统计图相比有何特点。

设计意图:

扇形统计图的教学,我主要联系了条形统计图和折线统计图的特点,让学生通过例题看到:在表示全班人数的圆中,用扇形可以清楚地表示出最喜欢的各种运动项目的人数占全班总人数的百分比。从而使学生真切地体会到扇形统计图的特点,并通过看图回答问题并提出问题,加深对扇形统计图

课后小记:

第二课时:合理存款

教学目标:

1、 让学生巩固对储蓄存款的认识,了解教育储蓄以及国债利率的有关知识。

2、 综合运用相关知识解决生活实际问题。

3、 通过活动,使学生认识到数学应用的广泛性;同时促使学生了解教育储蓄、国债等相关知识,培养学生的投资意识。

教学重难点:

巩固对储蓄存款的认识,了解教育储蓄以及国债利率的有关知识。

教学准备:

多媒体课件。

教学过程

一、 明确问题

提问:妈妈要存款一万元,供儿子六年后上大学用,怎样存款收益最大?

解决几个很关键的信息:本金、可存款年限以及资金用途。

二、 收集信息

通过去银行咨询以及查阅相关规定的方式获取信息:

1、 人民币储蓄存款利率,包括定期整存整取、零存整取、活期利率。

2、 教育储蓄存款免征存款利息所得税,它可存的期限以及相应利率。

3、 国债也是免征存款利息所得税,有三年期和五年期的……

三、 设计方案

根据上述收集到的信息,让学生小组合作设计具体的储蓄存款方案。

1、 将定期储蓄存款的方案填在课本111页第一张表格。

2、 其他存款方案,如教育储蓄存款方案以及买国债的方案可填在第二张表格。

3、 每一个具体方案都要求明确填出存期、到期利息、利息税以及到期收入等信息。

四、 选择方案

从上述各种可行的方案中选取受益最大,即最优化的方案进行合理存款,并计算出到期后总共的收入。

可能的方案主要有以下几种:

1、 教育储蓄存六年。

2、 先买三年期国债,到期后再买三年期国债。

3、 先买三年期国债,到期后再存三年期教育储蓄。

4、 先买五年期国债,到期后再存一年期教育储蓄。

五、 课外测评

帮爸爸、妈妈合理存款。

设计意图:

这是一节实践性、实用性很强的课。教学中我注意做到以下几大:

1、 重视信息的收集,方案的设计。充分把学生的自主能动性体现出来。

2、 注重比较,让学生通过具体分析得出结论。

3、 注重教学的实践指导。

课后小记:

第七单元:数学广角

“鸡兔同笼”问题

单元目标:

1、知识与技能

(1)、了解“鸡兔同笼”问题,感受古代数学问题的趣味性。

(2)、尝试用不同的方法解决“鸡兔同笼”问题,并使学生体会代数方法的一般性。

2、过程与方法

解决“鸡兔同笼”问题可用猜测、列表、假设或方程解等方法。

3、情感、态度与价值观

(1)、培养学生的逻辑推理能力。

(2)让学生体会到数学问题在日常生活中的应用。

单元重难点:

尝试用不同的方法解决“鸡兔同笼”问题。

一课时:“鸡兔同笼“问题

教学目标:

1、通过学生对一些日常生活中的现象的观察与思考,从中发现一些特殊的规律。

2、通过猜测、列表、假设或方程解等方法,解决“鸡兔同笼”问题。

3、通过本节课的学习,知道与“鸡兔同笼”有关的数学史,对学生进行数学文化的熏陶和感染。

教学重点:

尝试用不同的方法解决“鸡兔同笼”问题。

教学难点:

通过对一些日常生活中的现象的观察与思考,从中发现一些特殊的规律。

教学准备:

故事视频、探讨表格。

教学过程

一、故事引入

教师:在我国古代流传着很多有趣的数学问题,“鸡兔同笼”就是其中之一。这个问题早在1500多年前人们就已经开始探讨了。

出示题目:今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?(笼子里有若干只鸡和兔。上面数,有35个头,下面数,有94只脚。鸡和兔各有几只?)

二、探究新知

1、教学例1:笼子里若干只鸡和兔。从上面数有8个头,从下面数有26只脚。鸡和兔各有几只?

让学生以两人为一组讨论。

汇报讨论的结果。

(1)、列表:

鸡 8 7 6 5 4 3

兔 0 1 2 3 4 5

脚 16 18 20 22 24 26

(2)、假设法:

假设笼子里都是鸡,那么就是8×2=16(只)脚,这样就比题目多26-16=10(只)脚。

因为刚才是把兔子当成鸡,一只兔子少算两只脚,那么多出的10只脚就有10÷2=5(只)兔子。

因此,鸡就有:8-5=3(只)

(3)、用方程解:

解:设鸡有x只,那么兔就有(8-x)只。

根据鸡兔共有26只脚来列方程式

2x+(8-x)×4=26

2x+8×4-4x=26

32-26=4x-2x

2x=6

x=3

8-3=5(只)

2、小结解题方法:

教师:以上三种解法,哪一种更方便?

小结:要解决“鸡兔同笼”问题,可以采用假设法或方程解都可以。用方程解更直接。

3、独立解决书中的趣题。

(1)、方程解:

解:设鸡有x只,那么兔就有(35-x)只。

根据鸡兔共有94只脚来列方程式

2x+(35-x)×4=94

2x+35×4-4x=94

140-94=4x-2x

2x=46

x=23

35-23=12(只)

答:鸡有23只,兔有12只。

(2)、算术解:

假设都是鸡。

2×35=70(只)

94-70=24(只)

24÷(4-2)=12(只)

35-12=23(只)

答:鸡有23只,兔有12只。

三、当堂测评

1、完成教科书第115页做一做的第1题。

学生独立读题分析后,列式解答。鼓励用方程解。

2、完成教科书第115页做一做的第2题。

提问:根据图中你能了解什么信息?(一条大船乘6人,一条小船乘4人)

请同学独立列式解答。(讲评时重点解释算术解的每步的算理)

6×8=48(人)

假设8条都是大船可坐48人。

48-38=10(人)

假设人数比实际的人数多10人。

多10人的原因是把部分的小船当成了大船,也就是每条小船多算了2人。多的10人除以每条船多算的人数,就是有多少条小船。

10÷(6-4)=5(条)

8-5=3(条)

这是表示有3条大船。

四、课堂总结

通过本节课的学习,你能解决那些生活中的问题

设计意图:

1、“鸡兔同笼”的原题数据比较大,不利于首次接触该类问题的学生进行探究,因此教材先编排了例1,通过化繁为间的思想,帮助学生先探索出解决该类问题的一般方法后,再解决《孙子算经》中数据比较大的原题。一方面可以培养学生的逻辑推理能力;另一方面使学生体会代数方法的一般性。

2、猜测、列表、假设或方程解 等方法的学则根据学社的实际情况。

3、练习中安排了类似的一些习题,比如“龟鹤”问题,生活中的一些实际问题等,让学生进一步体会到这类问题在日常生活中的应用,并巩固用“假设法”或方程的方法来解决这类问题。

教学后记:

人教版六年级数学上册全册教案2


人教版六年级数学上册全册教案2

第八课时:解决问题(三)

稍复杂的分数除法应用题

目标:

1、通过 , 使学生在理解分数除法意义及掌握分数乘法应用题

题思路的基础上,掌握已知一个数的几分之几是多少求这个数的稍复杂分数除法应用题的解题思路和方法,能比较熟练地解答一些简单的实际问题。

2、通过教学,培养并提高学生的分析、判断、探索能力及初步的逻辑思维能力。

教学重点:

弄清单位“1”的量,会分析题中的数量关系。

教学难点:分析题中的数量关系。

教具准备:多媒体课件

教学过程:

一、旧知铺垫(课件出示)

小红家买来一袋大米,重40千克,吃了 ,还剩多少千克?

1、指定一学生口述题目的条件和问题,其他学生画出线段图。

2、学生独立解答。

3、集体订正。提问学生说一说两种方法解题的过程。

4、小结:解答分数应用题的关键是找准单位“1”,如果单位“1”的具体数量是已知的,要求单位“1”的几分之几是多少,就可以根据分数乘法的意义,直接用乘法计算。

二、新知探究

1、教学补充例题:小红家买来一袋大米,吃了 ,还剩15千克。买来大米多少千克?

(1)吃了 是什么意思?应该把哪个数量看作单位“1”?

(2)引导学生理解题意,画出线段图。

(3)引导学生根据线段图,分析数量关系式:

买来大米的重量-吃了的重量=剩下的重量

(4) 指名列出方程。

解:设买来大米X千克。

x- x=15

2、教学例2

(1)出示例题,理解题意。

(2)比航模组多 是什么意思?引导学生说出:是把航模组的人数看作单位“1”,美术组少的人数占航模组的

(3)学生试画出线段图。

(4)根据线段图,结合题中的分率句,列出数量关系式:

航模小组人数+美术小组比航模小组多的人数=美术小组人数

(5) 根据等量关系式解答问题。

(6) 解:设航模小组有χ人。

χ+ χ=25

(1+ )χ=25

χ=25÷

χ=20

答:航模小组有20人。

三、课堂小结

1、今天我们学习的这两道应用题,它们有什么共同点?(今天我们学习的这两道应用题,题里的单位“1”都是未知的数量,都可以列方程来解,这样顺着题意列出方程思考起来比较方便。)

2、用方程解答稍复杂的分数应用题的关键是什么?(关键是找准单位“1”,再按照题意找出数量间的相等关系列出方程)

四、当堂测评

练习十第4、12、14题。

学生独立完成,教师巡回指点,有困难的学生及时请教优秀学生,做到“一帮一、兵强兵”。

设计意图:

继续发挥线段图的作用,以方便学生理解,寻求解决问题的方法。

教学后记

第九课时:比和比的应用(一)

比的意义

教学目标:

1、使学生理解比的意义,掌握比的各部分名称,能正确地读、写比,并会正确地求比值。

2、引导学生加强知识之间的联系,使学生掌握的知识系统化,提高学生分析解决问题的能力。

教学重点:比与除法、分数的关系

教学难点:理解比的意义

教具准备:多媒体课件

教学过程:

一、创设情境,揭示课题

1. 课件呈现我国第一艘载人飞船“神舟”五号顺利升空的影像资料。

画面呈现联合国国旗和中华人民共和国国旗。

师:杨利伟展示的两面旗都是长15厘米,宽10厘米。怎样用算式表示它们的长和宽的关系?

学生回答:

(1)用“15÷10”表示长是宽的多少倍?

(2)用“10÷15”表示宽是长的几分之几?

师:我们还可说成长和宽的 比是15比10,寬和长的比是10比15.

2、板书课题

二、新知探究

(一)课件出示自学提纲。

1、弄懂什么叫做比。是表示什么关系。

2、一个比中有几个项,哪个项叫前项,哪个项叫后项。

3、认识比号,会正确读、写一个比。

4、掌握比值的概念并会求比值。

5、会将一个比写成分数形式。

(二)各小组根据提纲自学。

教师巡回查看,了解学生学习中的疑难,以便有目的的开展教学。

(三)逐步汇报并举例。

1、两个数相除,又叫做两个数的比。

2、“:”是比号,读作“比”。比号前面的数,叫做比的前项,比号后面的数叫做比的后项。

3、15比10 记作15∶10 10比15 记作10∶15

4、比的前项除以后项所得的商,叫做比值。

例如:

3 ∶ 2=3÷2=

(四).教学比与除法、分数的关系。

各小组讨论

个别汇报,教师课件出示表格

除法 被除数 ÷(除号) 除数 商

分数 分子 -(分数线) 分母 分数值

比 前项 :(比号) 后项 比值

教师任意说一个比,让学生改写成分数或除法算式。

(五)判断:下面数量间的关系是表示两个数的比吗?

① 甲数是9,乙数是7,甲数和乙数的比是9比7;乙数和甲数的比是7比9。

② 拖拉机45分耕了2公顷地,工作总量和工作时间的比是2比45。

③ 足球比赛,甲队和乙队的比分是3比2。

三、当堂测评(课件出示)

学生独立完成,教师巡回指点,照顾学困生。

小组间订正、评分、纠错。

四、课堂小结

1、这节课你有什么收获?

2、觉得自己掌握得怎样?

3、有什么感受或想法?

教学后记

第十课时:比的基本性质

教学目的:

1、 通过观察、类比,使学生理解和掌握比的基本性质,并会运用这个性质把比化成最简单的整数比。

2、 通过学习,培养学生观察、类比的能力,渗透转化的数学思想方法,培养学生思维的灵活性。

3、通过教学,使学生学会与人合作的意识,并能与他人互相交流思维的过程和结果。

教学重点:理解比的基本性质,掌握化简比的方法

教学难点:化简比与求比值0的不同。

教具准备:多媒体课件

教学过程:

一、旧知铺垫(课件出示)

1、什么叫做比?比的各部分名称是什么?

2、比与除法和分数有什么关系?

比 前项 :(比号) 后项 比值

除法 被除数 ÷(除号) 除数 商

分数 分子 -(分数线) 分母 分数值

3、除法中的商不变规律是什么?举例:6÷8=(6×2)÷(8×2)=12÷16

4、分数的基本性质是什么?举例: = =

二、新知探究

(一)比的基本性质

1、类比猜测:除法有“商不变性质”,分数也有“分数的基本性质”,根据比与除法和分数的关系,同学们猜想看看,比也有这样的一条性质吗?如果有,这条性质的内容是什么?(学生猜测,并相互补充,把这条性质说完整)

2、验证猜测的性质能否成立:学生以四人小组为单位,讨论研究。

6÷8=(6×2)÷(8×2)=12÷16

6:8=(6×2)∶(8×2)=12:16

6:8=(6÷2)∶(8÷2)=3:4

6÷8=(6÷2)÷(8÷2)=3÷4

3、 小组派代表说明验证过程,其他同学补充说明。

正式得出“比的基本性质”:比的前项和后项同时乘或除以相同的数(0除外),比值不变,这叫做比的基本性质。

(二)自学教学例1(课件出示)

1、学生自学,小组讨论解题方法。

学生汇报,教师讲评。

2、把下面各比化成最简单的整数比

∶ 0.75∶2

想:每一步要乘以多少,为什么?

3、引导学生审题,说说题目提出了几个要求(两个,一是化成整数比,二必须是最简的)

4、 指名学生说出自己化简的方法,全班评判。

三、当堂测评

1、P46“做一做”(每题10分)

2、练习十一第2题(40)

(提醒学生第二个长方形,长的那条为“长”,短的那条为“宽”)

学生独立完成,小组内交流。教师巡回指点,学生汇报后,讲解疑难。

四、课堂总结

今天我们学习了什么知识?比的基本性质可以应用在生活中的好些方面,让我们细心的观察生活吧。

设计意图:

本堂课,是一节充分体现以学生为主的课。教学中,,由除法的“商不变性质”和“分数的基本性质“就能自然而然的联想到是否也存在着“比的基本性质”。对此,我不想束缚学生的思维,而是顺从学生的思维规律,鼓励他们大胆猜想,并通过举例、论证等方法小心验证,最后确切地得出了“比的基本性质”。在“大胆猜想——小心验证——得出结论”这一过程中,我尽量地放手给学生,让学生自主课堂,步步深入,而教师只在关键处起点拨作用。这样,整堂课的教学,学生的学习兴趣会更浓,积极性会很高,成就感会更足,理解和记忆也就自然较为深刻。

教学后记

第十一课时 :比的应用

教学目标:

1、 结合生活实例,使学生进一步掌握按比例分配应用题的结构特点和解题思路,能运用这个知识来解决一些日常工作、生活中的实际问题。

2、 培养学生运用知识进行分析、推理等思维能力,以及探求解决问题途径的能力。

3、渗透数学的对应思想及函数思想,培养学生认真审题、独立思考、自觉检验的好习惯,增强学好数学的信心。

教学重点:

进一步掌握按比例分配应用题的结构特点和解题思路。

教学难点:

正确分析解答比例分配应用题。

教具准备:多媒体课件。

教学过程:

一、设置情境(课件出示)

1、建筑工地上要运些水泥、沙子和石子,按2:3:5搅拌20吨的混凝土,为了刚好搅拌完而没剩余,工人叔叔应个准备多少呢?

学生想出办法并及时汇报。

2、(每份都相等)在日常生活中,为了分配的合理,往往需要把一个数量分成不等的几部分,即把一个数量按照一定的比来进行分配。这种方法通常叫按比例分配。这就是今天我们要学习的比的应用。板书课题。

二、新知探究

(一)、教学例2。

1、教师课件出示自学提纲;

(1)弄清题意后,问:题目中要分配什么?是按什么进行分配的?

(2)“浓缩液和水的体积1:4”,是什么意思?

(3)求出两种各多少ml。应怎样求?(引导学生进行解题)

(4)如何检验解答是否正确呢?:

2、学生自学。教师巡回指点,照顾学困生,发现疑难。

3、学生逐步汇报,全班交流。

(1)分配500ml的稀释液;浓缩液和水的体积按1:4进行分配。

(2)就是说在500ml的稀释液,浓缩液占1份,水的体积占1份,一共是5份,浓缩液占稀释液的5分之4,水的体积占稀释液的5分之1。)稀释液平均分成的份数:1+4=5

(3)浓缩液的体积:500 × 1/1+4 = 100(ml)

水的体积: 500 × 4/1+4 = 400(ml)

答:稀释液100ml,水400ml。

(4)检验的方法有两种:一是把求得的浓缩液和水的体积相加,看是不是等于稀释液的总体积;二是把求得的浓缩液和水的体积写成比的形式,看化简后是不是等于1:4

(二)学生试做:练习:做一做第1题。(订正时说说解题时先求什么?再求什么?)

(三)课堂提高

(1)(课件出示)出示:学校把栽280棵树的任务,按照六年级三个班的人数分配给各班。一班有47人,二班有45人,三班有48人。三个班各应栽树多少棵?

(2)引导学生弄清题意后,问:题中要把280棵树按照什么进行分配?(着重使学生明确要按照一班、二班、三班的人数的比来分配,即按47:45:48来分配。)

(3)根据一班、二班、三班的人数怎样算出各班栽的棵数占总棵数的几分之几?(使学生明确:要先算三个班总共有多少人(即总份数),然后才能算出各班栽的棵数占总棵数的几分之几。)

(4)怎样分别算出各班应种的棵数?引导学生解答:

三个班的总人数:47+45+48=140(人)

一班应栽的棵数: 280× =94(人)

二班应栽的棵数: 280× = 90(人)

三班应栽的棵数: 280× = 96(人)

答:一班栽树94棵,二班栽树90棵,三班栽树96棵。

(5)学生进行检验。

(6)学生试做情境中的题,帮助工人叔叔解决问题。

教师巡视,个别指点讲解。

三、拓展延伸

用120厘米的铁丝做一个长方体的框架。长、宽、高的比是3:2:1.这个长方体的长、宽、高分别是多少?

四、课堂小结

这节课你都学到了什么?

觉得自己表现得怎样?

还有什么不的?

设计意图

本节课的内容相对而言较容易掌握,一开始,我将学生置于情境教学中,初步感受学习数学的乐趣。教学过程中,我两种方法并重,并让学生理解两种方法的殊途同归之处。对于类型稍有不同的题目,如“做一做”第2题,以人数为比例进行分配的,我在教学时添加了一道例题,教学后再让学生独力解决情境中的题,这样的教学会让学生学得较为轻松,也对这种类型题掌握得较扎实,同时也体会到数学的广泛应用。

教学后记

第十二课时 :练习课

第十三课时:整理和复习

第四单元 圆

单元目标:

1、使学生认识圆,掌握圆的特征;理解直径与半径的相互关系;理解圆周率的意义,掌握圆周率的近似值。

2、使学生理解和掌握求圆的周长与面积的计算公式,并能正确地计算圆的周长与面积。

3、独立自学,使学生初步认识弧、圆心角和扇形。

4、使学生认识轴对称图形,知道轴对称的含义,能找出轴对称图形的对称轴。

5、通过介绍圆周率的史料,使学生受到爱国主义教育。

单元重点:

1、 认识圆和轴对称图形;

2、 掌握圆的周长和面积的计算公式。

单元难点:

理解圆周率“π”;圆面积计算公式的推导以及画具有定半径或直径的圆。

1. 认识圆

(1)圆的认识

教学目标:

1、使学生认识圆,掌握圆的特征,理解直径与半径的关系。

2、会使使用工具画圆。

3、培养学生观察、分析、综合、概括及动手操作能力。

教学重点:

圆的认识,通过动手操作,理解直径与半径的关系,认识圆的特征。

教学难点:画圆的方法,认识圆的特征。

教学准备:多媒体课件,圆规等。

教学过程:

一、旧知铺垫(课件出示)

1、我们以前学过的平面图行有哪些?这些图形都是用什么线围成的?简单说说这些图形的特征?

长方形 正方形 平行四边形 三角形 梯形

3、 出示圆片图形:

(1)圆是用什么线围成的?(圆是一种

曲线图形)

(2)举例:生活中有哪些圆形的物体?

(钟面、车轮、水杯、碗口等)

二、新知探究

(一)认识圆心、直径和半径。

1 、教师课件出示自学提纲。

(1)生拿出准备好的一个圆纸片。

(2)课本第56页动手折一折。

折过2次后,你发现了什么?再折出另外两条折痕呢?

(3)指出纸片的圆心、直径和半径。

2、自学,教师巡回指点,发现难点。

3、教师在黑板上画一个圆,让个别学生上台指出。

4、小组讨论:

(1)什么叫半径?圆上是什么意思?画一画两条半径,量一量它们的长短,发现了什么?

(2)什么叫直径?过圆心是什么意思?量一量手上的圆的直径的长短,你发现了什么?

(3)小结:在同一个圆里,有无数条直径,且所有的直径都相等。

在同一个圆里,有无数条半径,且所有的半径都相等。

5、直径与半径的关系。

(1)学生独立量出自己手中圆的直径与半径的长度,看它们之间有什么关系?然后讨论测量结果,找出直径与半径的关系。

得出结论:在同一个圆里,

(2)58页做一做第一题。

(二)画圆。

1、介绍圆规的各部分名称及使用方法。

2、让个别学生说出老师刚才是如何画圆的。

学生自学课本第57页并小结出画圆的步骤和方法。

3、小组内画r=3cm的圆。组长检查评比,然后全班评比。

三、当堂测评

1、判断,并说明理由。(40分)

(1)半径的长短决定圆的大小。 ( )

(2)圆心决定圆的位置。 ( )

(3)直径是半径的2倍。 ( )

(4)圆的半径都相等。 ( )

2、画一个半径是2厘米的圆。再画一个直径是5厘米的圆。(30分

3、思考题:在操场如何画半径是5米的大圆?(30分)

学生独立完成教师巡回查看,发现疑难。

小组内评比,纠错。组长组织解决存在问题

四、谈收获、讲表现。

这节课你学到了什么,对自己的课堂表现还有什么提议吗?觉得在哪些地方还需改进。

第二课时:轴对称

教学目标:

1、在前面所学得成轴对称的平面图形的基础上,教学认识圆的对称轴。

2、使学生认识到圆是轴对称图形,且对称轴有无数条。

3、培养学生动手操作能力,在操作中加深对所学平面图形的对称轴的认识

教学重点:圆的对称轴。

教学难点:画对称轴的方法。

教具准备:多媒体课件、直尺。

教学过程:

一、创设情境,初步感知(课件出示)

1、举例说出轴对称的物体。

如:蝴蝶 、飞机、门窗、圆中的钟面、月饼等。想一想这些图形有什么特点?

2、观察、概括。

如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。折痕所在的这条直线直线叫做对称轴。

二、教学认识圆的对称轴

1、出示例3: 你能分别画出下面两个圆的对称轴吗?你能画出几条?

2、学生尝试画出圆的对称轴,观察、再动手折一折,你发现了什么?

3、小结:圆有无数条对称轴。每一条直径所在的位置都是它的对称轴。

三、课堂提高。

1、在方格上画对称轴,并量出对称轴两边相对的点到对称轴的距离。

2、小结:对称轴两侧相对点到对称轴的距离相等。

3、从上面的图形可以看出,正方形、长方形、等腰三角形和圆都是轴对称图形,这些对称图形各有几条对称轴?画出来。

4、下面的图形是轴对称图形吗?它们各有几条对称轴?

长方形 等边三角形 等腰三角形 正方形 圆 环形

四、当堂测评

练习十四弟5、6、7题

学生独立完成,教师巡回查看,帮助学困生理解每道题。

小组内讲评,充分发挥组长的作用,以“兵强兵、兵练兵’.

五、课堂总结

今天我们学习了哪些知识?学生畅所欲言。

设计意图

本堂课是对圆的初步认识,概念较多,也可会较乏味。为了避免学生学得枯燥、没兴趣,我采用课件与动手操作相结合的方式进行教学,以分调动起学生的学习积极性,并让学生在动手操作的基础上,自主探索和发现圆的有关特性。在教学“画圆”时,我不讲授而是让学生自己来讲述、演示画圆的步骤。当堂测评检验学生的学习效果,同时让优秀的学生带动学困生,共同进步。

第三课时:圆的周长和面积

(1)圆的周长

教学目标:

1、使学生理解圆的周长和圆周率的意义,理解并掌握圆的周长公式,并能正确计算圆周长。

2、培养学生的观察、比较、概括和动手操作的能力。

3、对学生进行爱国主义教育。

教学重点:

圆的周长和圆周率的意义,圆周长公式的推导过程。

教学难点:

圆周长公式的推导过程。

教学准备:多媒体课件、实物投影、圆、绳子、直尺、圆规等。

教学过程:

一、情境创设。

1、课件出示一个正方形花坛和一个圆形花坛。

问:这是什么图形?围着花坛跑一圈,哪个长哪个短呢?

学生想办法:(1)看哪个跑得步子多。

(2)计算它们的周长,进行比较更为简便。

2、什么是长方形的周长?怎样计算?这个长方形的周长与长和宽有什么关系? C=(a+b)×2

3、什么是圆的周长?

让学生上前比划,圆的周长在那?那一部分是圆的周长?

得出定义:围成圆的曲线的长叫做圆的周长。

二、新知探究

(一)圆周长的公式推导。

1、探索学习。

(1)你可以用什么办法知道一个圆的周长是多少?

(2)学生各抒己见,分别讨论说出自己的方法:

A、用一根线,绕圆一周,减去多余的部分,再拉直量出它的长度,

即可得出圆的周长。

B、把圆放在直尺上滚动一周,直接量出圆的周长。

C、用一条小线的一端栓上小球在空中旋转。这样你能知道空中出现的圆的周长吗?

用滚动,绳测的方法可测量出圆的周长,但是有局限性。今天我们来探讨出一种求圆周长的普遍规律。

2、动手实践。

(1)4人小组,分别测量学具圆,报出自己量得的直径,周长,并计算周长和直径的比值。

(2)引生看表,问你们看周长与直径的比值有什么关系?

(3)你有办法验证圆的周长总是直径的3倍多一点吗?

(4)阅读课本P63,介绍圆周率,及介绍祖冲之。

∏=3.1415926535…… 是一个无限不循环小数。

3、得出计算公式。

圆的周长=圆周率×直径

C = ∏d

C = 2∏r

(二)、解决新问题。

1、解决情境题中的问题。

学生独立完成,小组内订正。

2、教学例1 : 圆形花坛的直径是20m,它的周长是多少米?小自

行车车轮的直径是50m,绕花坛一周车轮大约转动多少周?

小组内想出解决的办法,并在全班交流。

第一个问题: 已知 d = 20米 求:C = ?

根据 C =πd

20×3.14=62.8(m)

第二个问题: 已知: 小自行车d = 50cm

先求小自行车C = ? c=πd

50cm=0.5m

0.5×3.14=1.57(m)

再求绕花坛一周车轮大约转动多少周?

62.8 ÷1.57=40(周)

答:它的周长是62.8米。绕花坛一周车轮大约转动40周。

三、当堂测评

1、求下列各题的周长。(60分)

书本65页练习十五的第1题

2、判断正误。(40分)

(1)圆的周长是直径的3.14倍。 ( )

(2)在同圆或等圆中,圆的周长是半径的6.28倍。 ( )

(3)C =2πr =πd 。 ( )

(4)半圆的周长是圆周长的一半。 ( )

四、课堂质疑。

通过这节课的学习你都知道了什么?还有什么不懂得呢?

设计意图:

这节课我从以下几处着手:

1、 来源于生活,回归于生活。课前从生活中的实际问题入

手,提高学生学习兴趣,激起求知欲。在得出公式时及时解决问

题,体现数学课的应用价值。

2、 重视动手操作,深刻理解公式。对于公式的探究,我改变

以往的教师演示教学法,而是让学生通过具体的动手操作,让他们

体会知识概念的形成。教学中,我着力于培养学生的探究意识和探究能力,让学生利用实验的手段,通过测量、计算、猜测圆的周长和直径的关系、验证猜测等过程来理解并掌握圆的周长计算方法。

教学后记:

第四课时:圆的周长(2)

教学目标:

1、通过教学使学生学会根据圆的周长求圆的直径、半径。

2、培养学生逻辑推理能力。

3、初步掌握变换和转化的方法。

教学重点:求圆的直径和半径。

教学难点:灵活运用公式求圆的直径和半径。

教具准备:多媒体课件、实物投影设备、挂钟。

教学过程:

一、旧知铺垫(课件出示)

1、口答。

4π 2π 5π 10π 8π

2、求出下面各圆的周长。

C=πd c=2πr

=3.14×2 =2×3.14×4

=6.28(厘米) =8×3.14

=25.12(厘米)

二、新知探究。

1、提出研究的问题。

(1)下面公式的每个字母各表示什么?这两个公式又表示什么?

C=πd C=2πr

(3)根据上两个公式,你能知道:

直径= 半径=

学生根据前面的公式推出:d= C/π r= C/2π

2、学习练习十四第2题。

(1)小红量得一个古代建筑中的大红圆柱的周长是3.768米,这个圆柱的直径是多少米?(得数保留一位小数)

学生根据公式独立解答,教师巡回指点,照顾差生。

小组代表汇报,全班交流。

已知:c=3.77m 求:d=?

解法1 解法2 解:设直径是x米。

3.77÷3.14 3.14x=3.77

≈1.2(米) x=3.77÷3.14

x≈1.2

(2)做一做。用一根1.2米长的铁条弯成一个圆形铁环,它的半径是多少?(得数保留两位小数)

已知:c=1.2米 r=c÷(2Π) 求:r=?

解:设半径为x米。

3.14×2x=1.2 1.2÷2÷3.14

6.28x=1.2 = 0.191

x=0.191 ≈0.19(米)

x≈0.19

三、当堂测评(课件出示)

1、饭店的大厅挂着一只大钟,这座钟的分针的尖端转动一周所走的路程是125.6厘米,它的分针长多少厘米?(20分)

2、求下面半圆的周长,选择正确的算式。(20分)

⑴ 3.14×8

⑵ 3.14×8×2

⑶ 3.14×8÷2+8

3、一只挂钟分针长20cm,经过30分后,这根分针的尖端所走的路程是多少厘米?经过45分钟呢?(30分)

(1)想:钟面一圈是60分钟,走了30分,就是走了整个钟面的 ,也就是走了整个圆的 。而钟面一圈的周长是多少?

(2)想:钟面一圈是60分钟,走了45分,就是走了整个钟面的 ,也就是走了整个圆的 。则:钟面一圈的周长是多少?

45分钟走了多少厘米?

4、下图的周长是多少厘米?你是怎样计算的?(30分)

学生独立完成,教师巡回查看,发现疑难。

教师讲评,小组内打分,明确错误原因。

四、回放知识目标,学生谈掌握情况。

设计意图:

(1)重视公式的推导,提高学生推理、探究能力。

(2)通过当堂测评,丰富课堂知识面,了解学生对知识的掌握情况。

教学后记:

第五课时:练习课

第六课时:圆的面积

教学目标:⒈使学生理解圆面积的含义,理解圆面积计算公式的推导过程,掌握圆面积的计算公式。

⒉培养学生动手操作、抽象概括的能力,运用所学知识解决简单实际问题。

⒊渗透转化的数学思想。

教学重点:圆面积的含义。圆面积的推导过程。

教学难点:圆面积的推导过程。

教学准备:教师准备:多媒体课件、

学生准备:同样的三角板两个/每人。

教学过程:

一、旧知铺垫(课件出示)

1、已知r,周长的一半怎样求?

2、用手中的三角板拼三角形,长方形、正方形、平行四边形等,

说出这些图形的面积计算公式。

s=ab s=a2 s= ah s= ah s= (a+b)h

二、新知探究

1、什么是圆的面积?(出示纸片圆让生摸一摸)

圆所占平面大小叫做圆的面积。

2、推导圆的面积公式。

(1)演示:将等分成16份的圆展开,问可拼成一个什么样的图形?

若分的分数越多,这个图形越接近长方形。

(1)找:找出拼出的图形与圆的周长和半径有什么关系?

圆的半径 = 长方形的宽

圆的周长的一半 = 长方形的长

长方形面积 = 长 ×宽

所以: 圆的面积 = 圆的周长的一半×圆的半径

S = πr × r

S圆 = πr×r = πr2

3、你还能用其他方法推算出圆的面积公式吗?

(1)将圆16等份,取其中一份,看作是一个近似的三角形,三角形的面积是这个圆面积的 。这个三角形底是圆周长的 ,三角形的高是圆的半径。

因为:三角形面积= ×底×高

圆面积= ×

=πr2

(2)将圆16等分,取其中两份,可以拼成一个近似的平行四边形。平行四边形面积是圆面积的 ,平行四边形的底是 ,三角形的高即一个半径,

因为:平行四边形面积 = 底×高

圆面积 = ×r÷

=πr2

三、运用知识解决实际问题。(课件出示)

1、例1 一个圆的直径是20m,它的面积是多少平方米?

已知:d=20厘米 求:s=?

r=d÷2 20÷2=10(m)

s=Лr2

3.14×102

=3.14×100

=314(平方厘米)

四、当堂测评(课件出示)

1、根据下面所给的条件,求圆的面积。(40分)

r=5cm d =0.8dm

2、解答下列各题。(60分)

(1)一个圆形茶几桌面的直径是1m,它的面积是多少平方厘米?

(2)公园草地上一个自动旋转喷灌装置的射程是10m。它能喷灌的面积是多少?

学社独立完成,教师巡回指点,发现疑难。

小组内订正,评比、得分。

全班内评比出优胜小组。

五、谈收获、表决心。

教学后记

第七课时:圆的面积(2)

教学目标:

1、使学生学会已知圆的周长求圆的面积的解题思路与方法,理解

并学会环形面积。

2、培养学生灵活、综合运用知识的能力,运用所学的知识解决简

单的实际问题。

3、培养学生的逻辑思维能力。

教学重点:培养综合运用知识的能力。

教学难点:培养综合运用知识的能力。

教具准备:多媒体课件、实物投影、环形教具。

教学过程:

一、旧知铺垫(课件出示)

1、口算:

32 42 52 82 92 202

2π 3π 6π 10π 7π 5π

3、 填表

r d C S

3cm

9cm

10m

12.56m

填写要求

(1)学生独立计算,教师巡视进行个别指导。

(2)汇报解答过程及结果。

(3)周长是12.56时面积也是12.56,能说周长和面积相等吗?

三、新知探究

(一)、教学环形面积。

1、结合实物光盘,课件出示题目要求

例2 光盘的银色部分是个圆环,内圆半径是

2cm,外圆半径是6cm。它的面积是多少?

2、课件出示自学提纲:

(1)认真读题,理解题意。分析已知条件及问题。

(2)想一想如何解决这个问题。

(3)小组内交流自己的想法。

3、小组汇报不同的解题思路。

解法1:环形面积 = 大圆面积 - 小圆面积

3.14×62 3.14×22

=3.14×36 =3.14×4

=113.04(平方厘米) =12.56(平方厘米)

113.04-12.56=100.48 (平方厘米)

解法2:3.14×(62-22)=100.48(平方厘米)

4、小结环形的面积计算公式:

S=πR2-πr2 或 S=π×(R2-r2)

(二)完成做一做:

一个圆形环岛的直径是50m,中间是一个直径为10m的圆形花

坛,其他地方是草坪。草坪的占地面积是多少?

三、当堂测评(课件出示)

1、学校有个圆形花坛,周长是18.84米,花坛的面积是多少?

选择正确算式

A、(18.84÷3.14÷2)2×3.14

B、(18.84÷3.14)2×3.14

C、18.842×3.14

2、环形铁片,外圈直径20分米,内圆半径7分米,环形铁片的面积是多少?

学生独立完成,教师巡视发现存在问题。

学生汇报解题方法及结果。

自我评价。

四、课堂小结。

1、这节课的学习内容是什么?

2、求圆的面积时题中给出的已知条件有几种情况?怎样求出圆面积?

已知半径求面积 S=πr2

已知直径求面积 S=π( )2

已知周长求面积 S=π( )2

3、环形面积: S=π(R2-r2)

设计意图:

1、 重视教具的作用。在圆面积的教学中,在我带领着学生利用教具进行操作,在此基础上,让学生自主发现圆的面积与拼成长方形面积的关系,圆的周长、半径和长方形的长、宽的关系,并推导出圆的面积计算公式。

2、培养学生自主学习的习惯。教学环形的面积计算时,我充分放手给学生,让学生通过思考讨论领悟出求环形的面积是用外圆面积减去内圆面积,并引导他们发现这两种算法的一致性,同时提醒学生尽量使用简便算法,减少计算量。

教学后记

六年级数学上册全册教案


六年级数学上册全册教案

本册 目标:

这一册教材的 目标是,使学生:

1. 理解分数乘、除法的意义,掌握分数乘、除法的计算方法,比较熟练地计算

简单的分数乘、除法,会进行简单的分数四则混合运算。

2. 理解倒数的意义,掌握求倒数的方法。

3. 理解比的意义和性质,会求比值和化简比,会解决有关比的简单实际问题。

4. 掌握圆的特征,会用圆规画圆;探索并掌握圆的周长和面积公式,能够正确

计算圆的周长和面积。

5. 知道圆是轴对称图形,进一步认识轴对称图形;能运用平移、轴对称和旋转

设计简单的图案。

6. 能在方格纸上用数对表示位置,初步体会坐标的思想。

7. 理解百分数的意义,比较熟练地进行有关百分数的计算,能够解决有关百分

数的简单实际问题。

8. 认识扇形统计图,能根据需要选择合适的统计图表示数据。

9. 经历从实际生活中发现问题、提出问题、解决问题的过程,体会数学在日常

生活中的作用,初步形成综合运用数学知识解决问题的能力。

10. 体会解决问题策略的多样性及运用假设的数学思想方法解决问题的有效性,感受数学的魅力。形成发现生活中的数学的意识,初步形成观察、分析及推理的能力。

11. 体会学习数学的乐趣,提高学习数学的兴趣,建立学好数学的信心。

12. 养成认真作业、书写整洁的良好习惯。

第一单元 位置

单元教学目标:

1. 在具体的情境中,探索确定位置的方法,能用数对表示物体的位置。

2. 能在方格纸上用数对确定位置。

教学内容 位置(一) 新授课 新授

教学目标 1.在具体的情境中,探索确定位置的方法,能用数对表示物体的位置。

2. 使学生能在方格纸上用数对确定位置。

教学重点 能用数对表示物体的位置。

教学难点 能用数对表示物体的位置,正确区分列和行的顺序。

教具准备

教学过程 一、 导入

1、 我们全班有53名同学,但大部分的同学老师都不认识,如果我要请你们当中的某一位同学发言,你们能帮我想想要如何表示才能既简单又准确吗?

2、 学生各抒己见,讨论出用“第几列第几行”的方法来表述。

二、 新授

1、 教学例1

(1) 如果老师用第二列第三行来表示××同学的位置,那么你也能用这样的方法来表示其他同学的位置吗?

(2) 学生练习用这样的方法来表示其他同学的位置。(注意强调先说列后说行)

(3) 教学写法:××同学的位置在第二列第三行,我们可以这样表示:(2,3)。按照这样的方法,你能写出自己所在的位置吗?(学生把自己的位置写在练习本上,指名回答)

2、 小结例1:

(1) 确定一个同学的位置,用了几个数据?(2个)

(2) 我们习惯先说列,后说行,所以第一个数据表示列,第二个数据表示行。如果这两个数据的顺序不同,那么表示的位置也就不同。

3、 练习:

(1) 教师念出班上某个同学的名字,同学们在练习本上写出他的准确位置。

(2) 生活中还有哪里时候需要确定位置,说说它们确定位置的方法。

4、 教学例2

(1) 我们刚刚已经懂得如果表示班上同学所在的位置。现在我们一起来看看在这样的一张示意图上(出示示意图),如何表示出图上的场馆所在的位置。

(2) 依照例1的方法,全班一起讨论说出如何表示大门的位置。(3,0)

(3) 同桌讨论说出其他场馆所在的位置,并指名回答。

(4) 学生根据书上所给的数据,在图上标出“飞禽馆”“猩猩馆”“狮虎山”的位置。(投影讲评)

三、 练习

1、 练习一第4题

(1) 学生独立找出图中的字母所在的位置,指名回答。

(2) 学生依据所给的数据标出字母所在的位置,并依次连成图形,同桌核对。

2、 练习一第3题:引导学生懂得要先看页码,在依照数据找出相应的位置

3、 练习一第6题

(1) 独立写出图上各顶点的位置。

(2) 顶点A向右平移5个单位,位置在哪里?哪个数据发生了改变?点A再向上平移5个单位,位置在哪里?哪个数据也发生了改变?

(3) 照点A的方法平移点B和点C,得出平移后完整的三角形。

(4) 观察平移前后的图形,说说你发现了什么?(图形不变,右移时列也就是第一个数据发生改变,上移时行也就是第二个数据发生改变)

四、 总结

我们今天学了哪些内容?你觉得自己掌握的情况如何?

五、 作业

练习一第1、2、5、7、8题。

板书设计:

教后反思:

第二单元 分数乘法

单元目标:

1、使学生理解分数乘法的意义,掌握分数乘法的计算法则,并能熟练地进行计算。

2、使学生掌握分数乘加、乘减混合运算,理解整数乘法运算定律对于分数乘法同样适用。

3、使学生理解分数乘法应用题中的数量关系,会解答求一个数的几分之几是多少的应用题。

4、 使学生理解倒数的意义,掌握求倒数的方法。

单元重点:

分数乘法的意义和计算法则。

单元难点:

1、 理解分数乘法的意义,根据分数乘法的意义去解答这类应用题。

2、 分数乘法计算法则的推导。

教案

教学内容 分数乘整数 课型 新授

教学目标 1、在学生已有的分数加法及分数基本意义的基础上,结合生活实例,通过对分数连加算式的研究,使学生理解分数乘整数的意义,掌握分数乘整数的计算方法,能够应用分数乘整数的计算法则,比较熟练地进行计算。

2、通过观察比较,指导学生通过体验,归纳分数乘整数的计算法则,培养学生的抽象概括能力。

引导学生探求知识的内在联系,激发学生学习兴趣。通过演示,使学生初步感悟算理,并在这过程中感悟到数学知识的魅力,领略到美。

教学重点 使学生理解分数乘整数的意义,掌握分数乘整数的计算方法。

教学难点 引导学生总结分数乘整数的计算法则。

教具准备

教学过程 一、 复习

1.出示复习题。

(1)列式并说出算式中的被乘数、乘数各表示什么?

5个12是多少? 9个11是多少? 8个6是多少?

(2)计算:

+ + = + + =

2.引出课题。

+ + 这题我们还可以怎么计算?今天我们就来学习分数乘法。

二、 新授

1、 利用 + + 教学分数乘法。

(1) 这道加法算式中,加数各是多少?(都是 )

(2) 表示几个相同加数的和,我们还可以用什么方法来计算?怎么列式?(乘法, ×3)

(3) + + =9,那么 + + = ×3,所以 ×3=____________=9。同学们想想看, ×3=9计算过程是怎样的?谁能把它补充完整。

2、 出示例1,画出线段图,学生独立列式解答。

(1) 引导学生看图,理解“人跑一步的距离相当于袋鼠跳一下的 ”,就是把袋鼠跳一下的距离即这一整条线段看作单位“1”。把这条线段平均分成11份,其中的2份就表示人跑一步的距离。

(2) 引导学生根据线段图理解,人跑一步是袋鼠跳一下的 ,那么“人跑3步的距离相当于袋鼠跳一下的几分之几?”就是求3个 是多少?(列式: ×3 = )

3、 结合以上两题,归纳出分数乘整数的计算法则:分数乘整数,用分数的的分子和整数相乘的积作分子,分母不变。

4、 练习:练习完成“做一做”第2题。

5、 教学例2

(1)出示 ×6,学生独立计算。

(2)根据计算结果,学生观察讨论:乘得的积是不是最简分数?应该怎么办?

(3)学生通过自己的想法的来约分:A、先约分再计算;B、先计算得出乘积后约分。

(4)对比,让学生体会先约分再计算的方法比较简便,同时向学生说明先约分的书写格式。三、练习

1、 完成“做一做”的第一题。(提醒学生,计算前先观察分数的分母与整数是否可以约分,养成先约分在计算的习惯)

2、 “做一做”第3题。(先让学生说说解题思路,讨论先算什么可以使计算简便。如果用连乘算式,要提醒学生先约分再计算。)

三、 作业

练习二第1、2、4题。 个人修改

六年级数学上册全册分析


六年级数学上册全册分析

一、 内容:

这一册教材包括下面一些内容:分数乘法、位置与方向、分数除法、比、圆、百分数、扇形统计图、数学广角和总复习等。

二、教材变化:

分数乘法:突出强调分数乘法意义的两种形式,增加例2,作为 “求一个数的几分之几是多少,用乘法计算”的铺垫。解决“求一个数的几分之几是多少”的实际问题不单独编排,而是结合分数乘法的意义、计算进行教学。增加分数与小数的乘法。增加连续求一个数的几分之几的实际问题。求比一个数多(或少)几分之几的实际问题由两个例题缩减为一个。“倒数的认识”由“分数乘法”单元移到“分数除法”单元。

位置与方向:把实验教材六年级上册的“用数对确定位置”移到五年级上册,把实验教材四年级下册的“用方向与距离确定位置”移到本册。

分数除法:“倒数的认识”由“分数乘法”单元移至本单元。把“比”的内容单设一单元。增加两类新的问题解决:和倍、差倍问题;可用单位“1”解决的问题。

比:与实验教材的主要区别,原来在分数除法单元,本册作为第四单元单独学习。教学内容基本无变化。

圆: 与实验教材的主要区别,通过用圆规画圆引出圆的各部分名称,继而研究圆的性质。减少圆的对称性的篇幅。增加“利用圆设计图案”的内容。增加求圆外切正方形、圆内接正方形与圆之间面积的“问题解决”。“扇形”由选学内容变为正式教学内容。

百分数(一):与实验教材的主要区别,把“百分数的应用”分成两段,本册只教学百分数的一般性应用,而特殊应用如利率、折扣、成数,移至六年级下册。把百分数与分数、小数的互化与求百分率、求一个数的百分之几是多少结合起来,注重在应用过程中自然地引导学生把百分数和分数、小数进行互化。增加用单位“1”解决的实际问题。

扇形统计图: 与实验教材的主要区别,增加根据选择合适统计图的内容。

数学广角——数与形:与实验教材的主要区别,把实验教材六年级上册的“鸡兔同笼”问题移至四年级下册,新编“数形结合”的内容。

三、教材分析和建议

本册教材的结构力求符合教育学、心理学的原理和学生的年龄特征,继续体现实验教材中的风格与特点。它仍然具有内容丰富、关注学生的经验与体验、体现知识的形成过程、鼓励算法及解决问题的策略多样化、改变学生的学习方式,体现开放性的教学方法等特点。

1. 改进分数乘、除法、比的编排,体现数学教学改革的新理念,加深学生对数学知识的理解,培养学生的应用意识。

在已有知识的基础上,帮助学生自主构建新知识。加强直观教学,结合实际操作和直观图形,帮助学生理解算理,掌握方法。加强分数乘、除法的沟通与联系,促进知识正迁移,提高解决实际问题的能力。

(1)不单独教学分数乘法、分数除法的意义,而是让学生通过解决实际问题,结合具体情境和计算过程去理解运算意义。

(2)通过实际问题引出需要用分数乘、除法计算的问题,让学生在现实情境中体会、理解分数乘、除法算法和算理,将解决问题教学与计算教学有机地结合在一起,在学习计算的同时培养学生应用数学的意识和解决问题的能力。

(3)借助操作与图示,引导学生探索并理解分数乘、除法的算法和算理。对分数乘、除法计算方法的探索与理解,历来是教学的难点。教材根据学生的思维特点,设计了涂色、折纸、画线段图等活动,采用手脑并用、数形结合的策略加以突破。

2、单独安排安排“比”的单元,教学比的意义、性质和应用。把“比”放在分数除法后教学,主要出于两点考虑:第一,比和分数有密切的联系,两个整数相除(除数不等于0)可以用分数表示它们的商,也可以说成两个数的比,两个数的比也可以用分数形式来表示。加强比和分数的联系,可以加深学生对分数的意义的理解和对比的认识,还可以提高学生灵活运用知识解决简单实际问题的能力。第二,提早教学比的概念,可以为后面教学圆周率、百分数、统计等打好基础。例如,学生有了比的概念,就容易理解百分数为什么还可以叫做百分比。在这里有关比的应用,只教学按比例分配的问题,比例尺则放在“比例的应用”中教学。

2. 有关百分数的教学内容比较多,教材仍单独设一个单元对百分数进行教学。有关百分数的计算,通常是化成分数和小数来算;解决含有百分数的实际问题在解题思路和方法上与解决分数问题基本相同。因此,教材只对求百分率的问题适当举例加以教学,然后加强百分数实际应用方面的教学。紧密结合生活实例,引导学生理解百分数的意义以及利用百分数解决实际问题。

3. 提供丰富的空间与图形的教学内容,注重动手实践与自主探索,促进学生空间观念的发展。

“位置与方向”注意联系学生的生活经验和已有知识,引导学生自主探索新知,发展空间观念。以问题为载体,鼓励学生通过自主探究、合作交流,克服教学重难点,初步建立坐标观念。

“圆”单元教学时,引导学生动手操作、自主探索圆的特征。注重引导学生运用和体验转化、极限等数学思想方法。紧密结合生活素材,培养学生在日常生活中应用数学的意识和能力。

4. 加强统计知识的教学,发展学生的统计观念,逐步形成从数学的角度思考问题的思维习惯。

在教材的具体编排上,一是注意与先前学习过的统计知识的联系,帮助学生理解扇形统计图的特点和作用。二是注意挖掘生活中的数学素材,凸现统计的实用价值。教学时结合生活中的统计实例进行,使学生充分感受统计的现实价值。使学生通过比较,认识各种统计图的适用性和局限性。

5. 有步骤地渗透数学思想方法,培养学生数学思维能力和解决问题的能力。

培养学生良好的数学思维能力是数学教学要达到的重要目标之一。数学广角单元,使学生经历发现模式、应用模式的探究过程。充分利用数与形的对应与比较,培养学生利用图形解决数的问题的意识和能力,使学生感受数学的魅力与美感。

6. 情感、态度、价值观的培养渗透于数学教学中,用数学的魅力和学习的收获激发学生的学习兴趣与内在动机。

本册实验教材安排了许多体现数学文化的阅读材料、数学史实等,使学生的数学学习活动丰富多彩、充满魅力。这些都有助于学生初步认识数学与人类生活的密切联系,了解数学的价值,激发学生学习数学的欲望。

(1)提供丰富的培养学习数学兴趣爱好的素材。

考虑到学生年龄的增长、视野的扩大等因素,教材注意选择知识内容深刻、内涵更丰富的教学素材,使学生在学习数学的同时,受到情感、态度、价值观的熏陶。例如,在“比的应用”单元里,通过“你知道吗?”介绍的“黄金比”的知识和以“黄金比”设计的艺术品、建筑物等;数学广角“数与形”, 数形结合的思想可以使某些抽象的数学问题直观化、生动化,能够变抽象思维为形象思维,有助于把握数学问题的本质;另外,由于使用了数形结合的方法,很多问题便迎刃而解,且解法简捷。

(2)注意反映数学与人类生活的密切联系以及数学的文化价值。

本册教材仍然注意采用阅读材料的形式,结合教学内容编排一些有关的数学史料,丰富学生对数学发展的整体认识,培养学生探索数学、学习数学的兴趣与欲望。如安排了多个“你知道吗?”“生活中的数学”和“阅读资料”。

(3)通过自主探索的活动,让学生获得学习成功的体验,增进学好数学的信心。

教材设计了很多需要学生自主探索的活动,例如,探究圆的周长时,让学生采用围一围、滚一滚的方法先测出周长的数值,在此基础上再引导学生探究周长与直径的关系,得到圆的周长的计算公式。同样,圆的面积计算公式的推出,让学生小组合作,通过动手剪切、拼贴,从而“化圆为方”,得出圆面积的计算方法。又如“数和形”的教学,教材先安排了数据较简单的问题,让学生自己探索解决这类问题并找到规律,利用数形结合的思想和规律解决复杂问题。让学生有更多的机会进行自主探索的实践,并通过这些活动获得自己成功、能力增强等良好体验,从而逐步增强学好数学、会用数学的信心。

四、教学目标:

1. 理解分数乘、除法的意义,掌握分数乘、除法的计算方法,比较熟练地计算简单的分数乘、除法,会进行简单的分数四则混合运算。

2. 理解倒数的意义,掌握求倒数的方法。

3. 理解比的意义和性质,会求比值和化简比,会解决有关比的简单实际问题。

4. 掌握圆的特征,会用圆规画圆;探索并掌握圆的周长和面积公式,能够正确计算圆的周长和面积。

5. 知道圆是轴对称图形,进一步认识轴对称图形;能运用平移、轴对称和旋转设计简单的图案。

6. 能在方格纸上用数对表示位置,初步体会坐标的思想。

7. 理解百分数的意义,比较熟练地进行有关百分数的计算,能够解决有关百分数的简单实际问题。

8. 认识扇形统计图,能根据需要选择合适的统计图表示数据。

9. 经历从实际生活中发现问题、提出问题、解决问题的过程,体会数学在日常生活中的作用,初步形成综合运用数学知识解决问题的能力。

10. 体会解决问题策略的多样性及运用数形结合的数学思想方法解决问题的有效性,感受数学的魅力,形成发现生活中的数学的意识,初步形成观察、分析及推理的能力。

11. 体会学习数学的乐趣,提高学习数学的兴趣,建立学好数学的信心。

12. 养成认真作业、书写整洁的良好习惯。

五、教学重点

1. 分数乘法和除法、比、圆、百分数等是本册教材的重点教学内容。

2. 促进学生空间观念的发展,初步培养数学思想和解决问题的方法。

六、 教学难点

1、理解分数乘法的意义,比较熟练地计算简单的分数乘、除法,会进行简单的分数四则混合运算;

2、使学生理解分数乘、除法、百分数应用题中的数量关系,会灵活解决问题。

3、通过数与形结合来分析思考问题,从而感悟数形结合的思想,体会极限思想。

苏教版六年级数学上册全册教案


苏教版六年级数学上册全册教案

第一单元 方 程

第一课时 列方程解决实际问题(1) 01

内容:第一页的例1和练一练,练习一的第1-5题。

目标:1、使学生在解决实际问题的过程中,理解并掌握形如ax+_b=c的方程的解法,会列上述方程解决两步计算的实际问题。

2、使学生在观察、分析、抽象、概括和交流的过程中,经历将现实问题抽象为方程的过程,进一步体会方程的思想方法及价值。

3、使学生在积极参与数学活动的过程中,养成独立思考、主动与他人合作交流、自觉检验等习惯。

教学重难点:让学生经历寻找实际问题中数量之间的相等关系并列方程解决问题的过程,在过程中自主理解并掌握有关方程的解法,加深对列方程解决实际问题的体验。

教学资源:小黑板

教学过程:

一、教学例1

1、 谈话导入:西安是我国有名的历史文化名城,有很多著名的古代建筑,其中就包括闻名遐迩的大雁塔和小雁塔。这节课我们来研究一个与这两处建筑有关的数学问题。

2、 提问:题目中告诉了我们哪些?条件要我们求什么问题?

启发:你能从中找出它们高度之间的关系吗?题目中的哪句话能清楚地表明它们之间高度的关系?

提出要求:你能不能用一个等量关系将它们高度之间的相等关系表示出来?

板书学生交流中可能想到的数量关系式:

小雁塔的高度×2—22=大雁塔的高度;

小雁塔的高度×2=大雁塔的高度+22;

小雁塔的高度×2—大雁塔的高度=22。

3、 引导学生观察第一个等量关系式,提问:在这个等量关系式中,哪个数量是已知的?哪个数量是要我们去求的?

追问:我们可以用什么方法来解决这个问题?

明确方法,并提示课题:这样的问题可以列方程来解答。今天我们继续学习列方程解决实际问题。(板书课题)

4、 谈话:我们已经学过列方程解决简单的实际问题。请同学们先回忆一下,列方程解决问题一般要经过哪几个步骤?

让学生先自主尝试设未知数,并根据第一个等量关系式列出方程。

5、 提问:这样的方程,你以前解过没有?运用以前学过的知识,你能解出这个方程吗?

交流中明确:首先要应用等式的性质将方程两边同时加上22,使方程变形为“2x=?”,再用以前学过的方法继续求解。

要求学生接着例题呈现的第一步继续解出这个方程。学生完成后,组织交流解方程的完整过程,核对求出的解,并提示学生进行检验,最后让学生写出答句。

6、 提问:还可以怎样列方程?

学生列出方程后,要求他们在小组内交流各自列出的方程,并说说列方程的根据,以及可以怎样解列出的方程。

7、 小结:刚才我们通过列方程解决了一个实际问题。你能说说列方程解决问题的大致步骤吗?其中哪些环节很重要?

引导学生关注:1)要根据题目中的条件寻找等量关系,而且一般要找出最容易发现的等量关系;2)分清等量关系中的已知量和未知量,用字母表示未知量并列方程;3)解出方程后,要及时进行检验。

二、巩固练习

1、 做练一练:读题,并设想解决这一问题的方法和步骤,然后让学生独立完成。

交流时让学生说说找出了怎样的等量关系,根据等量关系列出了怎样的方程,是怎样解列出的方程的,对求出的解有没有检验等。再让学生核对自己的答案,检查自己的解题过程。

启发思考:这个问题与例1有什么相同的地方?有什么不同的地方?

2、 做练习一第1题

先让学生说说解这些方程时,第一步要怎么做,依据是什么,然后让学生独立完成。交流反馈时,要在关注结果是否正确的同时,了解学生是否进行了检验。

3、 做练习一第2题

学生独立完成后,再要求说说写出的每个含有字母的式子分别表示哪个数量,是怎样想到写这样的式子的。

4、 做练习一第3题

学生独立完成后,指名说说自己的思考过程,进一步突出根据题中数量之间的相等关系列方程的。

三、总结: 今天我们学习了什么内容,你有哪些收获?还有没有疑惑的地方?

四:作业:做练习一的第4、5题

教学后记:

第二课时 列方程解决实际问题的练习课 02

教学内容:练习一的第6-13题。

教学目标:1、通过练习,使学生能把已经掌握的方程的解法类推到解新的方程道德过程中,会解形如ax±b=c、ax÷b=c的方程,加深对有关方程解法的理解和掌握。

2、进一步提高学生分析数量关系和列方程解决实际问题的能力,培养学生思维的灵活性。

3、使学生在积极参与数学活动的过程中,养成独立思考、主动与他人合作交流、自觉检验等习惯。

教学重难点:让学生经历寻找实际问题中数量之间的相等关系并列方程解决问题的过程,在过程中自主理解并掌握有关方程的解法,加深对列方程解决实际问题的体验。

教学资源:小黑板、投影仪、第13题中的温度计

教学过程:

一、揭示课题:

上节课,我们学会了运用等式的性质解一些稍复杂的方程。这节课,我们要通过练习,进一步加深对有关方程解法的理解,提高我们分析数量关系和能列方程解决实践问题的能力。

二、巩固练习:

1、第6题

(1)出示:4x+12=50 2.3x-1.02=0.36

让学生独立完成,指名学生板演。

集体校对时,提醒学生要自觉检验。并说说以后遇到像这样的方程一般可以怎样解。

(2)出示:30x÷2=360

先让学生说说这样的方程可以怎样解。再让学生做一做,指名板演。集体校对时,说说解这个方程的依据,并让学生做口头检验。

(3)师生共同总结解此类方程的一般方法。强调要养成自觉检验的习惯。

2、第7题

(1)说说两题中的x分别表示哪个数量。

(2)找出每题中数量之间的相等关系。第1题如果有困难,教师可提醒学生回忆三角形的面积计算公式。

(3)学生解答,指名板演。交流时,还要注意学生的解题格式(不要设未知量)

3、第8题

出示题目,问:你能把与杨树和松树有关的信息用列表的方法整理吗?让学生试着整理。

校对后,联系整理的过程找出数量之间的相等关系说一说。

问:你会列方程解答吗?口头说说。

4、第9题

出示题目,教师通过画简单示意图帮助学生理解题意。再让学生说说数量之间的相等关系。并口头列方程。

5、第11题

(1)出示题目。学生读题后说说题目要我们求什么。

(2)问:你会解答吗?可以让同桌互相说说自己的想法。

在全班交流时,教师适时提醒学生:像这样的题要用不同的字母来分别表示小亮出生时的身高和体重。可以用x表示小亮出生时的身高,用y来表示小亮出生时的体重。

(3)学生解答,指名板演。集体评讲。

三、联系生活,运用知识

1、第12题

投影出示题中的发票,让学生说说了解到了哪些信息。

问:你有办法算出墨水的单价吗?

学生独立尝试。集体交流,注意不同的方法。(方程和算术方法)

2、第13题。

(1)出示温度计,教师简单介绍:我国测量温度常用℃(摄氏度)作单位,有时还使用(华氏度)作单位。华氏温度和摄氏温度可以用下面的公式进行换算:(教师出示公式,学生齐读)

华氏温度=摄氏温度×1.8+32

(2)问:如果温度计测出的温度是86℉,相当于多少℃?

出示问题,让学生读一读。

(3)问:你会用学到的知识解决这个问题吗?

让学生尝试解答,指名板演。集体交流。

四、总结:

五、作业:练习一第8、9、10题。

第三课时 列方程解决实际问题(2) 03

教学内容:P4例2及“练一练”、练习二第1—5题

教学目标:1、使学生在解决实际问题的过程中,理解并掌握形如ax±bx=c的方程的解法,会列上述方程解决三步计算的实际问题。

2、使学生在观察、分析、抽象、概括和交流的过程中,经历将现实问题抽象为方程的过程,进一步体会方程的思想方法及价值。

3、使学生在积极参与数学活动的过程中,养成独立思考、主动与他人合作交流、自觉检验等习惯。

教学重点难点:如何合适地用字母或含有字母的式子表示题中两个未知的数量。

教学资源:小黑板

教学过程:

一、谈话导入,揭示课题

前两节课,我们已经学过列方程解决实际问题,你能说说列方程解决实际问题的大致步骤吗?

这节课我们按列方程解决实际问题的步骤继续研究这方面的知识。

二、师生探究,学习新知

1、学习例2

(1)出示例2。读题,理解题意。

(2)师:你能用线段图表示题中数量之间的关系吗?

生各自独立画线段图。

(3)展示交流,明确合适的画法。

(4)师:结合题目和线段图,你能说说数量之间的相等关系吗?

生答,师出示,齐读:

水面面积+陆地面积=颐和园的占地面积

(5)师:如果用x来表示陆地面积,那么可以怎样表示水面面积呢? 生答后师在线段图上标注好,并写出设句,齐读设句。

(6)让生根据数量关系列出方程。

师板:x+3x=290

说说这个方程与前面学的方程有什么不同。

问:你会解这个方程吗?把你的想法和同桌交流一下。

(7)全班交流,师随机板书过程,并说明:解这样的方程时,一般应先化简。

追问:求出的x的值表示哪个数量?水面面积该怎样求?

生答师板:3x=72.5×3=217.5

(8)问:这道题怎样检验?

生交流自己的想法后,让生看书P4的检验过程,说说每一步检验的是什么。师随机板检验过程,写出答句。

2、“练一练”

(1)学生独立完成,要求写出检验过程。

(2)集体交流,说说是根据怎样的数量关系列出方程的,又是怎样解列出的方程的。

(3)比较:

引导学生说说“练一练”的解答过程与例2有什么相同的地方?有什么不同的地方?

追问:你觉得列方程解答这样的问题要注意些什么?

三、巩固练习

1、练习二第1题

(1)先让学生说说这几道方程与例题中的方程有什么共同的特点,解这些方程时先要做什么,这样做的依据是什么。

(2)学生独立完成。

(3)交流反馈时,要在关注结果是否正确的同时,了解学生是否进行了检验,是怎样检验的。

2、练习二第2题

学生独立完成后,再要求说说写出的每个含有字母的式子分别表示哪个数量,是怎样想到写这样的式子的。

提醒学生:填出的含有字母的式子要进行化简。

3、练习二第5题

(1)先独立解答。

(2)交流,让学生说清楚自己解决问题时的思考过程,进一步明确列出的方程依据了怎样的数量关系。

四、全课总结: 这节课学习了什么内容?你有什么想要提醒大家注意?

五、作业: 练习二第3、4题。

人教版六年级数学上册全册导学案


人教版六年级数学上册全册导学案

人教版六年级数学上册全册导学案

【学习目标】1、认识圆,掌握圆的特征,理解直径与半径的关系。

2、会使使用工具画圆。3、培养观察、分析、综合、概括及动手操作能力。

【学习重难点】1、重点是通过动手操作,理解直径与半径的关系,认识圆.

2、难点是画圆的方法,认识圆的特征。

【学习过程】 一、复习。

1、我们以前学过的平面图形有哪些?这些图形都是用什么线围成的?

简单说说下面这些图形的特征?

长方形 正方形 平行四边形 三角形 梯形

2、圆是用什么线围成的?举例:生活中有哪些圆形的物体?

☆友情小提示:圆是一种曲线图形

二、探索新知

1、生活中哪些物体是圆形的?请你用生活中的物体试着在纸上画一个圆。并把它剪下,试着找出它的中心点。

2、自学课本p56---57

(1)在准备好的纸上画一个圆,并动手剪下。

(2)动手折一折。

(3)认识什么叫圆心?半径?直径?并在剪下的圆中分别标出。

(4)想一想:在同一个圆中有多少半径、多少直径?___________________________

直径和半径的长度有什么关系?__________________________________________

不在同一个圆中呢?____________________________________________________

☆友情小提示:①在同一个圆里,有无数条直径,且所有的直径都相等。

②在同一个圆里,有无数条半径,且所有的半径都相等。

③在同一个圆里,d=2r;

3、请试着用圆规画几个大小不同的圆。你能发现什么?说一说画圆的步骤和方法。

4、思考:圆和以前学过的平面图形有什么不同?

三、知识应用:独立完成P59“做一做”1、2、3、4题,组长检查核对,提出质疑。

四、层级训练:1、巩固训练:完成P60练习十四第1---4题。

2、拓展提高:在操场如何画半径是5米的大圆?

五、总结梳理: 回顾本节课的学习,说一说你有哪些收获?

学习心得__________( a.我很棒,成功了; b.我的收获很大,但仍需努力。)

自我展示台:(写出你的发现或见解)

课后反思:

--41--

六.当堂检测

1.填空

(1)连接圆心和( )任意一点的线段叫半径,通过圆心并且两端都在( )的线段叫直径。

(2)一个圆有( )条直径,所有的半径长度都( ),所有的直径长度也都( ),直径的长度是半径的( )倍。

(3)画圆时,圆规两脚间的距离就是圆的( ),如果圆规两脚间的距离是3cm ,画出的圆的直径是( )。

(4)将一个圆形纸片至少对折( )次可以得到圆心。

(5)甲圆的半径是4cm,乙圆的直径是8cm,那么甲、乙两圆的直径比是( )。

(6)如下图,大圆直径是8cm,,两个小圆的直径相等,那么两个小圆的半径是( )

(1)r=2cm (2)d=3cm

2.按要求在上面空白处用圆规画圆,并用字母O、r、d分别表示出它们的圆心、半径和直径。

3.如下图,在一张长方形的纸上剪下两个相等的小圆后,剩余部分正好可以再剪出一个正方形,求原来长方形的周长。

2cm

4.如图所示的的卡片上最多能剪出多少个半径是1cm的圆?

8cm

10cm

5.(探究题)在正方形里画一个最大的圆,圆的半径是3.5dm,正方形的面积是多少?

--42--

4-2 >导学案

学生___________班级______日期________

【学习目标】1、在前面所学过的成轴对称的平面图形的基础上,认识圆的对称轴。

2、认识到圆是轴对称图形,且对称轴有无数条。

3、培养动手操作能力,在操作中加深对所学平面图形的对称轴的认识。

【学习重难点】1、重点是圆的对称轴。 2、难点是画对称轴的方法。

【学习过程】

一、举例说出轴对称的物体。如:蝴蝶 、飞机、门窗、圆中的钟面、______________等。想一想这些图形有什么特点?

☆友情小提示:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。折痕所在的这条直线直线叫做对称轴。

二、探索新知

1、我们学过的平面图形中哪些是轴对称图形?分别有几条对称轴?

平面图形

等腰梯形

长方形

等边三角形

正方形

对称轴(条)

2、想一想:圆是轴对称图形吗?如果是它有几条对称轴?试着折一折,画一画。

3、阅读课本例3,想一想: 你能分别画出下面两个圆的对称轴吗?你能画出几条?

4、试画出圆的对称轴,观察、再动手折一折,你发现了什么?

☆友情小提示:圆有无数条对称轴。每一条直径所在的位置都是它的对称轴。

三、知识应用:独立完成P59“做一做”1、2 题。组长检查核对,提出质疑。

☆友情小提示:对称轴两侧相对点到对称轴的距离相等。

四、层级训练:1、巩固训练:完成练习十四第5—9题。

2、拓展提高:请你创造性地利用大小相同或大小不相同的圆(1—4个)设计出有一条,两条,三条,四条对称轴的组合图形。

五、总结梳理: 回顾本节课的学习,说一说你有哪些收获?

学习心得__________( a.我很棒,成功了; b.我的收获很大,但仍需努力。)

自我展示台:(写出你的发现或见解)

--43--

六、当堂检测

1、填空题

(1).圆是( )图形,它有( )对称轴。

(2).正方形有( )条对称轴,长方形有( )条对称轴,等腰三角形有( )条对称轴,等边三角形有()条对称轴。

(3).如果一个图形( ),这个图形就是轴对称图形,折痕所在的这条直线叫做( )。

图形

名称

等腰

三角形

等腰

梯形

长方形

等边

三角形

正方形

环形

对称轴

条数

2、判断题(对的打“√”,错的打“×”)

(1).梯形可以画出一条对称轴。( )

(2).对称轴两侧相对的点到对称轴的距离相等。( )

(3).圆只有一条对称轴。( )

3、画出下面各图形的对称轴,能画几条?

4、下列图形是轴对称图形的画出它的对称轴。

--44--

4-3 >导学案

学生___________班级_______日期________

【学习目标】1、理解圆的周长和圆周率的意义。

2、理解并掌握圆的周长公式,并能正确计算圆周长。

3、培养观察、比较、概括和动手操作的能力。

【学习重难点】1、重点是圆的周长和圆周率的意义,圆周长公式的推导过程。

2、难点是圆周长公式的推导过程。

【学习过程】

一、认识圆的周长。

1、 这是什么图形?什么是正方形的周长?怎样计算?

这个正方形周长与边长有什么关系?

___________________________________________________________

2、 什么是圆的周长?

指一指,圆的周长在那?那一部分是圆的周长?

得出定义:围成圆的曲线的长叫做圆的周长。

☆友情小提示:正方形的周长总是它边长的4倍(即C=4a)。

猜一猜:圆的周长是否是它的直径的常数倍?说说你的理由。

二、探索新知:圆周长的公式推导。

1、找三个大小不同的圆形物体,量一量它们圆面的周长与直径,并记录在p63的表格中。说一说你是如何测量的?

☆友情小提示:

A、用一根线,绕圆一周,减去多余的部分,再拉直量出它的长度,即可得出圆的周长。

B、把圆放在直尺上滚动一周,直接量出圆的周长。

2、观察表格,想一想周长与直径的比值有什么关系?通过表格数据你有什么发现?

_______________________________________________________________________

3、阅读课本P63,了解圆周率的知识,谈谈你的感受。推导圆的周长公式。

☆友情小提示:

圆的周长公式 C=πd 或 C=2πr ( 其中π=3.14 )

4、自学课本P64例一,说一说你的解题思路和方法。

三、知识应用:独立完成P64“做一做”1、2题,组长检查核对,提出质疑。

四、层级训练:1、巩固训练:完成练习十五的第1、5、8题。

2、拓展提高:判断下面各题的正误。

(1)圆的周长是直径的3.14倍。 ( )

(2)在同圆或等圆中,圆的周长是半径的6.28倍。 ( )

(3)C =2πr =πd ( )

(4)半圆的周长是圆周长的一半。 ( )

五、总结梳理: 回顾本节课的学习,说一说你有哪些收获?

学习心得__________( a.我很棒,成功了; b.我的收获很大,但仍需努力。)

自我展示台:(写出你的发现或见解)

--45—

六、当堂检测

1、填空题

(1)一个圆的周长是同圆直径的( )倍。

(2)有一个圆形鱼池的半径是10米,如果绕其周围走一圈,要走()米。

(3)画圆时,圆规两脚间的距离就是圆的( )。

(4)两端都在圆上的线段,( )最长。

(5)圆的半径和直径的比是( ),圆的周长和直径的比是( )。

(6)小圆的半径是6厘米,大圆的半径是9厘米。小圆直径和大圆直径的比是( ),小圆周长和大圆周长的比( )。

(7)用圆规画一个圆,如果圆规两脚之间的距离是6厘米,画出的这个圆的周长是( )厘米。

2、判断题。

(1)水桶是圆形的.( )

(2)两个圆的直径相等,它们的半径也一定相等.()

(3)π=3.14. ( )

(4)如果两个圆的周长相等,那么这两个圆的半径和直径的长度也一定分别相等.()

(5)圆只有一条对称轴.( )

(6)在一个圆里,两端都在圆上的线段叫做圆的直径。( )

(7)求圆的周长,用字母表示就是C=πd或C=2πr。( )

3、我来运用。

(1)饭店的大厅内挂着一只大钟,它的分针长48厘米。这根分针的尖端转动一周所走的路程是多少厘米?

(2)一个圆形的铁环,直径是40厘米,做这样一个铁环需要用多长的铁条?

(3)儿童公园有一个直径是15米的圆形金鱼池,在金鱼池周围要做4圈圆形栏杆,至少要用多少钢条?

(4)砂子堆在地面上占地正好是圆形,量出它一周的长度是15.7米,那么砂子堆的直径是多少米?

--46--

4-4 >导学案

学生___________班级______日期________

【学习目标】1、学会根据圆的周长求圆的直径、半径。

2、培养逻辑推理能力。 3、初步掌握变换和转化的方法。

【学习重难点】1、重点是求圆的直径和半径。2、难点是灵活运用公式。

【学习过程】

一、复习:求出下面各圆的周长。

4厘米

2厘米

1、圆的直径是2厘米, 2、圆的半径是4厘米,

求圆的周长是多少? 求圆的周长是多少?

已知:_____________________ 已知:__________________

求:_______________________ 求:____________________

解:_______________________ 解:____________________

二、、探索新知

1、探究下面的问题。

(1)你知道π表示什么吗?

(2)下面公式的每个字母各表示什么?这两个公式又表示什么?

C=πd C=2πr

(3)根据上两个公式推导下面的关系式:用字母表示为_____________________________

直径=周长÷圆周率 半径=周长÷(圆周率×2)

2、阅读练习十五第2题, ☆友情小提示 另一种解法:

理解题意,学习解答方法: 已知:c=3.77m

已知:c=3.77m 求:d

求:d 解:设直径是x米。

解:设直径是x米。 3.14x=3.77

3.77÷3.14 x=3.77÷3.14

≈1.2(米) x≈1.2

答:圆柱的直径是1.2米。 答:圆柱的直径是1.2米。

3、练一练:用一根1、2米长的铁条弯成一个圆形铁环,它的半径是多少?

(得数保留两位小数)

三、知识应用:求下面半圆的周长,选择正确的算式___________。

d=8厘米

⑴ 3、14×8

⑵ 3、14×8×2

⑶ 3、14×8÷2+8

四、层级训练:1、巩固训练:完成练习十五第3、4、6、7题。

2、拓展提高:练习十五第9、10题。

五、总结梳理: 回顾本节课的学习,说一说你有哪些收获?

学习心得__________( a.我很棒,成功了; b.我的收获很大,但仍需努力。)

自我展示台:(把你个性化的解答或创新思路写出来吧!)

--47—

六、当堂检测

1、填空题

(1)一个挂钟的时针长5厘米,一昼夜这根时针的尖端走了( )厘米。

(2)圆的半径是7厘米,它的周长是( )厘米,圆的直径是13米,它的周长是( )米。圆的周长是75.36分米,它的半径是( )分米。

(3)要在底面半径是14厘米的圆柱形水桶外面打上一个铁丝箍,接头部分是6厘米,需用铁丝( )厘米。

(4)圆周率表示( )

(5)已知圆的周长是106.76分米,圆的半径是( )。

2、判断题。

(1)圆的半径扩大4倍,圆的周长也扩大4倍.( )

(2)小圆半径是大圆半径的1/2 ,那么小圆周长也是大圆周长的1/2 。( )

(3)半圆的周长就是这个圆周长的一半。( )

3、应用题。

(1)一辆自行车轮胎的外直径是70厘米,如果每分转120周,一小时能行多少千米?(保留整千米数)

(2)一个铁环直径是60厘米,从操场东端滚到西端转了90圈,另一个铁环的直径是40厘米,它从东端滚到西端要转多少圈?

(3)一种汽车轮胎的外直径是1.02米,每分钟转50周,车轮每分钟前进多少米?

(4)一辆自行车的车轮半径是40厘米,车轮每分钟转100圈,要通过2512米的桥,大约需要几分钟?

(5)一座大钟的时针长30厘米,分针长40厘米。一昼夜时针和分针的针尖经过的路程是多少厘米?

--48--

4-5 >导学案

学生___________班级_______日期________

【学习目标】1、理解圆面积的含义,理解公式的推导过程,掌握圆面积的计算公式。

2、培养动手操作、抽象概括的能力,运用所学知识解决简单实际问题。

3、领会转化的数学思想。

【学习重难点】1、重点是理解圆面积的含义,圆面积的推导过程。

2、难点是理解圆面积公式的推导过程。

【学习过程】

一、复习。

1、已知r,周长的一半怎样求?

2、用手中的三角板拼三角形、长方形、正方形、平行四边形等,并说出这

些图形的面积计算公式。

☆友情小提示:

s=ab s=a2 s= ah s= ah s= (a+b)h

二、探索新知

1、什么是圆的面积?(对照实物感知一下)

☆友情小提示:圆所占平面大小叫做圆的面积。

2、推导圆的面积公式。阅读P67——68例1之前内容。

(1)操作:将等分成16份的圆展开,可拼成一个什么样的图形?

☆友情小提示:若分的分数越多,这个图形越接近长方形。

(2)看一看拼出的图形与圆的周长和半径有什么关系?

完成P68圆面积公式推导过程。

☆友情小提示:圆的半径 = 长方形的宽 圆的周长的一半 = 长方形的长

长方形面积 = 长 ×宽 圆的面积 = 圆的周长的一半×圆的半径

S = πr × r S圆 = πr×r = πr2

三、知识应用:独立完成P68例1,组长检查核对,提出质疑。

四、层级训练:1、巩固训练:完成课本P70第1、5题。

2、拓展提高:

(1)、根据下面所给的条件,求圆的面积。

r=5cm d =0、8dm

(2)、解答下列各题。

①一个圆形茶几桌面的直径是1m,它的面积是多少平方厘米?

②公园草地上一个自动旋转喷灌装置的射程是10m。它能喷灌的面积是多少?

五、总结梳理: 回顾本节课的学习,说一说你有哪些收获?

学习心得__________( a.我很棒,成功了; b.我的收获很大,但仍需努力。)

自我展示台:(写出你的发现或见解)

--49—

六、当堂检测

1、填空题。

(1)把一个圆分成若干等份,剪开拼成一个近似的长方形。这个长方形的长相当于( ),长方形的宽就是圆的( )。因为长方形的面积是( ),所以圆的面积是( ).

(2)圆的直径是6厘米,它的周长是( ),面积是( )。

(3)圆的周长是25.12分米,它的面积是( )。

(4)甲圆半径是乙圆半径的3倍,甲圆的周长是乙圆周长的( ),甲圆面积是乙圆面积的( )。

(5)一个圆的半径是8厘米,这个圆面积的3/4 是( )平方厘米。

(6)用圆规画一个圆,如果圆规两脚之间的距离是7厘米,画出的这个圆的周长是( )厘米。这个圆的面积是( )平方厘米。

(7)一个半圆半径是r,它的周长是( )。

2、计算

1.求圆的周长。

(1)r =4分米 (2)d=6厘米

2.求圆的面积。

r=3分米 (2)d=8厘米 (3)c=12.56米

3、应用题。

(1)有一只羊栓在草地的木桩上,绳子的长度是4米,这只羊最多可以吃到多少平方米的草?

(2)一种手榴弹爆炸后,有效杀伤范围的半径是8米,有效杀伤面积是多少平方米?

(3)一种铝制面盆是用直径30厘米的圆形铝板冲压而成的,要做1000个这样的面盆至少需要多少平方米的铝板?

(4)一张长30厘米,宽20厘米的长方形纸,在纸上剪一个最大的圆。还剩下多少平方厘米的纸没用?

(5)用一根长16分米的铁丝围成一个圆,接头处长0.3分米,这个圆的面积是多少?

--50--

4-6 >导学案

学生___________班级_______日期________

【学习目标】1、学会已知圆的周长求圆的面积的解题思路与方法,理解环形面积。

2、发展灵活综合运用知识的能力,运用所学的知识解决简单的实际问题。

3、发展逻辑思维能力。

【学习重难点】1、重点是培养综合运用知识的能力。

2、难点是发展逻辑思维能力。

【学习过程】

一、复习。

1计算(尽可能口算):

32 42 52 82 92 02

2π 3π 6π 10π 7π 5π

2、思考:(1)圆的周长和面积分别怎样计算?二者有何区别?

(2)求圆的面积需要知道什么条件?

(3)知道圆的周长能够求它的面积吗?

二、探索新知

1、阅读练习十六第3题,理解题意。讨论解题思路并解答。将正确解题格式写在反面。

☆友情小提示:C=__________ r=______________________________________

s=πr2=____________________________________________________

2、自学例题2,理解环形面积。说一说解题思路和方法。

☆友情小提示 环形的面积计算公式:S=πR2-πr2 或 S=π×(R2-r2)

三、知识应用:独立完成P69“做一做”第2题,组长检查核对,提出质疑。

四、层级训练:1、巩固训练:完成课本P70第4、6、7题。

2、拓展提高:

(1)、学校有个圆形花坛,周长是18.84米,花坛的面积是多少?选择正确算式_________

A、(18.84÷3.14÷2)2×3.14 B、(18.84÷3.14)2×3.14

C、18.842×3.14 D、(18.84÷3.14×2)2×3.14

(2)、环形铁片,外圈直径20分米,内圆半径7分米,环形铁片的面积是多少?

(3)、交流讨论P71第8题。

五、总结梳理: 回顾本节课的学习,说一说你有哪些收获?

☆友情小提示:求圆的面积时题中给出的已知条件有几种情况?怎样求出圆面积?

已知半径求面积: S=πr2

已知直径求面积: S=π( )2

已知周长求面积: S=π( )2

学习心得__________( a.我很棒,成功了; b.我的收获很大,但仍需努力。)

自我展示台:(把你个性化的解答或创新思路写出来吧!)

-51—

六、当堂检测

1、填空题。

(1).C=( ) = ( ) S= ( ) = ( ).

(2)已知圆的周长,d= ( ),r=( ) 。

(3)圆的半径扩大2倍,直径就扩大( )倍,周长就扩大( )倍,面积就扩大( )倍。

(4)用圆规画一个周长50.24厘米的圆,圆规两脚尖之间的距离应是( )厘米,画出的这个圆的面积是( )平方厘米。

(5)周长相等的长方形、正方形、圆,( )面积最大。

(6)圆的半径由6厘米增加到9厘米,圆的面积增加了( )平方厘米。

(7)要在一个边长为10厘米的正方形纸板里剪出一个最大的圆,剩下的面积是( )。

(8)要在底面半径是12厘米的圆柱形水桶外面打上一个铁丝箍,接头部分是8厘米,需用铁丝( )厘米。

(9)有大小两个圆,大圆直径是小圆半径的4倍,小圆与大圆周长的比是( ),小圆与大圆面积的比是( )。

(10)环形面积S=( )。

2、解答

(1)在一个圆形喷水池的周长是62.8米,绕着这个水池修一条宽2米的水泥路。求路面的面积。

(2)一个半圆形养鱼池,直径是4米,这个养鱼池的周长是多少米?占地面积是多少平方米?

(3)在一个直径是16米的圆心花坛周围,有一条宽为2米的小路围绕,小路的面积是多少平方米?

(4)一个环形铁片,内圆直径是14厘米,外圆直径是18厘米,这个环形铁片的面积是多少?

(5)一个环形的外圆半径是8分米,内圆半径5分米,求环形的面积?

(6)环形的外圆周长是18.84厘米,内圆直径是4厘米,求环形的面积?

(7)校园圆形花池的半径是6米,在花池的周围修一条1米宽的水泥路,求水泥路的面积是多少平方米?

(8)1轧路机前轮直径1.2米,每分钟滚动6周。1小时能前进多少米?

2自行车轮胎外直径71厘米,每分钟滚动100圈。通过一座1000米的大桥约需几分钟?

--52--

4-7 >导学案

学生___________班级_______日期________

【学习目标】1、通过练习理解并掌握圆的周长和面积的计算方法。

2、培养分析问题和解决问题的能力,发展空间观念。

3、灵活解答几何图形问题。

【学习重难点】1、重点是认真审题,分辨求周长或求面积。

2、难点是提高分析问题和解决问题的能力。

【学习过程】

r=3

厘米

d=7

厘米

一、复习。

1、求出下面圆的周长和面积并用彩

笔描出周长,用阴影表示出面积。

2、概 圆的周长是指圆一周的长度

念 圆的面积是指圆所围成的平面部分的大小。

3、计算 求圆的周长公式:C=πd 或 C=2πr

公式 求圆的面积公式:S=πr2

4、使用 计算圆的周长用长度单位

单位 计算圆的面积用面积单位

免费资源下载绿色圃中小学教育网 课件|教案|试卷|无需注册

二、练习。

1、判断下面各题是否正确,对的打“√”,错的打“×”。

(1)计算直径为10毫米的圆的面积的列式是3.14×(10÷2)?。 ( )

(2)半径为2厘米的圆的周长和面积相等。 ( )

(3)把一头牛栓在木桩上,木桩到牛之间的绳长3米,牛能吃到地上草的最大面积是28.26平方米。(栓绳处不计算在内) ( )

2、一个圆的周长是25、12米,它的面积是多少?

3、一个环形的铁片,外圆半径是7厘米,内圆半径是0、5分米,这个环形的面积是多少平方分米?

三、拓展提高:1、课本P72第9、10题。

2、了解课本P72“扇形和圆心角”的知识。

四、总结梳理: 回顾本节课的学习,说一说你有哪些收获?

☆友情小提示:

(1)圆的面积是指圆所围平面部分的大小,而圆的周长是指圆一周的长度。

(2)求圆面积公式是S=πr2 ,求圆周长的公式是 C=πd 或C=2πr。

(3)计算圆的面积用面积单位,计算圆的周长用长度单位。

学习心得__________( a.我很棒,成功了; b.我的收获很大,但仍需努力。)

自我展示台:(把你个性化的解答或创新思路写出来吧!)

--53--

五、当堂检测

1、填空题

(1)圆围成的曲线的长叫做圆的( ),用字母( )表示,圆无论大小它的周长总是直径长度的( )倍多一些。这个倍数是一个( )的数,我们把它叫做( ),用字母( )表示,取两位小数近似值约是( )。

(2)( )叫做圆的面积。

(3)把一个圆分成32等份,然后剪开拼成一个近似的长方形.这个长方形的长相当于( ),长方形的宽就是圆的( ).因为长方形的面积是( ),所以圆的面积是( )。

(4)圆的直径是6厘米,它的周长是( ),面积是( )。

(5)小圆的半径是2分米,大圆的半径是6分米,小圆和大圆的直径之比是( ),周长之比是( ),大圆和小圆的面积之比是( )。

(6)画一个周长是25.12厘米的圆,应该把圆规两脚间的距离定为( )。它的面积是( )。

(7)甲圆半径是乙圆半径的3倍,甲圆的周长是乙圆周长的( ),甲圆面积是乙圆面积的( )。

(8)圆的半径扩大3倍,直径扩大( )倍,周长扩大( )倍,面积扩大( )倍。

(9)半径是1.5厘米的半圆形求它的周长,列式是( )

(10)在面积是100平方厘米的正方形纸片上,剪下一个最大的圆,面积是( )。

(11)一个正方形的面积是20平方厘米,以这个正方形的边长为半径的圆面积是( )。

(12)半径是2厘米的圆中,画一个最大的正方形,其面积是( )。

(13)在一张长20厘米,宽16厘米的纸片上画一个最大的圆,这个圆的半径是( )厘米,周长是( )厘米,面积是( )平方厘米。

(14)一根铁丝可以围成一个直径是40厘米的圆,现在把它围成一个正方形,这个正方形的周长是在( ),面积是( )。

(15)一个时钟的时针长5厘米,这个时针的尖端一昼夜走了( )厘米。

(16)一辆自行车轮胎的外直径是60厘米,车轮每分钟转100周,这辆自行车每小时行( )千米。

(17)一只直径为50厘米的木桶外面要加一条铁箍,铁箍的接头处为2厘米,这条铁箍的长度为( )。

(18)一个半径是4分米的圆,如果半径减少2分米,它的周长减少( )分米。

2、解决问题

(1)一个圆形的铁环,直径是40厘米,做这样一个铁环需要用多长的铁条?

(2)一只大钟,时针长5分米,分针长7分米,它们的尖端转动一周各行多少距离?

(3)儿童公园有一个圆形的金鱼池,在金鱼池周围要做2圈直径是15米的圆形栏杆,至少要用多少钢条?

(4)砂子堆在地面上占地正好是圆形,量出它一周的长度是15.7米,那么直径是多少米?

(1) 一辆自行车轮胎的外直径是70厘米,如果每分转120周,一小时能行多少千米?(保留整千米数)

--54--

4-8 >导学案

学生___________班级_______日期________

【学习目标】1、通过掌握圆周长与面积的计算方法。

2、运用所学知识解决简单的实际问题。

3、养成认真审题的良好学习习惯。

【学习重难点】1、重点是掌握圆周长与面积的计算方法。

2、难点是提高运用所学知识解决简单的实际问题。

【学习过程】

一、周长与面积的区别

1、什么是圆?圆周长的计算公式是什么?圆面积的计算公式是什么?

r=2cm

2、看图计算。求出它的周长与面积。

(1)动手计算。

(2)周长与面积有什么不同?

☆友情小提示:概念不同,计算公式不同,单位不同。

二、运用所学知识解决实际问题

1、一个圆形花坛,直径是4米,周长是多少米?

2、一个圆形花坛,周长是12、56米,直径是多少米?

3、一个圆形花坛的半径是2米,它的面积是多少平方米?

4、一个圆形花坛的周长是12、56米,它的面积是多少平方米?

5、一个环形铁片,外直径是6米,内直径是4米,它的面积是多少平方米?

6、完成P73第1、2题。

三、综合练习

1、判断对错,

(1)圆的半径都相等。 ( )

(2)在同圆或等圆中圆周长约是半径的6、28倍。 ( )

(3)半圆的周长是圆周长的一半。 ( )

2、只列式不计算。

(1)一个圆形铁板的半径是5分米,它的面积是多少平方分米?

(2)一个圆形的铁板的直径是6分米,它的面积是多少平方分米?

(3)一个圆形铁板的周长是28、26分米,它的面积是多少平方分米?

3、说一说下面各题的解题思路。

(1)一个圆形花坛,直径是5米,小明围着它跑了5圈,小明一共跑了多少米?

(2)在草地的木桩上栓着一只羊,绳长3米,这只羊能吃到草的面积最大是

多少平方米?

四、层级训练:1、巩固训练:独立完成练习十七第1—3题。组长检查核对,提出质疑。

2、拓展提高:练习十七第4、5题。

五、总结梳理: 回顾本节课的学习,说一说你有哪些收获?

学习心得__________( a.我很棒,成功了; b.我的收获很大,但仍需努力。)

自我展示台:(写出你的发现或见解)

--55--

六、当堂检测

1、一个铁环直径是60厘米,从操场东端滚到西端转了90圈,另一个铁环的直径是40厘米,它从东端滚到西端要转多少圈?

2、一根铁丝长18.84米,正好在一个圆形铁圈上绕满50圈,这个线圈的半径是多少厘米?

3、有一个圆环,内圆半径是10厘米,外圆半径是15厘米,这个圆环的面积是多少平方厘米?

4、一个挂钟的分针长1.2分米,从12时到12时45分,分针尖移动了多少厘米?

5、在一个长8米,宽5米的长方形花池中,建了一个最大的圆形花池,圆池内种牡丹花,圆池外种茉莉花,各占地多少平方米?

6、一辆自行车的车轮半径是36厘米。这辆自行车通过一条1080米长的街道时,车轮要转多少周?(得数保留整数)

7、有一个直径是8米的圆形花坛,在它的外围修一条宽3米的小路,求这条小路的面积是多少?

3、把一个圆形纸片剪开后,拼成一个宽等于半径,面积相等的近似长方形。这个长方形的周长是24.84厘米,原来这个圆形纸片的面积是多少平方厘米?

4、在一个周长是12米的正方形中作一个最大的圆,这个圆的周长是多少?它的面积又是多少?

5、一根绳长2.4米,它的一头拴在木桩上,另一头拴着养(接头出不计)。这只养在草地上吃草的范围有多大?

6、一个圆和一个正方形的周长都是28.26厘米,它们的面积谁大?大多少?

12、在一张长10厘米、宽6厘米的长方形纸上,画一个最大的半圆。这个半圆的面积是多少?

13、压路机前轮直径5分米,后轮直径12分米,后轮转动10周,前轮转动多少周?

--56--

5-1 >导学案

学生___________班级_______日期________

【学习目标】1、理解百分数的概念,正确读、写百分数,解释生活中常见的百分数。

2、培养分析比较能力和抽象概括能力。

3、体验数学与日常生活的联系,树立学好数学的信心。

【学习重难点】1、重点是理解和掌握百分数的意义。

2、难点是正确理解百分数和分数的区别。

【学习过程】

一、复习。

1、回答:(1)7米是10米的几分之几?

(2)51千克是100千克的几分之几?

2、说出下面各个分数的意义,并指出哪个分数表示具体数量,哪个分数表示倍比关系。

(1)一张桌子的高度是 米。 (2)一张桌子的高度是长度的 。

☆友情小提示: 米表示0.81米,是一具体的数量; 表示把长度平均分成100份,桌子高度占81份,表示倍比的关系。

二、探索新知

1、认识百分数:爱迪生说:“天才就是99%的汗水加上1%的灵感”;

某校的近视人数占全校总人数的64%……像99%、1%、64%这样的数叫做“百分数”。

2、生活中哪些地方还见过百分数?选择P77任意一幅图,说说图中百分数的具体含义。

3、自学课本78页,举例说说百分数表示什么?并归纳出百分数的意义。

☆友情小提示:表示一个数是另一个数的百分之几的数,叫做百分数,

也可以叫做百分率或百分比。

4、百分数与我们学过的哪种数比较相似?百分数与分数有哪些区别与联系?

☆友情小提示:分数既可以表示一个数,又可以表示两个数的关系。而百分数只表示两个数的关系,它的后面不能写单位名称。

5、百分数的写法:通常不写成分数形式,而是在原来分子后面加上百分号“%”来表示。如: 百分之九十 写作:90%;

百分之六十四 写作:64%;

百分之一百零八点五 写作:108.5%。

☆友情小提示:写百分号时,两个圆圈要写得小一些,以免和数字混淆。

6、 百分数的读法:百分数的读法和分数的读法大体相同,也是先读分母,后读分子。

三、知识应用:独立完成P78“做一做”1、2、3题。组长检查核对,提出质疑。

四、层级训练:1、巩固训练:完成P79练习十八第1—4题。

2、拓展提高:练习册P71“百分数的意义和写法”练习题。

五、总结梳理: 回顾本节课的学习,说一说你有哪些收获?

学习心得__________( a.我很棒,成功了; b.我的收获很大,但仍需努力。)

自我展示台:(写出你的发现或见解)

--57--

六、当堂检测

(一)细心填写:

1、小明的作业全部完成,就是完成( )%,小军完成了一半,就是完成( )%。

2、六年级学生中男生有55%,也就是( )是( )的55%。

3、养禽场里的鸡比鹅多30%,也就是( )是( )的55%。

4、电视机厂计划生产电视机100台,实际生产112台,相当于原计划的( )%,超额完成计划的( )%。

5、“实际产量是计划的115%,是( )与( )相比较,实际比计划增产( )%。

6、今年用电比去年节约15%,今年用电相当于去年的( )%。

7、今年产值相当于去年的百分之一百零八,写作( ),今年产值比去年增加( )。

8、六年级植树500棵,活了450棵,活了的占总数的( )%。

(二)读出下列百分数:

10.6%读作:( ) 105%读作:( )

0.08%读作:( ) 100%读作:( )

5%读作:( ) 150%读作:( )

(三)写出下列百分数:

百分之九写作( ) 百分之十点五写作( )

百分之二百写作( ) 百分之一百零四写作( )

百分之零点零二写作( ) 百分之七十写作( )

(四)用阴影表示下列各百分数:

50% 42% 93% 8%

--58--

5-2 >导学案

学生___________班级_______日期________

【学习目标】1、能正确地把小数化成百分数或把百分数化成小数。

2、在探索百分数与小数互化的规律的过程中,发展抽象概括能力。

3、通过探索百分数和小数互化的规律,激发数学探索意识。

【学习重难点】1、掌握百分数和小数互化的方法。2、熟练地进行百分数和小数的互化。

【学习过程】

一、复习

1、百分数的意义是什么?__________________________________________

2、把下面的小数化成分数,并说一说是怎样化的?

0.1 0.23 0.731 1.99

3、把下面的分数化成小数,说一说是怎样化的?

4、把下面的分数化成百分数。

5、把下面各数扩大100倍是多少?小数点是怎样移动的?如果把它们缩小100倍是多少?小数点是怎样移动的?

2.5 5 0.48 1.25 10.3

二、探索新知

探究一:自学课本P80例1,完成填空,讨论归纳小数化成百分数的方法是什么?

(1)小数化成百分数,先把小数化成分母是( )的分数,再把这个分数改写成百分数。

(2)小数化成百分数,只要把小数点向( )移动( )位,同时在后面添上( )就行。

(说明:当小数点向右移动两位时,原数就扩大100倍,再添上百分号,又使它缩小100倍。所以原数大小是不变的。)

(3)小数化成百分数,在原数基础上乘以( )就行。如:0.234=0.234×( )=( )

(4)解决问题:你能把下面的小数化成百分数吗?

0.38 1.05

0.055 3

知识应用一:用你喜欢的方法完成第80页“做一做”第(1)题。

探究二:自学课本P80例2, 并补充完整。讨论归纳百分数化成小数的方法是什么?

(1)百分数化成小数,可以先把百分数改写成分母是( )的分数,然后再用分子除以分母,把分数转化成小数。

(2)把百分数化成小数,只要把( )去掉,同时把小数点向( )移动( )位就行。

(说明:当把百分数的百分号去掉时,原数就扩大了100倍;然后再把它的小数点向左移动两位,又使它缩小100倍,所以原数的大小不变。)

(3)解决问题:把下面的各百分数化成小数

15% 80% 3.5% 135%

知识应用二:用你喜欢的方法完成第80页“做一做”第(2)题。

三、总结梳理: 回顾本节课的学习,说一说你有哪些收获?

学习心得__________( a.我很棒,成功了; b.我的收获很大,但仍需努力。)

自我展示台:(把你个性化的解答或创新思路写出来吧!)

--59--

四、当堂检测

1、把下列各数按从大到小的顺序排列

1.4 0.123 27% 124% 0.25 0.4%

2、比较大小

0.52 ( )52% 1.2( )12.3% 254%( )0.254 0.25%( )0.025

3、把相等的数用线连接起来

0.25 130%

72% 0.176

0.415 25%

106% 0.72

1.3 1.06

17.6% 41.5%

4、判断,对的打“√ ”、错的打“ ×”。

(1)1.041=1041% ( )

(2)2%=0.02 ( )

(3)100%=1 ( )

(4)300%=0.3 ( )

(5)0.8%=0.08 ( )

--60--

5-3 >导学案

学生___________班级_______日期________

【学习目标】1、掌握百分数与分数互化的方法,并能正确的互化。

2、在学习的过程中培养分析思维和抽象概括能力。

3、注意口腔卫生,保持牙齿健康。

【学习重难点】1、重点是掌握百分数和分数互化的方法。

2、难点是正确、熟练地进行百分数和分数的互化。

【学习过程】

一、交流讨论:

百分数与小数互化的方法有哪些?你能利用已有的知识把百分数化成分数吗?

二、探索新知

1.自学课本P81例3,讨论归纳百分数化成分数的方法是什么?说说怎样爱护牙齿。。

☆友情小提示:先把百分数写成分母是100的分数,再约成最简分数。

2、想一想: 3.5%怎样化成分数?______________________________________________

☆友情小提示:如果百分数的分子是小数的,可以根据分数的基本性质,把分子、分母同时扩大相同的倍数,使分子变成整数后,再约分。

例如:12.5%= = =

3、尝试练习:P81“做一做”1、2题。

4、自学课本P82例4, 交流讨论以下问题:

(1)把分数化成百分数有那些方法?

(2)对于利用分子除以分母把分数化成百分数的方法中除不尽的情况下,保留几位小数?商要算到第几位?

☆友情小提示:分子除以分母,除不尽时,通常保留三位小数,也就是百分号前保留一位小数。例如: =1÷14≈0.071=7.1%

三、知识应用:独立完成P82“做一做”第1、2题,组长检查核对,提出质疑。

四、层级训练:

1、巩固训练:完成练习十九第3--6题。

2、拓展提高:练习十九第7、8题。

3、补充练习:选择题

(1)在7的后面添上百分号,这个数 ( )

A.大小不变 B.缩小100倍 C.缩小100%

(2)和25%不相等的数是 ( )

A.2.5 B.1/4 C.0.25

五、总结梳理

回顾本节课的学习,说一说你有哪些收获?

学习心得__________( a.我很棒,成功了; b.我的收获很大,但仍需努力。)

自我展示台:(把你个性化的解答或创新思路写出来吧!)

六、当堂检测

1、把下面的分数化成百分数:

= = = =

= = = =

= = = =

= = = =

10 = 5 = 201 = 4 =

≈ ≈ ≈ ≈

≈ ≈ ≈ ≈

2、把下面百分数化成分数:

28%= 160%= 0.8%= 5%=

75%= 24%= 65%= 125%=

3、先求出商,再化成百分数:

250÷150= 4.2÷7= 40÷160=

124÷50= 3÷8= 8÷12=

4、在□填上“>”、“

33%□ 0.75□75% 45%□ 99.9%□1 1 □1.25%

12□120% 0.55□5% 81.8%□ 100%□1 □2%

5、把下面各组数从大到小排列。

(1) 2.5 2 245% 2 (2)3.14 3.1 3.

2.5= =

2 = =

245%= =

2 = =

--62--

5-4 >导学案

学生___________班级_______日期________

【学习目标】1、理解发芽率、出粉率、合格率等这些百分率的含义。

2、能用求一个数是另一个数的几分之几的方法解答求一个数是另一个数

的百分之几的百分数应用题,解决生活中一些简单的实际问题。

3、培养知识迁移能力和数学的应用意识。

【学习重难点】1、重点是解答求一个数是另一个数的百分之几的百分数应用题。

2、难点是对一些百分率的理解。

【学习过程】

一、提出问题 1、口算比赛:(时间:1分钟)

― × 1― ÷ ÷

+ × + + ÷5

2、想一想,根据自己的口算情况,你能提出什么数学问题?

3、根据自己的口算情况回答“做对的题数占总题数的几分之几?

做错的题数占总题数的几分之几?”

4、能否将“做对的题数占总题数的几分之几”的分数应用题改成一道百分数应用题呢?

5、尝试解答各自的“做对的题数占总题数的百分之几”和“做错的题数占总题数的百分之几”的问题。

二、探索新知

1、自学课本P85例1(1),解决问题以下:

①达标学生的人数占总人数的几分之几? ②达标学生的人数占总人数的百分之几?

③它们之间有什么联系?

☆友情小提示:“求一个数是另一个数的百分之几的百分数应用题”与“求一个数是另一个数的几分之几的分数应用题”解法相同,关键是找准单位“1”,所不同的是,“求一个数是另一个数的百分之几的百分数应用题”计算的结果要化成百分数。

2、什么是达标率?求达标率时为什么要乘100%?计算结果有变化吗?

3、自学课本P85--86例1(2),解决问题以下:

①什么是发芽率? ②你还能说出一些百分率的例子吗?具体举些例说说怎么求?

4、思考:“某件产品的合格率是101%”这句话对吗?为什么?

5、尝试练习:P86“做一做”1、2题。

三、知识应用:独立完成P87第1--3题,组长检查核对,提出质疑。

四、层级训练:1、巩固训练:完成P87练习二十第4、6、7、8题。

2、拓展提高:练习二十第5、9、10题。

五、总结梳理: 回顾本节课的学习,说一说你有哪些收获?

学习心得__________( a.我很棒,成功了; b.我的收获很大,但仍需努力。)

自我展示台:(写出你的发现或见解)

--63---

六、当堂检测

1、20米是16米的( )%,20米比16米多( )%。

2、16米是20米的( )%,16米比20米少( )%。

3、比25少20%的数是( ),比16多25%的数是( )。

4、36比( )少20%,( )比20多10%。

5、甲数是120,乙数是甲数的40%,乙数是( ),丙数比甲数多40%,丙数是( )。

6、一块3平方米的菜地,把它平均分成8份,每份占整块地的( )%。

7、一个长方形,如果它的长增加50%,宽不变,面积就比原来扩加( )%。

8、五年级有女生90人,比男生少10%,女生与男生的比是( )。

9、一件衣服,原价240元,现价180元,降低了百分之几?

10、一种彩电原价每台2500元,现在价格降低了400元。降价百分之几?

11、一种彩电现价每台2100元,比原来降低了400元。降价百分之几?

12、三年级有学生360人,男生与女生人数比是5:4。三年级男生人数比女生多百分之几?

13、第一小学有480人,只有5%的学生没有参加意外事故保险。参加保险的学生有多少人?

14、生物小组进行玉米种子发芽试验,有285粒种子发芽,发芽率是95%,这次有多少粒种子试验?

15、看一本书,第一天看了84页,第二天比第一天少看40%,第二天比第一天少看多少页?第三天应从那一页开始看?

--64--

5-5 >导学案

学生___________班级_______日期________

【学习目标】1、掌握求一个数比另一个数多(或少)百分之几的问题的解答方法。

2、提高迁移类推和分析、解决问题的能力。

3、体会求百分率的用处和必要性。

【学习重难点】1、重点是掌握解决此类问题的方法。

2、难点是理解题中的数量关系。

【学习过程】

一、 复习

1、把下面各数化成百分数。

0.63 1.08 7 0.044

2.说说下面每个百分数的具体含义是什么?是怎么求出来的?

(哪两个数相比,把谁看作单位“1”)

(1)某种学生的出油率是36%。

(2)实际用电量占计划用电量的80%。

(3)李家今年荔枝产量是去年的120%。

二、探索新知

1、阅读P90例题2,复习铺垫,解决下面问题并在题中标出单位“1”。

(1)实际造林公顷数是原计划的百分之几?

(2)原计划造林公顷数是实际造林的百分之几?

2、解决问题(一):“实际造林比原计划增加百分之几?

(1)说说这句话的含义:

______________比_____________增加的公顷数占_____________的百分之几?

(2)请画线段图来表示数量关系。

(3)尝试解决问题。

(4)参照P90这两种解题方法你理解吗?说说解题思路。

3、解决问题(二):“原计划造林比实际造林少百分之几?”(用两种不同的方法)

4、在生活中找一找 “增加百分之几”“减少百分之几”“节约百分之几”……的例子,并说说如何解决这类问题?

☆友情小提示:解决这类问题要先弄清楚哪两个数相比,哪个数是单位“1”,哪一个数与单位“1”相比。

5、尝试练习:P90“做一做”

三、知识应用:独立完成P91第1、2题,组长检查核对,提出质疑。

四、层级训练:1、巩固训练:完成练习二十一第3--6题。

2、拓展提高:练习二十一第7、8题。

五、总结梳理: 回顾本节课的学习,说一说你有哪些收获?

学习心得__________( a.我很棒,成功了; b.我的收获很大,但仍需努力。)

自我展示台:(把你个性化的解答或创新思路写出来吧!)

--65--

六、当堂检测

1、20米是16米的( )%,20米比16米多( )%。

2、16米是20米的( )%,16米比20米少( )%。

3、比25少20%的数是( ),比16多25%的数是( )。

4、36比( )少20%,( )比20多10%。

5、甲数是120,乙数是甲数的40%,乙数是( ),丙数比甲数多40%,丙数是( )。

6、一块3平方米的菜地,把它平均分成8份,每份占整块地的( )%。

7、一个长方形,如果它的长增加50%,宽不变,面积就比原来扩加( )%。

8、五年级有女生90人,比男生少10%,女生与男生的比是( )。

9、一件衣服,原价240元,现价180元,降低了百分之几?

10、一种彩电原价每台2500元,现在价格降低了400元。降价百分之几?

11、一种彩电现价每台2100元,比原来降低了400元。降价百分之几?

12、三年级有学生360人,男生与女生人数比是5:4。三年级男生人数比女生多百分之几?

13、第一小学有480人,只有5%的学生没有参加意外事故保险。参加保险的学生有多少人?

14、生物小组进行玉米种子发芽试验,有285粒种子发芽,发芽率是95%,这次有多少粒种子试验?

15、看一本书,第一天看了84页,第二天比第一天少看40%,第二天比第一天少看多少页?第三天应从那一页开始看?

--66--

5-6 >导学案

学生___________班级_______日期________

【学习目标】1、掌握求稍复杂的已知一个数的百分之几是多少求这个数的应用题的解题方法,并能正确地解答这类应用题。

2、培养应用意识和解决简单的实际问题的能力。

3、感受数学与生活的联系。

【学习重难点】1、重点是掌握比一个数多(少)百分之几的应用题数量关系和解题思路。

2、难点是正确、灵活地解答这类百分数应用题的实际问题。

【学习过程】

一、复习铺垫

学校图书室原有图书1400册,今年图书册数增加了 。

增加了多少图书?_______________________________________________________

现在图书室有多少册图书?_______________________________________________

☆友情小提示:找出这道题目的分率句,确定单位“1”,并根据数量关系列式.

二、探索新知

1、阅读例3,理解题意(可以借助线段图),找出已知条件和所求的问题,明确这道题是把谁看成单位“1”。

2、思考:从“今年图书册数增加了12%”这句话中,你能知道些什么?

☆友情小提示:① 今年图书增加的部分是原有的12%。

② 今年图书的册数是原有的112%。(即1+12%=112%)

3、交流讨论,解决问题(尝试用两种不同的方法解答)

4、参照P93,说说这两种解法的解题思路。

5、思考:百分数应用题和相应的分数应用题有什么相同和不同的地方?

☆友情小提示:求一个数的几分之几和求一个数的百分之几,都要用乘法计算。

6、尝试练习:完成P93“做一做”第1、2题。

1、解:_____________________ 2、解:_______________________

_________________________ __________________________

_________________________ __________________________

_________________________ __________________________

_________________________ __________________________

_________________________ __________________________

答:_____________________ 答:______________________

三、知识应用:独立完成P94第1--4题,组长检查核对,提出质疑。

四、层级训练:1、巩固训练:完成练习二十二第5--10题.

2、拓展提高:练习二十二第11--14题

五、总结梳理: 回顾本节课的学习,说一说你有哪些收获?

学习心得__________( a.我很棒,成功了; b.我的收获很大,但仍需努力。)

自我展示台:(把你个性化的解答或创新思路写出来吧!)

--67--

六、当堂检测

1、为了缓解交通拥挤的状况,某市正在进行道路拓宽。团结路的路宽由原来的12m增加到25m,拓宽了百分之几?

2、城关一小和城关二小的男生人数分别占全校学生总人数的52%。城关一小有学生800人,城关二小有学生750人,哪个学校的男生多?多多少人?

3、(1)五年级一班男生40人,是女生的25%,女生有多少人?

(2)五年级一班男生40人,比女生多25%,女生有多少人?

4、小红做了80道口算题,比小花多做20道。小花做题的数量是小红的百分之几?

5(1)一件西服原价480元,现价比原价便宜20%。现价多少元?

(2)一件西服原价480元,现价比原价便宜20%。现价比原价便宜多少元?

(3)一件西服现价480元,现价是原价的80%。原价多少元?

(4)一件西服现价480元,现价比原价便宜20%。原价多少元?

(2) 一件西服现价比原价便宜96元,便宜了20%。现价多少元?

6、养鸡场用2400个鸡蛋孵小鸡,有5%没有孵出来。孵出来的小鸡有多少只?

7、养鸡场用一些鸡蛋孵小鸡。有120个没有孵出来,占鸡蛋总数的5%。养鸡场一共用了多少个鸡蛋孵小鸡?

8、油菜子的出油率是42%,2100千克油菜子可以榨油多少千克?

--68--

5-7 >导学案

学生___________班级_______日期________

【学习目标】1、明确折扣的含义。能熟练地把折扣写成分数、百分数。

2、正确解答有关折扣的实际问题。

3、学会合理、灵活地选择方法,锻炼运用数学知识解决实际问题的能力。

【学习重难点】1、重点是会解答有关折扣的实际问题。

五、 难点是合理、灵活地选择方法,解答有关折扣的实际问题。

【学习过程】

五、交流讨论:

春节将至,各商家一般都搞哪些促销活动?谁来说说他们是怎样进行促销的?

二、探索新知

1、生活中哪些地方见过“打折”?举例说说。

2、自学课本P97“折扣”

(1)理解什么是“打折”?

(2)几折表示什么?

(3)例4中“八五折”,“九折”表示什么?

(4)写出几个折数,并把它化成相应的分数和百分数。

☆友情小提示:“几折”就是十分之几,也就是百分之几十。

3、阅读P97例4,理解题意,补充完整。(有困难可以交流讨论)

☆友情小提示 分析题意:打八五折怎么理解?是以谁为单位“1”?

4、尝试练习:P97“做一做”

5、阅读P103“什么是‘成数’?”

“成数”与“折数”有什么区别与联系?

6、思考:一件商品先打九折出售后,再涨价10%,现在的价格与原价一样吗?

三、知识应用:独立完成,组长检查核对,提出质疑。

1、填空

①四折是十分之( ),改写成百分数是( )。

②六折是十分之( ),改写成百分数是( )。

③七五折是十分之( ),改写成百分数是( )。

④九二折是十分之( ),改写成百分数是( )。

五、判断:

① 商品打折扣都是以原商品价格为单位“1”,即标准量。( )

② 一件上衣现在打八折出售,就是说比原价降低10%。( )

3、爸爸买了一个随身听,原价160元,现在只花了九折的钱,比原价便宜了多少钱?

四、层级训练:1、巩固训练:完成P101第1、3题。

2、拓展提高:P101第2题。

五、总结梳理: 回顾本节课的学习,说一说你有哪些收获?

学习心得__________( a.我很棒,成功了; b.我的收获很大,但仍需努力。)

自我展示台:(写出你的发现或见解)

--69--

六、当堂检测

1(1)五成八改成百分数是( ).

(2)一件上衣打八折出售,就是说比原价降低( ).

(3)去年水稻总产量1000吨,今年比去年增产一成,今年水稻总产量( )吨.

(4)录音机原价600元,现价420元,打( )折出售.

(5)一件商品打九折销售后的售价是720元,这件商品原价( )元.

2、一种品牌的空调每台2500元,在甲商场这种品牌的空调打九折出售,在乙商场这种品牌的空调按“买一台送200元”出售。哪家商场卖得更便宜些?

3、一种玩具国庆搞促销活动,按八五折优惠出售,每只玩具只买17元,一只玩具比原价便宜了多少元?

4、一件衣服原价120元,先提价20%,后又按八折销售,现价是多少元?

5、一件外套,原价240元,商家搞活动,准备八五折出售,现在这件外套的标价应该是多少

6、学校给每个学生分配一个水杯,每只3元,南海商城打七五折,天汇商厦“买四送一”。学校想买100只水杯,请你当参谋,算一算:到哪家购买比较合算?

7、妈妈买一件标价为498元的大衣,参加大八折的活动,妈妈付给营业员400元,应找回多少元?

9、春节即将来临,各大商场纷纷出计促销。其中有一种瓜子,大包每包12元,小包每包4元。收集到以下信息:“新一百”商场买1大包送1小包;“天天惠”商场一律打九折;“家得利”商场满30元后打八折。现在小丽想买这种瓜子2大包4小包。请你给小丽当参谋,她该选择哪家商场去买最合算?(请结合计算说明)

--70--

5-8 >导学案

学生___________班级_______日期________

【学习目标】1、知道纳税的含义和重要意义,知道应纳税额和税率的含义,以根据具体的税率计算税款。

2、在计算税款的过程中,加深对社会现象的理解,提高解决问题的能力。

3、增强法制意识,知道每个公民都有依法纳税的义务。

【学习重难点】1、重点是税额的计算。

2、难点是税率的理解。

【学习过程】

一、复习铺垫:口答算式。

(1)100的5%是多少? (2)50吨的10%是多少?

(3)1000元的8%是多少? (4)50万元的20%是多少?

二、探索新知

1、自学课本98页有关纳税的内容。

(1)了解什么是纳税?都有哪些税收?(在书上划出并理解记忆)

(2)什么是应纳税额?什么是税率?(在书上划出并理解记忆)

(3)根据你身边的事情说一说纳税的意义?

(4)说说怎样求税率?怎样求应纳税额?

人教版六年级数学上册总复习教案


人教版六年级数学上册总复习教案

单元教学目标:

通过总复习,系统、全面地复习和整理本学期所学知识,帮助学生构建合理的知识体系,以便学生更好地理解和掌握所学的概念、计算方法以及有关的规律性的知识,进一步发展学生的数概念、空间概念、统计概念,增强学生综合运用知识的能力,全面达到本学期的教学目标。

第一课时 总复习——分数乘、除法

教学内容:教材第118页总复习第1——5题。

教学目标:

1.理解分数乘、除法的意义、倒数的意义,分数乘除法的关系,掌握分数乘、除的计算方法,能正确地进行分数乘除法的计算。

2.掌握比的意义,理解比与分数、除法的关系,比的基本性质,会求比值和化简比。

3.掌握解决分数乘除法问题的思路,能熟练地分析数量关系,正确地解决分数除法问题。

教学重点:概念和计算方法。

教学难点:掌握解决分数乘,除法问题的思路和方法。

教学过程:

一、分步复习活动准备

将学生课前就本节复习内容提出的知识性问题和难点问题分类整理,制成问题卡,交由3位学生主持复习。

师:同学们,经历了将近一个学期的学习,大家都有不同程度的收获,为了帮大家更好地复习整理本节知识,我们请3位同学分别主持复习。现在请第一位主持人出场。

二、复习分数乘除法的知识

1.主持人持知识问题卡提出问题,分别指名回答。

分数乘法的意义是什么?与整数乘法相同吗?

分数除法的意义是什么?与整数除法相同吗?

分数乘法的计算法则是怎样的?

什么叫倒数?怎样求一个数的倒数?

分数除法的计算方法是怎样的?

2.主持人持难点问题卡提出问题,指名回答。

分数乘、除法的关系是怎样的?

分数除法的计算具体要注意几点?

0有倒数吗?为什么?1呢?

3.教师组织学生活动

计算。

3/4×2/5= 2/3×5/6= 7/9×18= 3/10÷3/4= 5/9÷5/6=

21÷7/9= 3/10÷2/5= 5/9÷2/3= 6/11÷5/12=

4.复习比的知识

第二位主持人提出问题,学生回答。

知识性问题:

什么叫比?比的各部分名称是怎样的?举例说明?

怎样求比值?

比与分数、除法有什么联系?

比的基本性质是什么?怎样化简比?

难点问题:

为什么比的后项不能为0?

求比值与化简比有什么区别?

练习:

3÷4=()/()=()/12=():32=12:()

说出下面每个比的前项、后项,并求出比值。2:5 0.6÷0.3 4/7

把下面各比化成最简整数比. 8:12 0.25:0.45 1/4:1/8

(5)复习解决问题的解题思路和方法。

第三位主持人上场。

怎样解决分数乘除法问题呢?

主持人点4名同学板演教材第118页第3、4、5题。

对4名学生做的情况进行评议。

对比观察第3题第(1)(2)小题。

数量关系式是:原价×1/5=现价

第(1)小题已知原价求现价,用乘法计算。第(2)小题已知现价求原价,用除法计算或用方程解。

学生归纳分数乘除法问题的规律。

单位“1”的量已知,求一个数的几分之几是多少,用乘法计算;

单位“1”的量未知,已知一个数的几分之几是多少,求这个数,用除法计算。

验证第4、5题。

第4题,把地球总面积看作单位“1”,求单位“1”的量用除法计算。

第5题,先出示学生画的线段图。观察线段图结合理解:火车的速度已知,第1个单位“1”的量是火车的速度,求小汽车的速度用乘法计算,第二个单位“1”的量是喷气式飞机的速度,是未知的,要用除法计算。

主持人归纳:区分分数乘、除法问题,判断把谁看作单位“1”以及是已知还是未知,这是非常关键的一步,此外还应借助线段图分析数量关系,真正掌握知识。

师:归纳得真好。今天三位主持人在场上还有很多精彩表现,请同学们评一评。

三、应用练习

(1)完成练习二十七第5题。

(2)完成练习二十七第10、11题。

(3)完成练习二十七第7、8题,学生做后 思路和方法。

四、课堂小结

通过这节课的复习活动,你的学习有什么新的收获?

第二课时 总复习——百分数

教学内容:教材第119页总复习第6、7题。

教学目标:

1.理解百分数意义,掌握百分数和分数、小数的互化方法。

2.熟练运用百分数知识解决百分数问题,理解百分数问题的结构特征,归纳百分数问题的解题思路和方法。

3.培养学生解决问题的能力。体验百分数知识与日常生活的密切联系,培养学生应用知识的意识。

教学重点:运用百分数知识解决实际问题。

教学难点:归纳知识,形成体系。

教学过程:

一、创设情境导入

师:同学们,百分数在我们的生活中无处不有,只要我们留心它,发现它就在我们身边。

1.投影出示下面一段文字:

湖南汩罗义务教育阶段学生流失率低得令人咋舌。10年前初中是2.5%,小学是0.02%,现在小学连续10年的入学率,巩固率均为100%,初中流失率始终控制0.2%,近三年的数字是0.18%,0.17%和0.15%.

2.学生阅读文字,感知其中百分数。

3.从上面一段文字中你能发现什么?

从上面的百分数中中以看出汩罗义务教育实施情况非常理想;运用百分数很能够直观;百分数在实际应用中表示两个量之间的关系,一个量是另一个量的百分之几。

二、复习百分率的知识

1.师:看来,百分数的作用还真不小。你能理解上文中百分率的意思吗?

学生尝试理解流失率、入学率、巩固率的意思,教师指正。

2.复习已学过的一些百分率的计算公式。

3.学习理解烘干率和含水率。

完成教材第119页总复习第6题。

学生自学理解烘干率和含水率的意思,然后说一说,议一议。

烘干率=烘干后的重量/烘前的重量×100%

含水率=(烘前的重量-烘干后的重量)/烘前的质量×100%

学生试求烘干率和含水率,然后集体订正。

三、复习百分数的一般 。

1.求一个数比另一个数多(或少)百分之几。

2.求一个数多(或少)百分之几的数是多少

师;我们已经学习了运用百分数知识解决百分数的一般问题。现在大家回顾已学知识,把你掌握的方法告诉小组的成员。

分组讨论,交流分析问题的思路和解决问题的方法。

小组汇报。可能有以下几种:

解决百分数的问题可以依照解决分数问题的方法。

在分析问题时,可以先画线段图加深理解,判断单位“1” 的量是已知还是未知,找对应关系,写数量关系式。

根据百分数题型结构特征确定解法。

多(少)的数/另一个数=一个数比另一个数多(少)百分之几

一个数×(1+几%)=比一个数多(或少)百分之几的数。

综合问题结合实际来解答。

四、应用练习

1.完成总复习第7题

学生试做,指名板演。

方法一:(2622—2476)÷2476=146÷2476≈5.9%

方法二:2622/2476-1≈1.059-1≈5.9%

引导学生比较两种思路方法。

2.完成练习二十七第13题。

学生独立完成,然后说说各自的思路.

3.完成练习二十七第14、15题。

教师:九折是什么意思?

利息怎样计算?本息又是什么意思?

学生独立完成。

学生在班上交流。

五、课堂小结

通过这次学习活动,你有什么新的收获?

板书设计:

百分数——一个数是另一个数的百分之几

(1)百分率=()/()×100%

(2)一个数比另一个数多(少)百分之几

多(少)的数/另一个数多(少)百分之几

(3)比一个数多(少)百分之几的数是多少?

一个数×(1+N%)=比一个数多(少)百分之几的数

(4)售价×几折=实付钱数

收入×税率=应纳税额

利息=本金×利率×时间

第三课时 总复习——空间与图形

教学内容:教材第110、120页第8——10题。

教学目标:

1.进一步学习按行、列确定物体的位置,用数对确定物体的位置。

2.理解和掌握圆和轴对称图形的有关概念,圆的周长和面积的计算公式,并能正确地计算圆的周长与面积。

3.经历空间与图形知识的整理运用过程,体验应用知识,归纳概括的方法。

教学重点:掌握物体的位置,圆的特征、特性。

教学难点:掌握圆的周长和面积的计算。

教学过程:

一、复习物体的位置。

出示教材第119页第8题主题图。师:图上画了什么?引导学生观察主题图。

我们怎样确定物体的位置呢?

师:确定物体位置的方法有两种,即按行、列确定物体的位置,用数对确定物体的位置。

你能说出每一手棋所下的位置吗?

组织学生在小组中相互说一说,再指名汇报。

二、复习圆的知识

(出示一个圆)师;我们已经学习了有关圆的知识,你知道哪些知识呢?

组织学生在小组中交流、讨论,相互说一说,教师根据学生的汇报板书:

1.圆的认识。

圆心。用字母O表示,确定圆的位置。

半径。用字母r表示,从圆心到圆上任意一点的线段叫半径。决定圆的大小。

直径。用字母d表示,通过圆心并且两端都在圆上的线段叫做直径。

半径与直径的关系。在同一个圆里,所有半径都相等,所有直径都相等。

直径等于半径的2倍,即d=2r或r=d/2

2.轴对称图形及对称轴

等腰三角形、等边三角形、长方形、正方形、菱形、等腰梯形、圆都是轴对称图形,它们各有1条、3条、2 条、4条、2条、1条、无数条对称轴。

3.圆的周长

圆周率。圆的周长与直径的比值叫圆周率。用字母∏表示,是一个无限不循环小数。

圆的周长的计算公式。C=∏d或C=2∏r。

4.圆的面积

知道半径求圆的面积。S=∏r2

知道直径求圆的面积。S=∏(d/2)2

知道周长求圆的面积。S=∏(C/2∏)2

知道近似长方形的宽求圆的面积。

知道近似长方形的长求圆的面积。

5.环形的面积

环形的面积=大圆面积—小圆面积

=∏R2—∏r2

=∏(R2—r2)

三、巩固练习

练习二十七第1、11、12题。学生独立完成,教师巡视 ,再集体讲解。

四、课堂小结

通过这节课的学习活动,你又有哪些收获?

第四课时 总复习——统计

教学内容:教材第120页第11题。

教学目标:

1.了解统计在生活中的应用,掌握扇形统计图的特点。

2.会根据统计图,提出数学问题,并分析解决数学问题。

3.经历扇形统计图的认识过程,体验直观观察,分析问题的学习方法。

教学重难点:会根据统计图分析数据。

教学过程:

一、回顾。

1.统计在生产生活中有哪些应用?

组织学生在小组中议一议,然后指名说一说。

2.扇形统计图有什么特点?

扇形统计图能够清楚地表示出部分与整体的关系。

二、分析扇形统计图

出示某企业职工的文化程度情况扇形统计图

引导学生观察统计图,获取信息。

问:该企业职工中,哪种文化程度占的比重最多?

以下说法正确的是()

A该企业大学文化程度的职工占1/4。

B该企业职工中,中专生与初中生之和多于高中生。

C该企业职工中没有文盲。

D以下说法都对。

在该企业职工中,哪两种文化程度的人数相等?

若该企业有职工1000人,那么小学文化程度的职工有多少人?

该企业职工中,有大学文凭的人比有高中文凭的人少多少?

你还能提出什么问题?

组织学生在小组中讨论并相互交流,然后指名汇报。

三、请你用扇形统计图表示出下面的信息,然后回答问题。

超市一天的销量中,服装类占35%,烟酒类占30%,文化用品类占20%,糖果类占10%,药类用品占5%。如果超市一天的收益是5500元,算一算,每一类用品分别收益多少元?

四、巩固练习

教材第120页第11题。

教材练习二十七第16、17题。

学生独立完成,指名板演,全班集体订正。

五、课堂小结。

通过这节课的学习活动,你有什么收获?

人教版六年级数学上册第三单元教案


人教版六年级数学上册第三单元教案

内容 分数除以整数(例1、例2)

目标 1、引导学生在具体的情景中借助已有的经验理解分数除法的意义并掌握分数除法的计算方法,能正确计算分数除以整数。

2、通过富有启发性的问题情景和探索性的学习活动,引导学生主动参与、独立思考、合作交流,形成计算技能。

教学重难点 1、分数除法意义的理解;

2、分数除以整数的算法的探究。 修改意见

教学过程 一、创设情景导入:

1、同学们,你们去过超市购物吗?(去过)你去买了一些什么东西呢?你有没有过相同的东西买几件的时候?能不能举个例?(指名让学生举例并用算式表示求该例的总价)

二、新知探究:

(一)分数除法的意义

1、出示例1的教学挂图,让学生看图观察图意,指名口答图意和应该怎样列式。

2、上面的问题能改编成用除法计算的问题吗?(学生独立思考,口答问题和列式)

3、100g=?kg,你能将上面的问题改成用kg作单位的吗?(引导学生将整数乘除法应用题改变成分数乘除法应用题)

4、引导学生观察比较整数乘除法的问题和改写后的问题,分析得出整数除法和分数除法的联系以及分数除法的意义。

5、练习:(

巩固加深对意义的理解)课本28页做一做。学生独立练习,订正时让学生说明为什么这样填。

(二)、分数除以整数

1、小组学习活动:

活动⑴把这张纸的4/5平均分成2份,每份是这张长方形纸的几分之几?

活动⑵把这张纸的4/5平均分成3份,每份是这张长方形纸的几分之几?

[活动要求]先独立动手操作,再在组内交流:通过折纸操作和计算,你发现了什么规律?你有什么问题要提出来?

2、汇报学习结果:

活动1

学生甲,把4/5平均分成2份,就是把4个1/5平均分成2份,1份就是2个1/5,就是2/5;用算式表示是:4/5÷2=(4÷2)/5=2/5

学生乙,把4/5平均分成2份,每份就是4/5的1/2,就是4/5×1/2;用算式表示是:4/5×1/2=4/10=2/5;

学生丙,我发现了计算4/5÷2时,可以用分子4÷2作分子,分母不变;

学生丁,我发现分数除以整数可能转化成乘法来计算,也就是乘以这个整数的倒数;

活动2:

学生甲,4要平均分成3份,不能直接分,我先找出4和3的最小公倍数12,把4分成12份,再把12份平均分成3份,算式可以用4/5÷3表示,4不能够被3整除,这道题我不知道怎样计算;

学生乙,我的分法与前面的同学相同,不同的是:我在计算4/5÷3时,我把4/5÷3转化成4/5×1/3来计算,因为,把4/5平均分成3份,就是求4/5的1/3是多少。

讨论:

1、从折纸实验和计算来看,你发现计算分数除以整数可以怎样计算?

2、整数可以为0吗?

小结并板书:分数除以一个不等于0的整数,等于分数乘以这个整数的倒数。

三、巩固与提高

3、把3/5平均分成4份,每份是多少;什么数乘6等于3/20?

4、如果a是一个不等于0的自然数,1/3÷a等于多少?1/a÷3等于多少?你能用一个具体的数检验上面的结果吗?

四、作业练习

板书设计:

分数除法——分数除以整数

例1每盒水果糖重100g,3盒重多少g?例2把一张纸的4/5平均分成2份,每份是这张纸100×3=300g→1/10×3=3/10g 的几分之几?

3盒水果糖重300g,每盒子重多少g? 4/5÷2=(4÷2)/5=2/5 4/5÷2=4/5×1/2=2/5

300÷3=100g→3/10÷3=1/10g 如果把这张纸的4/5平均分成3份,每份是

300g水果糖,100g装1盒,可以装几盒? 这张纸的几分之几?

300÷100=3(盒)→3/10÷1/10=3(盒)

4/5÷3=4/5×1/3=4/15

除以一个不等于0的整数,等于分数乘以这个整数的倒数。

诸暨市草塔镇南屏小学电子教案

执教 时间 年 月 日

教学内容 一个数除以分数(例3)

教学目标 1、通过画线段图引导学生分析并归纳一个数除以分数的计算法则。

2、能运用法则,正确迅速地计算分数除法。

3、培养学生抽象思维能力。

教学重难点 分析并归纳一个数除以分数的计算法则,理解一个数除以分数的算理 修改意见

教学过程 一、复习导入

1、计算:5/6÷10 3/5÷3 15/16÷20 40/39÷26

(说一说,你在计算中如何尽量避免错误的产生?在计算中要注意什么?)

2、胜利路长1000米,东东走完全程用了20分钟,东东平均每分钟行多少米?

(独立解答并且说明解题依据)

3、2/3小时有()个1/3小时,1小时有()个1/3小时。

二、新知探究:

1、教学例3:小明2/3小时走了2km,小红5/12小时走了5/6 km,谁走得快些?

师:已知什么?

生:已知小明和小红各自的时间和对应的路程。

师:问题求什么?

生:求谁走的快些。

师:求谁走得快些?就是比较什么?

生:就是比较谁的速度快。

师:你能根据题意列出算式吗?

生:2÷2/3 5/6÷5/12

2、除数是分数的除法计算方法的探究:

引导学生画线段图分析:

师:2/3里有几个1/3?2/3小时走了2 km,能不能求出1/3小时走多少千米?

生:2/3里有2个1/3,求1/3小时走了多少千米可以用

2 km÷2,也就是2km×1/2;

师:2 km÷2得到的1km,有什么具体的含义?是线段图上的哪一段?

生:略

师:1小时里有几个1/3小时,能求1小时行多少千米了吗?

生:2×1/2×3=2×3/2=3 km。

指导学生观察:2÷2/3=2×1/2×3=2×3/2=3

( 提示:观察2÷2/3=2×3/2这一步)

师:这儿把除法转化成什么运算来计算?除以2/3=?

生:把除法转化为法来计算,除以2/3等于以3/2。

师:你能用自己的语言叙述整数除以分数的计算方法吗?

(有语言叙述、用字母表示等都行,只要是正确的都肯定学生的结论)

师:请你观察上面和算式,怎样把除法转化成为乘法来进行计算?你能说出转化的要点吗?

生:1、被除数没有变化;2、除号变乘号;3、除数变成了它的倒数。

3、学生独立计算5/6÷5/12 订正并板书:

4、让学生根据分数除法的意义检验后作答。

三、巩固与提高:

1、31页做一做第1题和第2题的后两个小题。

(做完1题后,让学生把每个算式完整地读一遍,然后再完成第2题,第二题要求学生要写出计算过程。)

2、练习八第2题的后4个小题。

(在学生完成此题时,教师指导好思维慢的学生先算出乘法算式的积,再找出两题之间的关系)

四、全课小结:

1、今天我们共同研究了什么知识?

2、你能用一句完整的话来说一说今天的主要内容吗?

3、你认为在完成课后作业时,应该从哪些方面尽量避免错误的产生?

五、作业练习:练习八第3、4题。(第3题在学生做完题后,引导学生将题中的4/5改成小数,用小数除法加以验证。)

反思

诸暨市草塔镇南屏小学电子教案

执教 时间 年 月 日

教学内容 分数除法练习

教学目标 1在理解分数除法算理的基础上,正确熟练地进行分数除法的计算;

2运用所学的分数除法的知识,解决相应的实际问题.

教学重难点 修改意见

教学过程 一、基础知识练习:

1、计算:

⑴ 2/13÷2 8/9÷4 3/10÷3 5/11÷5

22/23÷2

⑵ 3/10÷2 23/24÷26 17/21÷51 8/9÷7

13/15÷4

(学生独立计算,教师巡视指导,订正时让学生说一说是怎样计算的.)

2、通过计算下面的题,请你想一想,除数是整数和除数是分数的除法在计算上有什么相同的地方?

引导学生小结:除以一个不等于0的数,等于H这个数的倒数.

二 深入练习

1、计算下面各题,比较它们的计算方法.

5/6+2/3 5/6-2/3 5/6×2/3 5/6÷2/3

2、

(让学生计算后分组讨论:你发现了什么规律?请你把你发现的规律完整地讲给大家听听。)

根据学生的回答,教师作如下板书:

一个数除以小于1的数,商大于被除数;

一个数除以1,商等于被除数;

一个数除以大于1的数,商小于被除数。

三、解决问题:

练习八第7至8题。

第7题学生独立解答。

第8题学生解答时提示学生需要先统一单位。

小结三道题的共同特点:都是求一个量里包含多少个另一个量,都用除法计算。

四、作业练习:

1、33页第5、9题。

2、 一个商店用塑料袋包装120千克水果糖.如果每袋装1/4千克,这些水果糖可以装多少袋?

诸暨市草塔镇南屏小学电子教案

执教 时间 年 月 日

教学内容 例4,练习九第1---4题

教学目标 1、正确解答两三步计算的分数四则混合式题。

2、运用学过的知识,解答两步计算的较简单的分数应用题。

教学重难点 1、两三步式题的正确计算。

2、培养和训练学生运用所学知识解决问题的能力。 修改意见

教学过程 一:复习铺垫

1、填空:

除以一个不等于0的数,等于( )。

2、口算:

3/5÷3 3/7×2 2/5—1/5 1/4÷2/3

1/2÷3 3÷3/5 1/3+1/2 6×1/3

3、标明下面各题的运算顺序:

720÷2+[50×(25+47)] [1178—12×(84+5)]÷5

4、小红用8米长的彩带做一些花,如果每朵花用2/3米彩带,小红能做多少朵花?新|课|标|第|一|网

二、引入新课:

在上面第三个问题的后面增加“她把其中的4朵送给了同学,还剩多少朵花?”(增加问题后就成为例4)

1、学生读题,理解题意。

2、说一说,怎样求还剩多少朵花?

3、学生列式:

4、师:请同学们观察,这道题目中有哪几种运算?

生:除法和减法。

师:在整数四则混合运算中,运算顺序是怎样的?

生:略。

师:从以上分析请你推想:整数四则混合运算的运算顺序,适用于分数吗?

生:通过分析例4的题意我们可以看出——整数四则混合运算的运算方法,同样适用于分数和计算。

5、学生独立计算,师巡视指导并作订正。

8÷2/3-4=8×3/2-4=12-4=8(朵)

答:小红还剩8朵花。

6、思考:在计算中,应该注意什么?

三、

要求:让学生说一说,上面的题目的运算顺序各是什么,然后进行计算。

本练习的教学安排:学生先独立计算前两列的四个小题,然后交流各自的算法,对比分步计算的先把除法转化为乘法再一次性约分这两种不同的解法,哪一种更简便些?鼓励学生以后在计算中可以根据题目的特点灵活选用恰当的方法进行计算;然后再让学生计算第三列的两个小题,此两小题由学生找出运算顺序之后独立计算,教师指导有困难的学生。最后让学生说一说,你在计算中是如何来提高计算的正确率的?

学生读题,理解题意。

提问:1、老爷爷每天跑几圈?

2、半圈用哪个数来表示?

3、照这个速度,怎样理解?

4、要求老爷爷每天跑步要用多少时间,要先求出什么?

5、现在你能解答了吗,能解答的自己写出解答过程,不能解答的请教老师。

6、指名口答解答过程,师生共同订正。

四、全课总结:

1、说一说,今天学习了什么新知识?

2、这节课,你有什么收获吗?有什么发现吗?有什么想要告诉老师和同学的吗?请大家发表自己的见解。

五、课后作业:练习九第1---4题。

第1题:读题后思考,你打算怎样来计算这几道题?(多找几个学生来说自己心里的想法,寻找出最好的解题策略后再让学生进行计算。)

第2题:提问6楼到地面的高度是多少层楼的高度?

(6楼楼板到地面的高度实际只有5层楼的高度)

第3、4题由学生独立完成。

反思

诸暨市草塔镇南屏小学电子教案

编写者 杨情 执教 时间 年 月 日

教学内容 分数除法的计算及相应问题解答

教学目标 1、进一步掌握分数除法的计算方法,能够正确迅速地计算两、三步计算的分数四则运算式题,提高分数四则运算的能力。

2、体会数学与生活的联系,提高学生综合运用知识解决问题的能力,能运用分数的知识解决一些实际问题。

教学重难点 修改意见

教学过程 一、基本练习:

1、判断正误:

①、3/5÷5=5/3×5( )

②、4分米的1/5等于5分米的1/4。( )

③、两数相除,商一定大于被除数。( )

2、

学生计算后订正时,着重评讲第5小题至第7小题的解法,第5、6小题让学生说一说写出计算过程前是怎样想的,即0.375和0.6是怎样处理的?第7小题可以分步计算也可以运用乘法分配律进行计算。新-课-标-第-一-网

3、

订正时让学生说明解题依据。第四小题目可以在等号两边先乘以4再乘2/3,也可以一次同乘4与2/3的积。

二、深入练习:

1、选择正确答案的序号填在括号里:

①、一根绳子剪去3米正好是1/3,这根绳子原来的长度是多少米?( )

A 1 B 9 C 3

②、与12÷4/5相等的式子是:( )

A、12÷5×4 B、12÷4×5 C、12×0.4

2、

(此题中的60瓦是没有用的条件,可能会影响少数学生的正确列式,这里在学生审题之后指名分析已知条件和问题的关系,让学生明白列式中不需要这个条件。)

3、

(让学生先计算,再比较——你有什么发现?引导学生弄清楚:其原因是2/3、3/4的倒数与1/2的积正好是1。也就是除以2/3、3/4再乘上1/2,实际效果相当于除以或乘上1。)

三、自主练习:

1、

2、

四、思维训练:

1、一根绳子每次剪去它的1/2,一共剪了4次,最后下这根绳子的几分之几?

2、用汽车运一堆货物,每天运这堆货物的四分之一,几天可以运完?每天运这堆货物的七分之二,几天可以运完?

反思

诸暨市草塔镇南屏小学电子教案

执教 时间 年 月 日

教学内容 解决问题,已知一个数的几分之几是多少求这个数的应用题

教学目标 知识目标:使学生学会掌握“已知一个数的几分之几是多少,求这个数”的应用题的解答方法,能熟练地列方程解答这类应用题。

能力目标:情感目标:培养学生良好的学习习惯

教学重难点 弄清单位“1”的量,会分析题中的数量关系。

分数除法应用题的特点及解题思路和解题方法。 修改意见

教学过程 1、出示复习题:

根据测定,成人体内的水分约占体重的23 ,而儿童体内的水分约占体重的45 ,六年级学生小明的体重为35千克,他体内的水分有多少千克?

2、让学生观察题目,看看题目中所给的三个条件是否都用得上,并说说为什么。

3、选择解决问题所需的条件,确定出单位“1”,并引导学生说出数量关系式。

小明的体重×45 =体内水分的重量

4、指名口头列式计算。

二、新授

1、教学例1的第一个问题:小明的体重是多少千克?

(1)读题、理解题意,并画出线段图来表示题意:

(2)引导学生结合线段图理解题意,分析题中的数量关系式,并写出等量关系式。

小明的体重×45 =体内水分的重量

(3)这道题与复习题相比有什么相同点和不同点?(相同点是它们的数量关系是一样的;不同点是已知条件和问题变了)

(4)这道题什么是单位“1”?单位“1”是已知的还是未知的?怎样求?(引导学生根据数量关系式,将未知的单位“1”设为χ,列方程来解决问题)

(5)启发学生应用算术解来解答应用题。(根据数量关系式:小明的体重×4/5 =体内水分的重量,反过来,体内水分的重量÷45 =小明的体重)

2、解决第二个问题:小明的体重是爸爸的715 ,爸爸的体重是多少千克?

(1)启发学生找到分率句,确定单位“1”。

(2)让学生选择一种自己喜爱的解法进行计算,独立解决第二个问题。

(3)指名说说自己是怎样理解题意的,并与其他同学交流自己的解题思路。(出示线段图)

爸爸:

小明:

爸爸的体重×715 =小明的体重

① 方程解:解:设爸爸的体重是χ千克。

715 χ=35

χ=35÷715

χ=75

②算术解: 35÷715 =75(千克)

3、巩固练习:P38“做一做”(学生先独立审题完成,然后全班再一起分析题意、评讲)

三、练习

1、练习十第1—3题。(先分析数量关系式,然后确定单位“1”,最后再进行解答。第二题注意引导学生发现250ml的鲜牛奶是多余条件)

2、练习十第6题(引导学生先求出单位“1”——爸爸妈妈两人的工资和1500+1000,再根据数量关系式进行计算)

四、总结

这节课我们学习了分数应用题中“已知一个数的几分之几是多少求这个数的应用题”,我们知道了,如果分率句中的单位“1”是未知的

话,可以用方程或除法进行解答。

反思

南屏小学六年级数学第十一册电子教案

执教 时间 年 月 日

教学内容 练习课:两步计算解决问题(课本第40页练习十第5~9题)

教学目标 1、使学生能用除法计算熟练解决“已知一个数的几分之几是多少,求这个数”的问题。

2、能综合运用所学知识解决有关的实际问题。

教学重难点 修改意见

教学过程 一、基础练习

完成课本练习十第5题。

过程要求:

(1)学生独立计算,教师巡视,发现问题及时纠正;

(2)选取几道计算题,让学生上台演板。

(3)集体评价。

(4)小结分数四则混合运算的计算方法。

二、专项练习

1、只列式不计算。

(1)男生30人,是女生人数的2倍,女生有多少人?

(2)男生30人,是女生人数的1.5倍,女生有多少人?

(3)男生30人,是女生人数的12 ,女生有多少人?

(4)男生30人,是女生人数的23 ,女生有多少人?

过程要求:

依次出示题目,学生根据题意列出除法算式;

说一说有什么体会。

通过交流,使学生明白这类问题的特征和解答方法。

教师结合板书帮助分析。

一个数×几几 =具体量 →

单位“1”的量×几几 =具体量

单位“1”的量=具体量÷几几

2、即时练习。

学校田径队有女队员20人,是男队员人数的45 ,男队员有多少人?

过程要求:

(1)学生尝试用除法解答。

(2)引导提问:45 把什么看作单位“1”?

如何求单位“1”的量?

具体量是多少,占单位“1”的几分之几?

怎样列式计算?

三、巩固练习

完成课本练习十第6~9题。

1、第6题: 35 把什么看作单位“1”?

求每月开支多少元,就是求什么?

列式计算。

2、第7题: 45 把什么看作单位“1”?

单位“1”的量已知吗?用什么方法解答?

求出的单位“1”是什么时候的产量?求全年产量应该怎么办?

3、第8题: 说一说题中的数量关系?

你用什么方法解答,怎样解答比较简单?

4、第9题: 认真审题,弄清题意;这里的16 、13 、12 都是以什么数看作单位“1”?

说一说你的解答思路。再计算,把结果填在表上。

四、作业

选用课时作业。

反思

南屏小学六年级数学第十一册电子教案

第三单元 “分数除法” 第8课时

编写者 杨情 执教 时间 年 月 日

教学内容 稍复杂的分数除法应用题

教学目标 知识目标:通过教学, 使学生在理解分数除法意义及掌握分数乘法应用题解题思路的基础上,掌握已知一个数的几分之几是多少求这个数的稍复杂分数除法应用题的解题思路和方法,能比较熟练地解答一些简单的实际问题。

情感目标:培养学生良好的学习习惯。

教学重难点 弄清单位“1”的量,会分析题中的数量关系,分析题中的数量关系。 修改意见

教学过程 一、复习

小红家买来一袋大米,重40千克,吃了58 ,还剩多少千克?

1、指定一学生口述题目的条件和问题,其他学生画出线段图。

2、学生独立解答。

3、集体订正。提问学生说一说两种方法解题的过程。

4、小结:解答分数应用题的关键是找准单位“1”,如果单位“1”的具体数量是已知的,要求单位“1”的几分之几是多少, 就可以根据分数乘法的意义,直接用乘法计算。

二、新授

1、教学补充例题:小红家买来一袋大米,吃了58 ,还剩15千克。买来大米多少千克?

(1)吃了58 是什么意思?应该把哪个数量看作单位“1”?

(2)引导学生理解题意,画出线段图。

(3)引导学生根据线段图,分析数量关系式:

买来大米的重量-吃了的重量=剩下的重量

(4)指名列出方程。

解:设买来大米X千克。

x-58 x=15

2、教学例2

(1)出示例题,理解题意。

(2)比航模组多14 是什么意思?引导学生说出:是把航模组的人数看作单位“1”,美术组少的人数占航模组的

(2)学生试画出线段图。

(3)根据线段图,结合题中的分率句,列出数量关系式:

航模组人数+美术组比航模组多的人数=美术组人数

(4)根据等量关系式解答问题。

解:设航模小组有χ人。

χ+14 χ=25

(1+14 )χ=25

χ=25÷54

χ=20

三、小结

1、今天我们学习的这两道应用题,它们有什么共同点?(今天我们学习的这两道应用题,题里的单位“1”都是未知的数量,都可以列方程来解,这样顺着题意列出方程思考起来比较方便。)

2、用方程解答稍复杂的分数应用题的关键是什么?

(关键是找准单位“1”,再按照题意找出数量间的相等关系列出方程)

四、练习

练习十第4、12、14题。

反思

南屏小学六年级数学第十一册电子教案

第三单元 “分数除法” 第9课时

执教 时间 年 月 日

教学内容 比和比的应用 比的意义

教学目标 知识目标:使学生理解比的意义,掌握比的各部分名称,能正确地读、写比,并会正确地求比值。

能力目标:引导学生加强知识之间的联系,使学生掌握的知识系统化,提高学生分析解决问题的能力。

情感目标:培养学生良好的学习习惯。

教学重难点 比与除法、分数的关系,理解比的意义 修改意见

教学过程 一、复习。

1.某车间有男工人5人,女工人8人,男工人数是女工人数的几分之几?女工人数是男工人数的几倍?

2.分数与除法有什么关系?

二、新授。

1. 教学比的意义。

(1)教学同类量的比。

A、2003年10月15日,我国第一艘载人飞船“神舟”五号顺利升空。在太空中,执行此次任务的航天员杨利伟在飞船里向人们展示了联合国旗和中华人民共和国国旗。杨利伟展示的两面旗都是长15cm,宽10cm,怎样用算式表示它们的长和宽的关系?(引导学生说出:可以求长是宽的几倍? 或求红旗的宽是长的几分之几?)

B、这两个关系都是用什么方法来求的?(除法)

C、比较这两个数量之间的关系,除了除法,还有一种表示方法,即“比”。可以说成是:长和宽的比是15比10,或宽和长的比是10比15。

D、不论是长和宽的比还是宽和长的比,都是两个长度的比,相比的两个量是同类的量。

(2)教学不同类量的比。

A、“神舟”五号进入运行轨道后,在距地350km的高空作圆周运动,平均90分钟绕地球一周,大约运行42252km。怎样用算式表示飞船进入轨道后平均每分钟飞行多少千米?(路程÷时间=速度,算式:42252÷90)

B、对于这种关系,我们也可以说:飞船所行路程和时间的比是42252比90,这里的42252千米与90小时是两个不同类的量。

(3)归纳比的意义。

A、通过上面两个例子,你认为什么是比?(学生试说,教师总结:两个数相除,又叫做两个数的比。)

B、练习:判断,下面数量间的关系是表示两个数的比吗?

①甲数是9,乙数是7,甲数和乙数的比是9比7;乙数和甲数的比是7比9。

② 拖拉机45分耕了2公顷地,工作总量和工作时间的比是2比45。

③ 足球比赛,甲队和乙队的比分是3比2。

2.教学比的写法、比的各部分名称。

比的写法。

15比10 记作15∶10 10比15 记作10∶15

42252比90记作42252∶ 90

比的各部分名称。

A、学生自学课本,小组讨论概括知识点。

B、小组汇报并举例:

“:”是比号,读作“比”。比号前面的数,叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。

例如:

3 ∶ 2=3÷2=3/2

前项比号后项 比值

3.教学比与除法、分数的关系。

(1)比与除法的关系

A、观察上面的式子,比的前项相当于什么?(被除数),后项相当于什么?(除数)比值相当于什么?(商)。

B、比的后项能不能是零?为什么?(比的后项不能是零。因为比的后项相当于除数,除数不能是0,所以比的 后项也不能是0)

C、比值通常用分数表示,也可以用小数或整数表示。

(2)比与分数的关系。

A、根据分数与除法的关系,可以推知比与分数有什么关系?(引导学生回答:比的前项相当于分子,比的后项相当于分母,比值相当于分数的值。)

a) 两个数的比也可以写成分数的形式。

例如15∶10,可写成 ,读作15比10。

结合上面的讲解,板书下表:

除法: 被除数 ÷(除号) 除数 商

分数: 分子 -(分数线) 分母 分数值

比: 前项 ∶(比号) 后项 比值

三、巩固练习。

1.完成课本“做一做”。

2.练习十一第1、2题。

四、布置作业。

1.课本练习十一的第3题。

2.补充:求出比值。

0.375∶0.875 0.25∶ 0.75 2.6∶3.9

反思

南屏小学六年级数学第十一册电子教案

第三单元 “分数除法” 第10课时

执教 时间 年 月 日

教学内容 比的基本性质

教学目标 知识目标:通过观察、类比,使学生理解和掌握比的基本性质,并会运用这个性质把比化成最简单的整数比。

能力目标: 通过学习,培养学生观察、类比的能力,渗透转化的数学思想方法,培养学生思维的灵活性。

教学重难点 理解比的基本性质,掌握化简比的方法,化简比与求比值0的不同 修改意见

教学过程 一、复习。

1、什么叫做比?比的各部分名称是什么?

2、比与除法和分数有什么关系?

比 前项 :(比号) 后项 比值

除法 被除数 ÷(除号) 除数 商

分数 分子 -(分数线) 分母 分数值

3、除法中的商不变规律是什么?

举例:6÷8=(6×2)÷(8×2)=12÷16

4、分数的基本性质是什么?举例: = =

二、新授

1、猜测比的性质:除法有“商不变性质”,分数也有“分数的基本性质”,根据比与除法和分数的关系,同学们猜想看看,比也有这样的一条性质吗?如果有,这条性质的内容是什么?(学生猜测,并相互补充,把这条性质说完整)X|k |b| 1 . c|o |m

2、验证猜测的性质能否成立:学生以四人小组为单位,讨论研究。

6÷8=(6×2)÷(8×2)=12÷16

6:8=(6×2)∶(8×2)=12:16

6:8=(6÷2)∶(8÷2)=3:4

6÷8=(6÷2)÷(8÷2)=3÷4

1、小组派代表说明验证过程,其他同学补充说明。

2、正式得出“比的基本性质”:比的前项和后项同时乘或除以相同的数(0除外),比值不变,这叫做比的基本性质。

3、教学例1

(1)出示例题:把下面各比化成最简单的整数比

15∶10 0.75∶2

(2)引导学生审题,说说题目提出了几个要求

(两个,一是化成整数比,二必须是最简的)

(3)指名学生说出自己化简的方法,全班评判。

三、练习

1、P46“做一做”

2、练习十一第2题(提醒学生第二个长方形,长的那条为“长”,短的那条为“宽”)

四、总结

今天我们学习了什么知识?比的基本性质可以应用在哪些方面?

反思

南屏小学六年级数学第十一册电子教案

第三单元 “分数除法” 第11课时

执教 时间 年 月 日

教学内容 比的应用

教学目标 知识目标:结合生活实例,使学生进一步掌握按比例分配应用题的结构特点和解题思路,能运用这个知识来解决一些日常工作、生活中的实际问题。

能力目标:培养学生运用知识进行分析、推理等思维能力,以及探求解决问题途径的能力。

教学重难点 进一步掌握按比例分配应用题的结构特点和解题思路

正确分析解答比例分配应用题。 修改意见

教学过程 一、复习。

1、我们在教学中学过平均分,平均分的结果有什么特点(每份都相等)在日常生活中,为了分配的合理,往往需要把一个数量分成不等的几部分,即把一个数量按照一定的比来进行分配。这种方法通常叫按比例分配。

2、一瓶500ml的稀释液,其中浓缩液和水的体积分别是100ml和400ml,__________?(补充问题并解答)

二、新授。

1、教学例2。

(1)出示例2:

(2)引导学生弄清题意后,问:题目中要分配什么?是按什么进行分配的?(分配500ml的稀释液;浓缩液和水的体积按1∶4进行分配。)

(3)问:“浓缩液和水的体积1∶4”,是什么意思?(就是说在500ml的稀释液,浓缩液占1份,水的体积占1份,一共是5份,浓缩液占稀释液的5分之4,水的体积占稀释液的5分之1。)

(4)你能求出两种各多少ml吗?怎样求?(引导学生进行解题)

① 稀释液平均分成的份数:1+4=5

② 浓缩液的体积:500× 1/5 =100(ml)

③ 水的体积: 500× 4/5 =400(ml)

答:稀释液100ml,水400ml。

(5)如何检验解答是否正确呢?

(说明:检验的方法有两种:一是把求得的浓缩液和水的体积相加,看是不是等于稀释液的总体积;二是把求得的浓缩液和水的体积写成比的形式,看化简后是不是等于

1∶4

(6)学生试做:

练习:做一做第1题。

(订正时说说解题时先求什么?再求什么?)

2、补充练习

(1)出示:学校把栽280棵树的任务,按照六年级三个班的人数分配给各班。一班有47人,二班有45人,三班有48人。三个班各应栽树多少棵?

(2)引导学生弄清题意后,问:题中要把280棵树按照什么进行分配?(着重使学生明确要按照一班、二班、三班的人数的比来分配,即按47∶45∶48来分配。)

(3)根据一班、二班、三班的人数怎样算出各班栽的棵数占总棵数的几分之几?(使学生明确:要先算三个班总共有多少人(即总份数),然后才能算出各班栽的棵数占总棵数的几分之几。)

(4)怎样分别算出各班应种的棵数?引导学生解答:

① 三个班的总人数:47+45+48=140(人)

② 一班应栽的棵数: 280× = 94(人)

③ 二班应栽的棵数: 280× = 90(人)

④ 三班应栽的棵数: 280× = 96(人)

答:一班栽树94棵,二班栽树90棵,三班栽树96棵。

(5)学生进行检验。

(6)学生试做“做一做”中的第2题。

三、巩固练习。

练习十二的第1、3题。

四、布置作业。

练习十二第2、4、5、6、7题。

反思

南屏小学六年级数学第十一册电子教案

第三单元 “分数除法” 第12课时

编写者 杨情 执教 时间 年 月 日

教学内容 比的应用的综合练习(课本第51页的第5~7题,第48页的第7题)。

教学目标 使学生进一步理解掌握按一定的比进行分配的问题结构特征及数量关系,解决有关的问题。

教学重难点 修改意见

教学过程 一、基础练习

1、填一填。

(1) 某班男生人数与女生人数的比是4∶3,男生人数占全班人数的( )/( ),女生人数占全班人数的

( )/( )。

(2)修筑一段公路,已修的部分占全长的3/5,未修的部分占全长的( )/( ),未修的部分与已修部分的最简单整数比是( )/( )。

2、一本书,已看的部分与未看的部分的比是3∶2。

(1)根据题意,你能得到哪些数量关系?

学生思考后回答,教师记录。

已看的部分占未看的3/2;未看的部分占已看的2/3;已看的部分占全书的3/5;未看的部分占全书的2/5。

(2)解决问题。

如果已看了60页,未看的有多少页? 60×2/3

如果未看的是40页,全书有多少页? 40÷2/5

你还能提出哪些问题?怎样解答?

让学生与同伴互相提问,解答,然后汇报。

二、深化练习

1、例题:一个长方形的周长是84dm,长与宽的比是4∶3,这个长方形的长和宽各是多少dm?

(1) 认真审题,弄清题意。

(2)说一说你的解答思路。

长与宽的和:84/2=42

4+3=7

长:42×4/7=24dm

宽:42×3/7=18dm

2、完成课本第5、6题。

第5题:(1)认真审题,弄清题意,

(2)说一说解答思路:先求出长、宽、高的和,再分别求出长、宽、高各是多少。

(3)怎样求长、宽、高的和?

(4)为什么要120÷4?

(5)学生列式解答,指名演板。

第6题:

(1)认真审题,说一说题目的意思,

(2)要怎么解决?

(3)学生列式计算。

3、思考题。第51页第7题。

(1)认真审题,弄清题意,说一说题中的数量关系的特征。

(2)要怎样解决?

(3)列式计算

(4)还有其它方法吗?

第48页第7题。

说一说根据两数的比是2∶3,能得到哪些数量关系?

三、作业

选用课时作业。

南屏小学六年级数学第十一册电子教案

第三单元 “分数除法” 第13课时

执教 时间 年 月 日

教学内容 整理复习(1)

教学目标 使学生进一步掌握本章所学的基本概念和计算法则,提高学生的计算能力和解题能力。

教学重难点 分数除法的计算方法,化简比。正确计算分数除法。 修改意见

教学过程 一、复习分数除法的意义和计算法则

1、这一章我们学习了分数除法的有关知识.请大家回忆一下分数除法有几种类型?

(1)分数除以整数,例如5/7 ÷5;

(2)一个数除以分数,它又包括整数除以分数,例如20÷4/5 ;和分数除以分数,例如 2/3 ÷ 6/7。

(3)做第52页“整理和复习”的第2题。

2、分数除法的意义

(1)第52页“整理和复习”的第1题:要把这道乘法算式改写成两道除法算式,应该怎么办呢?(引导学生根据乘、除法的关系进行改写,然后让学生将改写的算式填写在书上)

(2)让学生说说是怎样题改写成两道分数除法算式的。

(3)分数除法的意义是什么呢?(使学生明确,分数除法的意义与整数除法的意义相同,都是:已知两个因数的积与其中一个因数,求另一个因数的运算)

3、分数除法的计算法则

(1)分数除以整数应该怎样计算?一个数除以分数应该怎样计算?

(2)引导学生概括出分数除法的统一计算法则:除以一个数(0除外),等于乘这个数的倒数。

(3)完成P52“整理和复习”第2题。

(4)P53练习十三第2题。

二、复习比的意义和基本性质

1、比的意义

(1) 什么叫做比?(两个数相除又叫做两个数的比)什么叫做比值?(比的前项除以后项所得的商.)

(2) 以“3∶2”为例,让学生分别说出“比号”“前项”和“后项”。

3?∶?2 =1.5

┇ ┇ ┇ ┇

前 比 后 比

项 号 项 ?值

(3)比和比值有什么区别和联系呢?

(比值是一个数,是比的前项除以比的后项所得的商,它通常用分数表示,也可以用小数表示,有时还是整数。而比所表示的是两个数的关系,如3∶2,虽然也可以写成分数的形式 ,但仍读作3比2。特别强调比的后项不能为0)

(4)比和除法、分数的联系

除法 被除数 ÷(除号) 除数 商

分数 分子 -(分数线) 分母 分数值比 前项 ∶(比号) 后项 比值

2、比的基本性质

(1)复习概念及化简方法

①比的基本性质是什么?

②应用比的基本性质,怎样对整数比进行化简?

③不是整数的比应该怎样化简?

(2)学生做P52“整理和复习”第3题

(指名学生说说自己是怎样想的)

三、课堂练习

1、练习十三的第1题(先让学生独立完成.订正时,要让学生说出判断正误的理由)

2、做练习十四的第2题.

3、做练习十四的第3题(学生独立完成.教师注意巡视,察看学生所用算法是否简便)

4、做练习十四的第7题.

反思

南屏小学六年级数学第十一册电子教案

第三单元 “分数除法” 第14课时

编写者 执教 时间 年 月 日

教学内容 整理复习(2)

教学目标 使学生进一步掌握用方程或算术方法解答已知一个数的几分之几是多少求这个数的应用题和稍复杂的分数乘除法应用题,提高学生解答分数应用题的能力.

教学重难点 正确解答分数乘除法应用题,分数乘除法应用题的联系与区别 修改意见

教学过程 一、推理训练

1、男生占全班人数的3/5 ,女生占全班人数的( )。

2、一堆煤,用去了4/7 ,还剩下( )。

3、今年比去年增产 1/8,今年相当于去年的( )。

二、对比训练:

1、一步分数应用题

① 张大爷养了200只鹅,500只鸭,鹅的只数与鸭的只数的几分之几?

② 张大爷养了200只鹅,鹅的只数是鸭的只数的2/5 ,养了多少只鹅?

③ 张大爷养了200只鹅,鸭的只数是鹅的只数的5/2 ,养了多少只鸭?

(1)比较相同点和不同点

引导学生进行比较,使学生更清楚地认识到,在结构上,这三道应用题都含有同样的数量关系,即:

鹅的只数,鸭的只数, 鹅的只数是鸭的几分之几;

不同的是已知和未知发生了变化。在解题思路上,都要弄清以谁作标准,正确判定把哪一种数量看作单位“1”;不同的是需要根据已知、未知的变化确定该用什么方法解答。

(2)比较完后,学生将三道题的解答过程写在练习本上。

2、出示题组:

① 上海到汉口的水路长1125千米,一艘轮船从上每开往汉口,已经行了3/5,离汉口还有多少千米?

② 一艘轮船从上海开往汉口,已经行了3/5,离汉口还有450千米,上海到汉口的水路长多少千米?

(1)学生自己画线段图,分析,解答。

(2)对比:两题有什么异同?你是怎样分析的,如何区别的?

3、出示题组:

① 停车场有8辆大客车,小汽车的辆数比大客车多1/6,小汽车有多少辆?

② 停车场有8辆大客车,大客车的辆数比小汽车少1/7,小汽车有多少辆?

③ 停车场有21辆小汽车,大客车的辆数比小汽车少1/7,大客车有多少辆

④ 停车场有21辆小汽车,小汽车的辆数比大客车多1/6,大客车有多少辆?

(1)学生独立画线段图,分析,解答。

(2)对比:1、2两题有什么异同?3、4两题呢?你是怎样分析的,如何区别的?

(3)解答稍复杂的分数乘除法应用题有规律吗?规律是什么?

引导学生归纳出:

㈠ 分析“分率句”,判断单位“1”是哪个数量?

㈡ 画出线段图,找出“量”和“率”的对应关系。

㈢ 确定已知单位“1”用乘法,求单位“1”用除法或用方程解。

三、课堂练习:

1、第53页“整理和复习”的第4题(根据题目的条件应该确定把谁看作单位“1”? 单位“1”已知还是未知?)

2、练习十三第4、5题,独立完成,集体订正。

四、作业:

练习十四的第6--10题

反思

人教版六年级数学上册第四单元《比》教案(六)


在上课时老师为了能够精准的讲出一道题的解决步骤。所以老师在写教案时要不断修改才能产出一份最优质的教案。为学生带来更好的听课体验,从而提高听课效率。那有什么样的教案适合新手教师吗?以下是小编收集整理的“人教版六年级数学上册第四单元《比》教案(六)”,仅供参考,希望可以帮助到您。

人教版六年级数学上册第四单元《比》教案(六)

1教学目标

1.在活动中将已学的“比的认识”进行梳理、分类、整合,从而体会知识间的内在联系。

2.进一步理解比的意义,能够正确熟练化简比、求比值,并能合理地应用比的意义解决一些实际问题。

3.向学生渗透对各类知识点的整合、梳理意识,培养学生科学的学习方法。

2新设计

1.串联信息,整合单元复习内容

2.沟通联系,自主搭建知识网络

3.聚焦对比,分析说理易混知识

4.数形结合,提炼方法优化思路

3学情分析

厦门市群惠小学六(4)班学生善于思考,思维活跃,勇于表达自己的观点。为了更好地以学定教,我通过前测,对学生平时学习中的薄弱知识进行查缺:求比值和化简比混淆了;比的应用中,没有掌握解答的关键与诀窍。针对学生学情和复习目标,本课设计融入四元素:激趣+梳理+补缺+挑战,并利用电子白板的优势,引导学生自主复习,掌握知识,培养能力。

4重点难点

教学重点:对本单元的知识进行梳理,使之系统化、条理化,学生能够熟练的运用比的知识解决实际问题。

教学难点:经历知识的整理过程,建构知识网络图;能够熟练比的化简以及应用比的知识解决实际问题。

5教学过程

5.1第一学时

5.1.1教学活动

活动1【导入】一、呈现信息,感受比的广泛应用

师:同学们,这节课,我们一起来整理复习:比的知识。(板书课题)整理复习:比

师:首先,大家要明确:两个数的比表示什么?

板书: 比 → 相除

师:来看看生活中一些比的例子:

国旗的长和宽的比是3:2

观音山梦幻陆世界,1张门票70元。总价和数量的比是70:1。

爸爸体重和东东体重的比是60:35。

深圳“世界之窗”,园中微缩景与实景的比为1:3。

从厦门坐动车到福鼎,动车行驶路程和时间的比是426:2。

一杯蜂蜜水,用蜂蜜和水按1:9调制而成。

师:1:9什么意思?

师:在比的应用中,可以将比转化为份数或分数。

板书:比的应用 份数 分数

活动2【讲授】二、信息分类,回顾比的相关知识

师:这6条信息,你能分分类吗,可以分为几类,你是怎么想的?

1.回顾比的两种不同类型

预设分类方法1:前后项单位相同的一类;前后项单位不同的一类。

师:利用比的方法,这里可以知道一个数是另一个数的几倍或几分之几。而两个不同类量的比,会产生一个新的量。

2.总结求比值化简比的方法

(1)师:还有其他分法吗?怎么想的?

预设分类方法2:比的结果是最简比的一类,不是最简比的一类。

(2)求比值、化简比的依据

师:题中426:2和60:35不是最简单的整数比。通过这两个比,我们一起来复习下怎样求比值,怎样化简比?依据又是什么?

(3)分析说理

师:下面3题,做对了吗?请你分析说理。

① 化简比 32:16=32÷16=2

② 化简比 0.15:0.3=(0.15÷0.3):(0.3÷0.3)=0.5:1

③ 求比值 0.75: =0.375÷0.8=0.46875

小结:第3小题要根据数据特点灵活选择算法,简便些。

(4)对比区分

师:究竟,求比值和化简比有着这样的区别呢?

师:是的,化简比的结果仍然是一个比,是最简单的整数比;而求比值的结果是一个数,可以是整数、小数或分数,而大家要注意区分。

活动3【活动】三、沟通联系,搭建比的知识网络

师:刚才,我们一起回顾了关于“比”的有关知识,但这样排列看起来有些零散。你们能重新整一整吗?好,请看小组合作任务:根据知识之间的联系将它们重新排列,形成知识的网络。

师:哪一组的同学愿意来展示一下你们整理的成果?(学生上台来利用电子白板的拖拽功能,进行整理,形成关于比的知识网络)

师:看,和前面零散的排列对比,你有什么感觉?

活动4【活动】四、题组对比,提炼方法优化思路

师:在之前学习的“比的应用”中,大家懂得可以把比转化成份数或分数。这里,第1个条件和所求问题都不变,第2个条件在不断变化,那你们会应用吗?动笔试一试吧,拿出个人学习单,只列式不计算。

调制蜂蜜水,用蜂蜜和水按2:9调制而成。( ), 需要水多少毫升?

① 如果调制220毫升蜂蜜水, 列式:

② 水比蜂蜜多用了140毫升, 列式:

③ 蜂蜜用了20毫升, 列式:

(学生独立列式后)分别指名学生上台来利用电子白板,结合线段图,当小老师讲解分析:为什么这样列式?(学生互动交流)

师:这里,题中所给的具体数量在不断变化,要正确解答,谁有什么好方法呢?

板书: 方法:找对应

师:好方法就是解题的金钥匙!数学家华罗庚也说过:“新的数学方法和概念,常常比解决数学问题本身更重要。”

活动5【练习】五、分层练习,训练思维培养能力

练习(略)

活动6【讲授】六、全课总结,互动畅谈学习收获

师:上完这节复习课,你有哪些收获?能跟大家说说吗?或者还有什么问题还没弄明白,也也可以提出来,大家一起讨论。

点击查看更多:六年级数学上册教案

提醒:

扫码关注回复“教案”

获得上下册教案资料!

人教版六年级数学上册第六单元集体备课教案


人教版六年级数学上册第六单元集体备课教案

第六单元 《百分数》

第1课时

教学课题 百分数的意义和写法

主备教师 使用教师 授课时间 2014年 月 日

标 知识

技能 使学生理解百分数的意义;能够正确的读写百分数、运用百分数解决简单的实际问题。

过程

方法 使学生经历收集、分析、处理信息的过程,培养学生分析、比较、抽象、概括的能力和与人交流合作的能力。

情感

态度

与价

值观 使学生感受百分数在实际生活中的广泛应用,同时结合相关信息对学生进行思想教育。

教学重点 百分数的意义和写法。

教学难点 百分数与分数的联系和区别

教学准备及手段

教 学 流 程 二次备课

(一)谈话引入,揭示课题。(2分钟)

师:同学们,课前教师让大家收集生活中的百分数,收集到了吗?在哪儿收集的?容易找吗?这说明了什么?

既然百分数这么有用,这节课我们就来学习百分数好吗?你想学习有关百分数的哪些知识?

这节课我们重点学习百分数的意义和写法。(板书课题)

(二)探究百分数的意义和写法。(20分钟)

1、百分数的意义

师:请同学们看大屏幕:(出示三杯糖水)

你认为哪杯糖水更甜?

学生争论后得出不好判断的结论。

老师给出三杯糖水中糖的含量:7克、13克、9克。问:这下能判断吗?还需要什么条件?

再给出糖水的重量:20克、50克、25克。问:这下能判断吗?看什么?

生:看糖占糖水的几分之几?

根据学生的回答板书:

师:这样能判断哪个杯更甜吗?怎样就容易看出来了?(通分)

师:百分数表示的是两个数量之间的倍数关系,是一个分率,后面不能带单位名称,所以百分数又叫百分率或百分比。(板书)

2、百分数的写法:

师:百分数通常不写成分数形式,而在原来的分子后面加上百分号“%”来表示。(板书)师示范写35%。

请一位学生板演26%、36%,其他学生在本上写。

师生交流:百分数怎样写规范、美观?

①两个小圆圈要写的小一点。②斜线的倾斜程度。

3、由刚才的不好判断,到现在的一目了然,是谁帮了我们的忙?大家在课前已经收集了许多生活中的百分数,你现在能说说这些百分数的具体含义吗?好,下面我们就来交流一下:四人小组交流,说说你收集的百分数,表示什么意思?

(全班交流)谁愿意向大家展示你收集的百分数?说说它的意义。

4、老师也收集了一些百分数,想不想看?

出示:读一读

(1)我国的耕地面积占世界耕地面积的7%;

(2)我国人口占世界人口的22%;

(3)在北京奥运会上,我国体育健儿共获得51枚金牌,占金牌总数的16.9%;

(4)我国发射人造卫星的成功率是100%。

这些百分数都表示什么意义,你知道吗?

看了这些信息,你想说什么?

(三)百分数与分数的区别和联系。(5分钟)

1、小组讨论:百分数与分数有什么区别和联系?

2、学生 :

学生可能回答: ①分子 ②分母 ③读法 ④意义等的不同。

课件出示:

下面哪个分数可以用百分数来表示?哪个不能?说说为什么?

一堆煤 吨,运走了它的 。

百分数是分数吗?分母是100的分数是百分数吗?

得出结论:分数即可以表示两个数之间的倍数关系,也可以表示一个具体的数量,百分数只能表示两个数之间的倍数关系。百分数是特殊的分数。

(四)、拓展应用

1、百分数在我们的生活中无处不在,成语里也有百分数。

课件出示:请将下列词语用百分数表示出来

十拿九稳 百里挑一 百战百胜 一举两得

(设计意图:使学生认识到生活中处处有数学)

(五)、总 结

1、这节课你对自己的表现满意吗?用一个百分数表示你的满意程度。

2、对教师满意吗?也用一个百分数表示。

3、最后,教师送给同学们一句名言,与大家共勉。

天才=99%的汗水+1%的灵感。

作业设计 做一做

板书设计 百分数的意义和写法

14% 读作:百分之十四

65.5% 读作:百分之六十五点五

120% 读作:百分之一百二十

反思

第2课时

教学课题 百分数与小数互化

主备教师 使用教师 授课时间 2014年 月 日

标 知识

技能 使学生理解并掌握百分数和小数互化的方法,能正确地把小数化成百分数或把百分数化成小数;在计算、比较,分析、探索百分数小数互化的规律的过程中,发展学生的抽象概括能力。

过程

方法 通过探索百分数和分数、小数互化的规律,激发学生的数学探索意识。

情感

态度

与价

值观 学生在教师的精心引导下,主动参与到数学活动中,通过合作交流,得出结论,提高数学素养。

教学重点 百分数与小数互化的方法,能正确进行两者之间的互化。

教学难点 归纳百分数与小数互化的方法。

教学准备及手段 投影片或多媒体课件。

教 学 流 程 二次备课

一、复习导入

1、百分数的意义是什么?指生回答。

生1:带有百分号的数叫百分数。

生2:表示一个数是另一数的百分之几的数叫百分数。

2、百分数与分数的区别在哪里?为什么要把百分数单独列一单元?

百分数表示两个数之间的倍比关系,又叫百分比或百分率,不能带计量单位;分数既可以表示两个数之间的倍比关系,叫分率,也可以表示具体的数量,能带计量单位。

百分数与分数既有联系又有区别,它在生活中广泛的运用到,所以有必要单独为一单元。

3、我们学过了整数、小数、分数、百分数,板书课题

二、看到这个课题,你想知道什么?

生1:为什么要转化?

生2:怎样转化?

师:对呀,为什么要相互转化呢?引导学生说出转化的意义。一是便于计算,二是便于比较。(板书),那怎么转化呢?这就是我们今天主要研究的内容。不过,百分数怎么转化成小数,小数又怎么转化成百分数,老师想把讲台让给你们,请同学们来当小老师,让讲台成为你们的舞台。

三、合作探究,学习新知

1、学生自学课本84页(两分钟)

2、小组讨论(三分钟)

3、指生上台汇报,集体交流小数转化成百分数的方法

(1)出示例1:(要求学生讲)

(2)小老师甲:要把小数化成百分数,要先把小数化成分母是100的分数,然后再把这个分数改写成百分数。

3÷5=0.6= =60%

4÷6≈0.667 = =66.7%

(3)小老师乙:请大家观察一下,这个过程先把小数化成了分数,显得麻烦了些。而我可以将小数直接化成百分数的。只要把小数点向右移动两位,同时在后面添上百分号就行了。

(4)教师说明:当小数点向右移动两位时,原数就扩大100倍,再添上百分号,又使它缩小100倍。所以原数大小是不变的。

4、师:学到这里也累了,今天要学习的内容学完了吗?(没有,还有百分数转化成小数的方法没学),噢,那我们接着学百分数如何转化成小数的。

(1)出示例2:(要求学生讲)

(2)小老师丙:要把百分数化成小数,可以先把百分数改写成分母是100的分数,然后再用分子除以分母,把分数转化成小数。

(3)启发学生口述每题的转化过程,板书:

750×20%

=750÷

=750×0.2

=150(人)

750×20%

=750×

=750×

=150(人)

(4)小老师丁:老师,我的方法更简便,能将百分数很快地直接化成小数?(把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位)

(5)使学生明白:当把百分数的百分号去掉时,原数就扩大了100倍;然后再把它的小数点向左移动两位,又使它缩小100倍,所以原数的大小不变四、拓展应用:做一做

五、总 结:通过这节课的学习你想和大家说点什么?

作业设计 练习十八6、7题

板书设计 百分数与小数互化

例1、3÷5=0.6= =60%

4÷6≈0.667 = =66.7%

例2 750×20% 750×20%

=750÷ =750×

=750×0.2 =750×

=150(人) =150(人)

反思

第3课时

教学课题 “求一个数比另一个数多(或少)百分之几”的

主备教师 使用教师 授课时间 2014年 月 日

标 知识

技能 使学生在现实情境中,理解并掌握“求一个数比另一个数多(少)百分之几”的基本思考方法,并能正确解决相关的实际问题。

过程

方法 使学生在探索“求一个数比另一个数多(少)百分之几”方法的过程中,进一步加深对百分数的理解。

情感

态度

与价

值观 百分数与日常生活的密切联系,增强自主探索和合作交流的意识,提高分析问题和解决问题的能力。

教学重点 求一个数比另一个数多(或少)百分之几的 的解题方法。

教学难点 理解求“一个数比另一个数多百分之几”这个问题的具体含义,弄清数量关系。

教学准备及手段 多媒体课件

教 学 流 程 二次备课

(一)导入

1 解答“一个数是另一个数的百分之几”用什么方法?

2 列式计算:4是9的百分之几?

50是200的百分之几?

3 解答这类百分数应用题的关键是什么?

4 出示课件复习题:

一个乡去年原 造林12公顷,实际造林14公顷,实际造林是原 的百分之几?

5 学生读题,找出题中的单位1,并独立解答。

6揭示课题:如果把这道题的问题变为实际造林比原计划增加了百分之几?应该怎样解答呢?这就是我们本节课要继续研究的比较复杂的百分数应用题。

(二)教学实施

1 出示例3

(1)指名读题。

(2)让学生找出题中的单位1,并画出线段图。

(3)找一名学生到前面板演,并说出自己画图的依据。

(4)启发学生思考:求实际造林比原计划增长百分之几是哪两个量比较?哪个量是单位1.(板书:增加的÷原计划的)

(5)学生尝试列式计算。(1名同学板演)

(6)想一想这道题还有其他的做法吗?

板书:14÷12≈1.167=116.7%

116.4%-100%=16.7%

(7)比较两种算法的相同点是什么?

2 将例3中的问题改为“原计划比实际少百分之几”?该如何解答呢?

(1)提问:这道题中是那两个量进行比较?把哪个量看成单位1,先求什么?再求什么?

(2)学生列式,老师板书。

(14-12)÷14

(3)比较观察

将例3改变问题后的列式发生了怎样的变化?为什么除数发生了变化?三、拓展应用

(1).分析数量关系。

(1)求今年产量是去年产量的百分之几,是把( )看作单位“1”,是( )和( )比,所以用( )÷( ).

( 2)求今年小麦的产量比去年增产百分之几,是把( )看作单位“1”,是( )和( )比,所以用( )÷( )。

(3)求女生人数比男生人数少百分之几,是把( )看作单位“1”,是( )和( )比,所以用( )÷( )。

(2).操场上有男生25人,女生20人。女生人数比男生人数少百分之几?

(3).一辆自行车原价是312元,现价比原价降低了168元。降低了百分之几?

(4).甲校学生人数比 乙校多5%,乙校学生人数比甲校少百分之几?

四、课堂小结。

这节课我们学习了一类怎样的百分数应用题?解答这类百分数应用题的关键是什么?

作业设计 做一做

板书设计 “求一个数比另一个数多(或少)百分之几”的应用题

例3、14÷12≈1.167=116.7%

116.4%-100%=16.7%

答:(略)

心得反思

第4课时

教学课题 “求比一个数多百分之几的数是多少”的应用题

主备教师 使用教师 授课时间 2014年 月 日

标 知识

技能 掌握稍复杂的求比一个数多百分之几的数是多少的问题的解决方法;

能进一步理解百分数应用题与相对应的分数应用题之间的联系。

过程

方法 增强应用意识, 百分数在实践生活中的应用。

情感

态度

与价

值观 提高学生类推、分析、解决问题的能力。

教学重点 找准单位“1”,掌握求比一个数多百分之几的数是多少的问题的解决方法。

教学难点 找准单位“1”,掌握求比一个数多百分之几的数是多少的问题的解决方法。

教学准备及手段 多媒体课件

教 学 流 程

二次备课

一、 回顾旧知,复习铺垫

(1)、口算 3/4×4 2/3÷2/3 1+12%

(2)、20的3/5是多少? 30的70%是多少?

二、 师生互动,探究新知

(一)、自主提问,生成问题。

1、教师口述信息:学校图书室原有图书1400册,今年图书册数增加了12%。

2、抽生复述刚才听到的信息。

3、学生提出相关百分数问题,引入例题。

预设问题:①增加了多少册? ②今年有多少册图书? ③今年的图书册数是原来的百分之几?

(二)、解决问题,引出例题。

1、出示例4:

师述:用刚才的信息加上同学们提出的第二个问题,就是我们今天要学习的例4。

例4:学校图书室原有图书1400册,今年图书册数增加了12%。现在有多少册图书?

2、分析数量关系,确定解决问题的方法。

(1)、重点 分析“今年图书册数增加了12%”。

引导:思考“今年图书册数增加了12%”是什么意思?在那见过类似的问题?如果把12%换成一个分数你会解决吗?(我们可以借助解决分数应用题的方法来解决百分数应用题。)等量关系是什么?(今年图书册数=原来图书册数+增加的册数)单位“1”是那个量?我们先求什么?(即问题①)求增加了多少册就是求什么?怎么列式?(1400×12%)(教师 一个数乘百分数的计算方法。)

(2)、根据等量关系式列式解答,强调过程的完整性。(抽生板演)

(3)、抽生说说算式的意义,回顾解题思路,说说解题的关键点是什么?(找单位“1”和等量关系。)

(三)、一题多解,拓展思维。

思考:解决这类问题还有什么方法?

(1)提示:借助刚才提出的问题③思考。(2)学生独立思考列式。1400×(1+12%)。(3)抽生说思路。(4)借助线段图分析“今年的图书册数是原来的百分之几?”(5)找准解决问题关键点。(6)列式解答。

(四)、分析特征,自主归类。

1、师生一起归类,这类题属于“求比一个数多(少)百分之几的数是多少”的问题。

2、回顾这类题的解题思路与方法。

三、联系实际,对比提升。

1、改编例4并解答。

学校图书室现在有图书1568册,今年图书册数增加了12%。今年图书有多少册?

(1)学生自主思考解答。(2)小组合作解答。(3)全班交流。

2、分析这道题与例题有什么相同点和不同点。

3、比较今天学的这类题与分数应用题有什么相同点和不同点。

课件出示例5

学生试做,师板书:

1×(1-20%)×(1+20%)=0.96

(1-0.96)÷1=0.04=4%

四、拓展应用

比30米多60%是( )米。 40千克比( )少20%。

五、全课 。

这节课你收获了什么?

作业设计 课后做一做

板书设计 “求比一个数多百分之几的数是多少”的应用题

例4 1400×(1+12%)

=1400×112%

=1568(册)

答:(略)

例5 1×(1-20%)×(1+20%)=0.96

(1-0.96)÷1=0.04=4%

答:(略)

心得反思

人教版六年级数学上册第一、二单元教案


人教版六年级数学上册第一、二单元教案

第一单元 位置

内容:确定物体位置的方法(教材2~3页的例1、例2,练习一1~5题)

目标:

1、使学生能结合教材提供的素材,自主探索确定物体位置的方法,并能利用方格纸依据两个数据确定物体的位置

2、能把自己的思维过程与结果用语言表达出来,并与同伴进行很好的交流、合作。

3、体会生活中处处有数学,感受数学的价值,产生对数学的亲切感。

重难点、关键:

1、重难点:

运用两个数据准确表示物体位置。

2、关键

利用方格纸正确表示列与行。

教学过程:

一、旧知铺垫、导入新课

1、介绍位置

由学生介绍自己座位所处的位置,然后再介绍几个好朋友所处的位置。

学生介绍位置的方式可能有以下两种:

(1)用“第几组第几座”描述。

(2)用在我的“前面”、“后面”、“左面”、“右面”来描述。

2、谈话导入

(1)教师肯定以上学生描述的方式。

(2)明确说明本节课我们要进一步学习确定位置的有关知识。

板书课题:位置

二、探索活动,获取新知

1、教学例1

实物投影出示主题图:班级座位图

(1)说一说

学生观察座位图,想说谁的位置就跟同伴说一说。

(2)想一想

师:李刚的位置在哪里?可以怎样说?

学生可能有不同的回答,只要合理都予以肯定。

(3)写一写

请学生用自己喜欢的方式把李刚的位置表示出来

A:学生独立操作,教师巡视课堂,记录不同的表达方式。

B:展示几个不同的表达方式

(4)讨论

师:同样都是李刚的位置,大家表示的方法却各有不同。虽然所有的方法都有道理,但是总让人感到太麻烦。你有什么好建议,可以用一种统一的既清楚又简便的方法来表示?

(5)探索用数据表示位置的方法。

结合已有的表示方法“第6列,第3行”,并在学生讨论的基础上教师引导学生认识用数据表示位置的方法。

A:明确说明:李刚在第6列,第3行可以用(6,3)这样的一组数来表示。

B:学生尝试用这样的方法表示李芳、李小冬、赵强、王宏伟的位置。

要求:

a、先说一说他们分别在第几列第几行,再用数据表示;

b、根据数据再说一说在第几列第几行。

C、总结方法

师、:请你仔细观察这些数据和他们所在的位置,你能总结出用数据表示位置的方法吗?

学生先独立思考,然后与同学交流,再汇报。

归纳:

先看在第几列,这个数就是数据中的第一个数;再看在第几行,这个数就是数据中的第二个数。

2、教学例2

投影出示课本中的“动物园示意图”

(1)观察示意图,说一说那看到了什么。

(2)解决第(1)个问题

师:如果用(3,0)表示大门的位置,你能表示出其他场馆所在的位置吗?

A:学生独立操作,解决问题。

B:投影展示学生解决的结果。

熊猫馆(3,5) 海洋馆(6,4)

猴 山(2,2) 大象馆(1,4)

(3)解决第(2)问题

A:出示要求

在图上标出下面场馆的位置

飞禽馆(1,1) 猩猩馆(0,3) 狮虎山(4,3)

B:学生按要求在书上完成

C:反馈练习结束

学生回答,利用投影展示。

3、全课总结

(1)通过这节课的学习,你有什么收获?刚才,我们是怎样探究出用两个数据表示位置的方法的?

(2)教师简要介绍确定位置的方法的重要作用。比如播放有关地球经纬度的知识等。

三、巩固练习

完成教材练习一中的1~5题

第1题:

(1)说一说(9,8)中的“9”表示什么?“8”表示什么?

(2)按照题目给出的数据,涂一涂

第2题

(1)观察棋盘,与第1题方格图比较,说一说有什么不同。

(2)引导学生正确说出黑方的“五”所处的位置。

(3)引导学生说出其他棋子的位置,并与同学交流。

(4)完成题中第(2)小题,并和同学交流。

第3题

第1小题,用投影展示学生所确定的区域。

第2小题,同学之间相互交流表示结果。

第4题

学生独立完成,然后同学之间互相检验交流,最后,教师再展示学生的作品,学生评价。

第5题

(1)学生自己在方格纸上画一个简单的多边形。各顶点用两个数据表示。

(2)同桌互相合作,一人描述,一人画图。

第二单元 分数乘法

1、分数乘法

第一课时 分数乘整数

教学内容:教材第8页的例1,第9页的例2以及“做一做”,练习二中的第1、2题。

教学目标:让学生掌握分数乘正整数的计算方法,并能准确地进行计算。

重难点、关键

分数乘整数的计算方法。

教学准备:电脑课件

教学过程: 一、旧知铺垫

1、计算下列各题

2/11 +2/11+2/11

过程要求

(1) 写出计算过程。

(2) 说一说分数加法的计算方法。

2、想一想,能不能把 2/11+2/11+2/11改写成乘法算式呢?

二、探索新知

1、教学例1

(1) 出示例题

根据题意,电脑课件呈现示意图。

(2) 根据题意列出解答算式:

2/11+ 2/11+2/11 = 2+2+2/11 = 6/11

2/11×3= 6/11

(3)探索分数乘整数的计算方法。

师:2/11×3= ,说一说你是怎么想的?

① 学生在小组交流各自的想法

② 小组讨论后反馈思维的过程和结果

教师板书:

③总结分数乘整数的计算方法。

A、学生口述分数乘整数的计算方法;

B、 教师整理并板书:

分数乘整数,整数与分子相乘的乘积作分子,分母不变。

2、教学例2

计算:3/8×6

(1) 学生独立计算。

(2) 交流计算方法和步骤。

(3) 比较计算过程,看一看哪一种更为简单

(3)归纳:能约分的要先约分,再计算。

三、巩固练习

1、 完成课本“做一做”。

(1) 学生独立完成,然后计算过程和结果。

(2)第3题,说一说你是怎样计算的?怎样想的?

一般要求学生列综合算式计算。如:

6/7×10×7==60(kg)

2、课本练习二第1、2题

四、课后作业设计

一、计算

7/8× 7 3/4×8 1/9×3 1/2×4

5/6×5 5/18×3 27× 2/3 3/8 16×

三、列式计算

1、3个5/8是多少? 2、2/3的6倍是多少?

3、5/14扩大7倍以后是多少? 4、5/6与24的积是多少?

课后反思:

第二课时 分数乘分数

教学内容:教材第10页例3,第11页例4以及“做一做”,练习二中的3、4题

教学目标:

1、理解一个数乘分数就是求一个数的几分之几是多少。

2、掌握分数乘分数的计算方法,并能正确地进行计算。

重难点、关键:

1、重难点:分数乘分数的计算方法。

2、 关键:理解一个数乘分数就是求一个数的几分之几是多少。

教学准备:实物投影或者电脑课件。

教学过程:

一、创设情境引入新课

教师谈话,以学校粉刷教室或家庭装修新房等学生身边的实例引入。

出示粉刷墙壁的画面,给出条件:每小时粉刷这面墙的1/5。

师:能提出什么问题?

学生提问题,教师板书。

以分数乘整数的问题作研究内容,如“4小时可以粉刷这面墙的几分之几?”

师:怎样列式?(板书1/5×4)

师:列式的依据是什么?为什么用乘法?(工作效率×工作时间=工作总量)

让学生计算,并说说怎样计算。

师:我们解决了4小时粉刷多少的问题,那么1/4小时可以粉刷这面墙的几分之几?(出示问题)怎样列式?依据是什么?

学生讨论汇报。(根据“4小时可以粉刷这面墙的几分之几”的列式类推出,或根据工作效率×工作时间=工作总量,可以列出1/5×1/4)。板书算式。

师:(结合板书讲解)我们已经知道求4小时粉刷这面墙的几分之几,就是求4个1/5是多少。求1/4小时粉刷这面墙的几分之几,就是求1/5的1/4是多少。那么1/5×1/4如何计算呢?这就是我们今天学习的内容。

板书课题:分数乘分数

二、操作探究计算算理

1?师:下面我们来探讨分数乘分数怎样计算。我们每人准备了一张纸,把它看作这面墙,先在纸上涂出1小时粉刷的面积,应该涂出这张纸的几分之几?

学生操作。

学生交流是怎样涂的?(用折或量、分的方法把纸平均分成5份,涂出其中的1份,如下图)

师:我们已经知道,求1/4小时粉刷这面墙的几分之几,就是求1/5的1/4是多少。再涂出1/5的1/4,小组讨论一下,应该怎样涂?

小组汇报(把涂出的1/5部分再平均分成4份,涂出其中的1份)。

学生自己涂色。

师:从涂色的结果看,1/5的1/4占这张纸的几分之几?1/20

师:我们可以得到1/5×1/4=1/20。根据涂色的过程,你能说说是怎样得到的吗?

学生讨论交流汇报。

教师归纳(用多媒体或投影片演示涂色过程):我们先把这张纸平均分成5份,1份是这张纸的1/5,又把这1/5平均分成4份,也就是把这张纸平均分成了5×4=20份,1份是这张纸的1/20。由此可以得到 (板书)。

三、迁移延伸,归纳法则

提出问题:3/4小时粉刷这面墙的几分之几?

师:“3/4小时粉刷这面墙的几分之几?”是求什么?(1/5的3/4是多少?)

小组讨论并操作:怎样列式?涂色表示15的34。怎样计算?

交流计算方法和思路:与前面一样,也是把这张纸分成5×4份,不同的是取其中的3份,可以得到 (板书)

根据板书的两个计算算式讨论归纳计算方法。

通过学生讨论交流得到:分数乘分数,用分子乘分子,分母乘分母。

四、反馈提高,巩固计算

出示例4,读题。

师:怎样列式?依据什么列式?

由学生讨论得到:根据“速度×时间=路程”,列出3/10×2/3。

让学生独立计算。通过请学生在黑板演算或用投影展示学生的演算过程及结果交流计算情况,强调能约分的要先约分再乘,这样可以使计算简便。并结合学生的演算情况说明约分的书写格式。

课堂总结:今天我们学习了什么?分数乘分数怎样计算?

课后反思:

第三课时 练习课

练习内容:练习二中的第5~10题

练习目标:使学生熟练掌握分数乘法的计算方法,并能正确地进行计算。

练习过程:

一、基础练习

1、口算

2/9×3/5 6/7 × 7/9 5/8 × 4/15 9/20 × 5/21

14× 3/8 15× 7/30 3/4× 2/3 1/5×5

2、计算

6/5× 5/3 1/2×4 27×5/12

过程要求:

(1) 请三位学生上台板演,其余学生做在练习本上。

(2) 集体反馈,学生评价计算过程。

(3) 着重强调约分的操作步骤。

二、专项练习:

完成练习二第5~10题

1、第5题

(1) 提问各算式的意义。

要求学生根据示意图,分别说一说×、×、×各表示什么?结果是多少?

(2) 将结果写在书上。

2、第6题

(1) 认真审题,弄清题意。

(2) 分别说明三个问题各属于什么类型的问题。

(3) 列式计算。

3、第7题

学生独立完成后,说一说你是怎样做的?

4、第8题

学生列式计算,教师巡视,然后集体订正。

5、第9题

(1) 学生判断正误,并说明原因。

(2) 改正算式。

6、第10题

(1) 学生列式计算,教师巡视进行个别指导。

(2) 说一说你有什么体会。

三、课后作业设计:

一、计算。

6/5× 5/3 7/25 × 15/14 3/11 × 1/2 14× 4/21

120× 5/6 5/6×24 5/6×18

二、列式计算

1、12/35米的7/10是多少米?

2、7、60千克的2/7是多少千克?

3、8/15吨的3倍是多少吨?

三、解答下列问题。

1、一辆汽车每小时行驶60千米,2/3小时行驶多少千米?

2、一个长方体长1/2米,宽3/5 米,高5/6米,它的体积是多少立方米?

课后反思:

第四课时 混合运算

教学内容:分数乘加、乘减混合运算,练习三第3题

教学目标:

1、使学生掌握分数乘加、乘减混合运算的运算顺序。

2、通过练习,提高学生计算的熟练程度。

教学重难点:分数乘加、乘减混合运算的运算顺序。

教学过程:

一、复习

计算下面各题

5×6+7×3 15×(34-29)-+

过程要求:

1、学生独立计算,然后集体订正。

2、说一说运算顺序。

二、讲授新知

1、教师明确说明:分数混合运算的顺序和整数的运算顺序相同。

2、举例说明

计算:(1/10+1/4)×4

(1) 观察算式说一说运算顺序。

(2) 学生尝试练习,教师巡视进行个别指导。

(3) 学生汇报计算过程,教师板书。

3、尝试练习

3/5×1/6×5

三、巩固练习

完成练习三第3题

1、学生独立列式计算,教师巡视,发现问题及时纠正。

2、选出两题,请学生进行板演,学生评价。

四、课后作业设计:

一、计算:

(3/4-2/5)×200 (3/4+1/6)×2

二、列式计算

1、3/8与3/10的差的1/5是多少?

2、3/8减去3/4的1/5,差是多少?

3、2/3的1/5比5/6少多少?

课后反思:

第五课时 简便运算

教学内容:整数乘法运算定律推广到分数乘法(教材第14页例5、例6,练习三的1、2、4、5题)

教学目标:

1、使学生会用整数乘法的运算定律推广运用到分数乘法,并使一些计算简便。

2、培养学生灵活计算的能力,发展学生逻辑思维能力。

重难点、关键:运用运算定律进行简便运算。

教学过程:

一、教学例5

1、观察每组的两个算式,看看它们有什么关系。

(1)1/2×1/3○1/3×1/2

① 学生计算,发现乘积一样,两个算式相等。

② 说一说存在的规律。

③ 用字母表示。

板书:乘法交换律:a×b=b×a

(2)(1/4×2/3)3/5○1/4×(2/3×3/5)

①学生计算,发现乘积一样,两个算式相等。

②说一说存在的规律。

③用字母表示。

板书:乘法结合律:(a×b)×c=a×(b×c)

(3) (1/2+1/3)×1/5○1/2×1/5+1/3× 1/5

①学生计算,发现乘积一样,两个算式相等。

②说一说存在的规律。

③用字母表示。

板书:乘法分配律:(a+b)×c=ac+bc

2、小结。

整数乘法的运算定律对于分数乘法同样适用。

师:应用这些乘法的运算定律,可以使一些计算简便。

二、教学例6

1、计算3/5×1/6×5

(1) 观察算式,说一说你有什么想法。

(2) 学生独立列式计算,教师巡视检查。

(3) 汇报计算过程。

3/5×1/6×5

=3/5× 5 ×1/6(问:运用了什么运算定律?)

= 3 × 1/6

=2

(4)想一想:不改写算式,直接进行约分行不行?

抽生板演

通过观察、思考、交流,使学生明白像这样连乘的算式,可以直接约分同时计算。

(5)试一试

2/3×1/4×3

学生独立计算,请两位学生上台板演,完成后集体评价,发现问题及时纠正。

2、计算(1/10+1/4)×4

(1) 观察算式,说一说你认为怎样计算比较简便。

(2) 学生独立列式计算,请两位上台板演。

(3) 集体评价,发现问题及时纠正。

板书:(1/10+1/4)×4

=1/10×4+1/4×4

=2/5+1

(4)试一试

(8/9+4/27)×27

学生独立计算,教师巡视进行个别指导,发现问题及时纠正。完成后,请一位学生上台板演计算过程。

3、计算:87× 3/86

(1)观察算式,说一说算式有什么特征?

(2)你认为应该怎样算比较简便?

(学生先独立思考,然后在小组中交流。

(3)反馈交流结果

板书:87× 3/86

=(86+1)× 3/86

=86× 3/86 + 3/86

=3+ 3/86

三、巩固练习:完成练习三的1、2、4、5题

四、课后作业设计:

一 用简便方法计算

1、(5/12+7/8)×24 2、5/7×4/5×21

3、5/3×2/15×64、39×3/38

教学反思:

2、解决问题

第一课时 求一个数的几分之几是多少的一步应用题

教学目标:在理解分数乘法意义的基础上,使学生学会分析乘法应用题的数量关系;借助线段图,能正确解答求一个数的几分之几是多少的实际问题;培养学生认真审题,仔细计算的好习惯。

教学重、难点:理解“求一个数的几分之几是多少”用乘法计算的算理;正确找准单位“1”所对应的量,初步学会画线段图。

教学过程:

(一)、导入

1、出示口算卡片,让学生说出每个算式的意义

12×1/2 3/5×7/8

2、口头列式

20的 4/5是多少? 6的2/3 是多少? 120的 4/5是多少?

(二)、教学实施

1、出示第17 页例1

学生读题,找出已知条件和要解决的问题;

在理解题意的基础上用图表表示数量关系,如:

?㎡ ?㎡

2500㎡

2500㎡

2、指导学生画线段图,并板书:

2500㎡

?㎡

| | | | | |

提问:想一想,应重点抓住哪个已知田间分析?这条线段表示什么?

根据“我国人均耕地面积仅占世界人均耕地面积的 ”这个条件,应该把这条线段平均分成几份?怎样表示?(请一学生板演,其他学生尝试自己画图,教师巡视)对照板书,把不正确的地方改正过来。

1、分析题中的数量关系

提问:想一想,“我国人均耕地面积仅占世界人均耕地面积的 ”这句话是什么意思?(是把世界人均耕地面积看成单位“1”,把单位“1”平均分成5份,我国人均耕地面积占这样的2份。)求我国人均耕地面积,就是求谁的几分之几是多少?根据以上数量之间的关系,这道题应该怎样列式?根据什么?

板书: 2500× =1000(㎡) 或 2500÷5×2=1000(㎡)

这样列式是什么意思?(先把2500平均分成5份,再求这样的份是多少。也就是求2500的 是多少。)

(三)、巩固练习

1、一本书,看了 3/5,表示把( )看着单位“1”,平均分成( )份,看完的页数占这样的( )份,剩下的占( )份。

2、完成教材17页的“做一做”注意提示:一个人的身高是鲸体长的 ,这里把谁看成了单位“1”,把谁平均分成了几份?能用线段图表示吗?求这个人的身高多少米,也就是求什么?

3、完成练习四中的第2题,第3 题。

(四)、课堂小结

我们在解答“已知一个数,求它的几分之几是多少?”这种类型的分数乘法应用题时,首先要找准题中的单位“1”所对应的量,然后再根据分数乘法的意义列式计算。

教学反思:

第二课时 分数连乘应用题

教学目标:使学生学会分析分数乘法应用题的数量关系,会应用一个数乘分数的意义解答两步计算的分数乘法应用题;培养学生解决问题的能力,提高学生的分析能力;进一步提高学生思考问题的逻辑性。

教学重,难点:掌握分数连乘的计算方法,突出一次计算,会解答分数连乘计算的实际问题。

教学过程:

(一)、导入

1、说出下面各题算式所表示的意义,再口算各题

1/2×2= 2/5×3= 2/3× 1/2= 3/4× 5=

2、说出下面各题中的两个量,应该把谁看着单位“1”。然后再给每题补充一个已知条件和一个问题,使它成为一道一步计算的分式乘法应用题。

母牛的头数是公牛的 1/3, 公牛头数的2/3 和母牛相等。

母牛的头数相当于公牛头数的 3/4, 公牛的头数相当于母牛头数的 1/2。

小组完成,集体订正。

(二)、教学实施

1.板书:公牛有30头,母牛的头数相当于公牛的1/3 ,小牛的头数相当于木牛的2/5 ,小牛有多少头?(认真读题,弄清题意)

2.指导学生画线段图:怎样用线段图表示已知条件和问题?要求小牛的头数,就要知道哪个量?(母牛的量)母牛的头数又和哪个数量有关?(公牛的头数)先画一条线段,表示哪个数量?(公牛的头数)崽化一条线段,表示哪个数量?(母牛的头数)画多长?根据什么?表示小牛的头数的线段应该怎样画?板书:

公牛: | | | | | | | | | | |

30头

母牛: | |

小牛:

?头

3.分析数量关系:

求小牛有多少头,必须先求什么?(母牛的头数)求母牛的头数应该怎样做?解答这道题需要几步?

4.列式解答:根据以上分析,这道题应该怎样解答?怎样列综合算式解答?板书:

30× 1/3× 2/5=

根据综合算式让学生说说每一步分别求的是什么,每一步分别是把哪个数量看着单位“1”。同时强调:分数连乘不必像整数,小数连乘那样,逐次计算,可以一次计算,遇到整数和分数相乘,要用整数与分数的分母约分,不能约分的直接与分数的分之相乘。

(三)巩固练习

完成第18页第4、5、9、10题,学生要说明每一步所表示的意义,每一步是把哪个数量看着单位“1”。

(四)课堂小结:解答两步计算的分数乘法应用题与解答一步计算的分数乘法应用题的相同点都是求一个数的几分之几是多少的应用题,不同点是分数连乘应用题要连续求一个数的几分之几是多少。解题关键是要找准每一步的单位“1”。

教学反思:

第三课时 求比一个数少几分之几的数是多少的实际问题

教学目标:使学生认识“求比一个数少几分之几的数是多少”的应用题的结构特征,学会利用线段图来分析数量关系,掌握解答这类应用题的思路和方法,并能正确列式计算;培养学生分析问题及综合运用所学知识的能力。

教学重、难点:了解“求比一个数少几分之几的数是多少”的应用题的结构特征;正确分析数量关系,比较熟练的画出线段图。

教学过程:(一)导入

板书:超市运来花生油和豆油共600桶,花生油的桶数占总桶数的 2/5。

(二)、教学实施

1.根据以上两个条件,我们可以提出以下数学问题:

花生油有多少桶?豆油有多少桶?豆油不花生油多多少桶?这些问题中哪个问题可以一步解决?明确任务,重点研究第二个问题

2.能用图表示豆油的部分吗?板书:

“1”

花生油占总桶数的

| | | | | |

豆油?桶

600桶

3.分析数量关系;看图想想,豆油占总桶数的几分之几?求豆油的桶数就是在求什么?交流讨论得出:豆油的桶数占总桶数的 ,求豆油的桶数也就是在求600的 是多少,用乘法计算。

4.列式: 600×(1 – 2/5 )或 600 - 600× 2/5

后者方法很容易理解,主要是从“总桶数 — 花生油的桶数 = 豆油的桶数”这个数量关系入手分析,也就是“和 — 一个量 = 另一个量”

5.出事例2: 明确题意:降低是指什么意思?(比原来少)减少了哪个量的 ?现在听到的声音分贝是原来噪音的几分之几?请个别学生尝试板演画线段图

“1”

原来:| | | | | | | |

85分贝

降低了

现在:| | | | | | | |

?分贝

根据线段图想到了什么?

3.分析数量关系:求现在听到的声音是多少分贝该怎样计算?先求什么,再求什么?(先求降低了多少分贝,再求现在听到的声音分贝是多少;还可以先求现在声音的分贝占原来声音分贝的几分之几,再求现在听到的声音是多少分贝。)

4.列式解答:

方法一:80 — 80× 1/8方法二: 80 ×(1 —1/8 )

=80—10 =80× 7/8

=70(分贝) =70(分贝)

(三)、深化练习

完成教材20 页的“做一做”;完成练习五的第2、4、5、8、10题

(四)课堂小结

今天我们学习了“求比一个数少几分之几的数是多少”的应用题,这类题需要两步完成,通过今天的学习我们能够准确地分析并计算出这类题。

课后反思:

第四课时 求比一个数多几分之几的数是多少”的实际问题

教学目标:

使学生回解答“求比一个数多几分之几的数是多少”的应用题;进一步培养学生画线段图的能力,从而提高学生解答这类应用题的熟练程度。

教学重、难点:周围分析方法,正确熟练的解决时间问题。

教学过程:(一)复习旧知

1. 完成教材练习五第6 题,并把计算结果相等的算式连接起来。

2. 说出单位“1”及单位“1”比较量是”1”的几分之几。

男生的人数是女生人数的 , 一瓶墨水已经用了 ,

草莓酱的瓶数比沙拉酱的瓶数多 。

(二)教学实施

1.出示例2,集体读题,理解题意,提问:“婴儿每分钟心跳的次数比青少年多 4/5”是什么意思?

3. 指导学生画图

根据这句话,应当把什么看着单位“1”?板书:

“1”

青少年: | | | | | |

75次比青少年多

婴儿: | | | | | | | | | |

?次

4. 列式解答:

借助线段图想想,婴儿的心跳次数相当于哪两部分?婴儿每分钟心跳的次数相当于青少年每分钟心跳次数的多少?

方法一: 75 + 75 ×4/5 方法二:75 ×(1 + 4/5 )

请学生将这两题的解题思路完整的叙述出来。

5. 深化练习

完成教材21页的“做一做”,完成练习五的第3、7、9题

(三)课堂作业设计

分析数量关系

小红读一本书,已读了这本书的 3/5,( )是单位“1”, 表示( ),没读的页数用( )表示。

面粉比大米多 表示( )。

(四)课堂小结

今年天我们学习了“求比一个数多几分之几的数是多少”的应用题,解答这类应用题要先找准数量关系,画出线段图,然后列式计算。

课后反思:

3、倒数的认识

倒数的认识

教学目标:

引导学生通过观察、研究、类推等数学活动,理解倒数的意义,总结出求倒数的方法;通过互助活动,培养学生与人合作、与人交流的习惯;通过自行设计方案,培养学生自主探索和创新的意识。

教学重、难点:理解倒数的含义,掌握求倒数的方法。

教学过程:

(一) 导入

1.找找下面文字的构成规律

呆———杏 土———干 吞———吴

2.按照上面的规律填数

——( ) ——( ) ——( )

能根据分之和分母的位置关系,给这三组数取个名吗?揭示课题:倒数

(二)教学实施

关于倒数同学们想知道些什么呢?学习倒数的含义

1. 观察教材24 页的例1,归纳,总结倒数的含义,

2. 举例验证:4和 1/4, 7和1/7 , 3和 1/3

4乘 1/4的积是1,所以4和1/4 互为倒数;7可以看成分母是1的分数,把分子、分母调换位置后就是1/7 ,所以7和 1/7互为倒数。

归纳:乘积是1的两个数互为倒数。

3. 特殊数:0和1 (引导学生辩论0有没有倒数,1有没有倒数,是多少?)

教师归纳板书:0没有倒数,1 的倒数就是它本身。

4. 学习例2——求倒数的方法

让学生根据已学知识独立解决怎样求一个数的倒数,集体订正,教师归纳,板书:求倒数的方法

5. 反馈练习

完成教材24页的“做一做”,完成练习六的第3、4题

(二) 课堂练习

找一找下列数中哪两个数互为倒数

2 10 1/2 1/10

填空

1的倒数是( ),( )的倒数是2/3 。

10的倒数是( ),( )没有倒数。

(三)课堂小结

学完本节课,我们知道了乘积是1 的来年各个数互为倒数。1的倒数是它本身,0没有倒数。

课后反思:

整理复习

教学目标:

复习分数乘法的意义和计算法则,掌握乘法运算定律在分数乘法中的推广和分数乘法的简便计算;提高学生分析,解答分数应用题的能力;进一步培养学生认真书写及良好的审题习惯。

教学重、难点:巩固分数乘法的意义,提高灵活计算的能力,正确分析数量关系,熟练掌握求一个数的倒数的方法。

教学过程:

(一)复习分数乘法的意义

1/2×6= 2/3×5= 2/5×8=

以上几道题都是分数乘整数,想想,分数乘整数的意义同整数乘法的意义相同吗?能说说分数乘整数表示的意义是什么吗?

口算

75 ×2/15 = 3/2 ×1/3 = 4×3/8 = 36×5/9 =

以上几道题有的是整数乘分数,有的是分数乘分数,都可以看成是一个数乘分数,一个数乘分数的意义是什么?分别说出以上几道题的意义。

(一)复习分数乘法的计算方法

让学生看教材第26 页的第1题,问:为了计算简便,在分数乘法中应该先做什么?(先约分,再做乘法)在本题中,都有一个因数是整数,约分的时候要注意什么?(整数与分数的分母约分)

(二)复习乘法运算定律和简便计算

问:我们学过哪些乘法定律?它们在分数乘法中适用吗?然后独立完成第26 页第2题,练习七第1、4题,再请个别学生说说自己是怎样做的,着重说说在进行简便运算时运用了什么定律。

(三)复习分数乘法的应用题

1、完成教材第26 页第3题,练习七第2、3题

学生独立完成,同时请一名学生板演,并讲一讲是怎样分析数量关系的,在计算中把什么数量看着单位“1”。教师要进一步强调在解答分数乘法应用题时,一定要找准单位“1”。因为分数乘法应用题是根据分数乘法的意义计算的,求哪个数量的几分之几,就是要把哪个数量当做为单位“1”。在解答两步计算的分数应用题,要注意每一步是把什么数量关系看作单位“1”,在两步计算中的单位“1”可能是不同的。

(四)复习倒数的知识

什么是倒数?怎样求一个数的倒数?完成教材第26 页第4题及27 页第7题。

课堂小结:

通过复习,我们能正确分析“求一个数的几分之几是多少”的应用题的数量关系,可以熟练地求出一个数的倒数。

人教版六年级数学上册第三单元《分数除法》教案(六)


老师在上课时经常会遇到难解决的问题而耗费半节课的时间吧,所以大多数老师都会选择制定一份教学计划。这样可以让同学们很容易的听懂所讲的内容,你们见过哪些优秀教师的小学教案吗?以下是小编为大家精心整理的“人教版六年级数学上册第三单元《分数除法》教案(六)”,仅供参考,希望能为您提供参考!

人教版六年级数学上册第三单元《分数除法》教案(六)

1教学目标

1.让学生经历用假设法来解决分数工程问题的过程,理解并掌握把工作总量看作单位“1”的分数工程问题的基本特点,解题思路和解题方法.

2.通过自主探究,评价交流的学习活动,培养学生分析、比较、综合、概括能力。

3.培养学生运用所学到知识解决生活中的实际问题.

2学情分析

对于分数除法六年级的孩子在实际问题中的解决只理解数量的计算,对于抽象的分数解决问题工程问题是第一次接触,许多孩子不明白为什么要这样计算,不明白抽象的工程问题与具体的工程问题之间的关系,加强两者间的对比和联系是本节课的重点。

3重点难点

教学重点:

能利用假设法掌握分数工程问题的解题思路与方法。

教学难点:

理解理解假设不同的数据得出的相同结果的道理.

4教学过程

4.1第一学时

4.1.1教学活动

活动1【讲授】分数除法

教学过程

一、复习:口答下列各题

思考:下面各题研究的是哪三种量的关系?仔细读题,了解每一道题已知哪些数学信息,要求什么? 分别说出数量关系式.

维修一条300米的公路,甲工程队单独修5天完成,乙单独修6天完成,问:

如果: 1.甲单独修每天修( )米?甲每天修这条路的( )。

2.乙单独修每天修( )米?乙每天修这条路的( )。

分析:这里要我们求的是什么?它们有什么不同?

总结:我们既可以用具体的数量来表示效率也可以用分率来表示效率。

二、出示例题1

1. 一段公路长30千米。甲队单独修10天完成,乙队单独修15天完成。两队合修几天可以完成?

①从题目中你知道了那些数学信息?

学生交流对题意的理解:这道题是工程问题,工作总量就是公路的总长,工作时间就是修路的时间,工作效率就是每天修的路的长度.如果两队合修,那么工作效率就是两队的工作效率和.

②要解决“两队合修,多少天修完?”这个问题,需要知道哪些信息?

工作总量(这条路的总长度)和工作效率和

③如果知道了这两个信息,这个问题可以怎样解决?

生汇报:工作总量÷工作效率(和)=工作时间 生计算并汇报。

师总结:合修必须求出工效和。

三.出示例题2:一段公路甲队单独修10天完成,乙队单独修15天完成。两队合修几天可以完成?

① 这道题与刚才这道题有什么异同?我们需要的这两个信息题目中都没有给,怎么办?

② 我们能不能先假设出这条路的长度,再计算呢?可以怎样假设?

③根据各自假设,尝试解答.完成表格生汇报师总结

讨论分析:展示并说说自己的解题思路和方法.评价交流各种不同的假设.启发学生思考公路的长度可能是18千米,30千米……不管公路全长是多少千米,虽然具体的效率不一样,但是当把这条公路的全长看作单位“1”, 两个队的工作时间不变,他们每天修路的长度随着公路的总长变化而变化,但是在无论假设公路全长是多少,他们每天修了这条公路的几分之几没有变化.那么,一队和二队的工作效率是多少呢?学生讨论计算师板书

④观察思考:不同的假设,计算的结果都一样,为什么?

画线段图帮助理解:

六、回顾与反思

引导发现不管假设这条路有多长,答案都相同.把这条道路的总长度看做单位“1”,解决问题简便.

七、小结

解决工程问题一般方法:①把工作总量看作单位“1”

②工作效率就是1÷工作时间(工作时间的倒数)

③用工作总量÷工作效率(和)=工作时间

八、练习.

1.填空:一条路,甲单独4天完成,每天完成这条路的( )。

一条路,甲每天完成这条路的1/3 ,( )天完成。

2.解决问题:一堆货物,甲车单独运6次才能运完,乙车单独运3次才能运完,如果两车一起运,多少次能运完这批货物?

3.挖一条水渠,王伯伯每天挖整条水渠的20分之1,李叔叔每天挖整条水渠的30分之1,两人合作,几天能挖完?

4. 一批零件,王师傅单独做要15小时完成,李师傅单独做要20小时完成,两人合做,几小时能加工完这批零件的 四分之三?

六、评价延伸.

这节课你有什么收获?

今天我们这节课学习了新的分数应用题-工程应用题.其解答特点是什么?(把工作总量看作单位“1”,工作效率用“工作时间的倒数”表示.)(合作时间=工作总量÷工作效率和)

板书设计

工程问题

工作总量÷工作效率(和)=工作时间

例7.这条道路,如果我们一队单独修,10天能修完,如果我们二队单独修,15天能修完。如果两队合修,多少天能修完?

1÷(1/10+1/15)

=1÷ 1/6

=6天

答: 如果两队合修,6天能修完.

点击查看更多:六年级数学上册教案

提醒:

扫码关注回复“教案”

获得上下册教案资料!

六年级数学上册第一单元教案


六年级数学上册第一单元教案

1 位置 2

2 分数乘法 5

3 解决问题 5

4 倒数的认识、整理复习 5

5 分数除法 5

6 解决问题 5

7 比和比例,整理复习 5

8 圆的认识 5

9 圆的周长 5

10 圆的面积 5

11 百分数的意义和写法 5

12 百分数和分数小数的互化 5

13 用百分数解决问题 5

14 用百分数解决问题 5

15 统计 5

16 数学广角 5

17 总复习 5

18 总复习 5

19 总复习 5

20

本册教学目标:

这一册教材的教学目标是,使学生:

1. 理解分数乘、除法的意义,掌握分数乘、除法的计算方法,比较熟练地计算

简单的分数乘、除法,会进行简单的分数四则混合运算。

2. 理解倒数的意义,掌握求倒数的方法。

3. 理解比的意义和性质,会求比值和化简比,会解决有关比的简单实际问题。

4. 掌握圆的特征,会用圆规画圆;探索并掌握圆的周长和面积公式,能够正确

计算圆的周长和面积。

5. 知道圆是轴对称图形,进一步认识轴对称图形;能运用平移、轴对称和旋转

设计简单的图案。

6. 能在方格纸上用数对表示位置,初步体会坐标的思想。

7. 理解百分数的意义,比较熟练地进行有关百分数的计算,能够解决有关百分

数的简单实际问题。

8. 认识扇形统计图,能根据需要选择合适的统计图表示数据。

9. 经历从实际生活中发现问题、提出问题、解决问题的过程,体会数学在日常

生活中的作用,初步形成综合运用数学知识解决问题的能力。

10. 体会解决问题策略的多样性及运用假设的数学思想方法解决问题的有效性,感受数学的魅力。形成发现生活中的数学的意识,初步形成观察、分析及推理的能力。

11. 体会学习数学的乐趣,提高学习数学的兴趣,建立学好数学的信心。

12. 养成认真作业、书写整洁的良好习惯。

第一单元 位置

单元教学目标:

1. 在具体的情境中,探索确定位置的方法,能用数对表示物体的位置。

2. 能在方格纸上用数对确定位置。

教学内容 位置(一) 新授课 新授

教学目标 1.在具体的情境中,探索确定位置的方法,能用数对表示物体的位置。

2. 使学生能在方格纸上用数对确定位置。

教学重点 能用数对表示物体的位置。

教学难点 能用数对表示物体的位置,正确区分列和行的顺序。

教具准备 课件

教学过程 一、 导入

1、 我们全班有53名同学,但大部分的同学老师都不认识,如果我要请你们当中的某一位同学发言,你们能帮我想想要如何表示才能既简单又准确吗?

2、 学生各抒己见,讨论出用“第几列第几行”的方法来表述。

二、 新授

1、 教学例1

(1) 如果老师用第二列第三行来表示××同学的位置,那么你也能用这样的方法来表示其他同学的位置吗?

(2) 学生练习用这样的方法来表示其他同学的位置。(注意强调先说列后说行)

(3) 教学写法:××同学的位置在第二列第三行,我们可以这样表示:(2,3)。按照这样的方法,你能写出自己所在的位置吗?(学生把自己的位置写在练习本上,指名回答)

2、 小结例1:

(1) 确定一个同学的位置,用了几个数据?(2个)

(2) 我们习惯先说列,后说行,所以第一个数据表示列,第二个数据表示行。如果这两个数据的顺序不同,那么表示的位置也就不同。

3、 练习:

(1) 教师念出班上某个同学的名字,同学们在练习本上写出他的准确位置。

(2) 生活中还有哪里时候需要确定位置,说说它们确定位置的方法。

4、 教学例2

(1) 我们刚刚已经懂得如果表示班上同学所在的位置。现在我们一起来看看在这样的一张示意图上(出示示意图),如何表示出图上的场馆所在的位置。

(2) 依照例1的方法,全班一起讨论说出如何表示大门的位置。(3,0)

(3) 同桌讨论说出其他场馆所在的位置,并指名回答。

(4) 学生根据书上所给的数据,在图上标出“飞禽馆”“猩猩馆”“狮虎山”的位置。(投影讲评)

三、 练习

1、 练习一第4题

(1) 学生独立找出图中的字母所在的位置,指名回答。

(2) 学生依据所给的数据标出字母所在的位置,并依次连成图形,同桌核对。

2、 练习一第3题:引导学生懂得要先看页码,在依照数据找出相应的位置

3、 练习一第6题

(1) 独立写出图上各顶点的位置。

(2) 顶点A向右平移5个单位,位置在哪里?哪个数据发生了改变?点A再向上平移5个单位,位置在哪里?哪个数据也发生了改变?

(3) 照点A的方法平移点B和点C,得出平移后完整的三角形。

(4) 观察平移前后的图形,说说你发现了什么?(图形不变,右移时列也就是第一个数据发生改变,上移时行也就是第二个数据发生改变)

四、 总结

我们今天学了哪些内容?你觉得自己掌握的情况如何?

五、 作业

练习一第1、2、5、7、8题。

个人修改

以前我们学过哪些表示 方向的方法?

怎样用数对表示同学的座位?

游戏:说数对猜同学。

板书设计:

位置(一)

用数对表示位置,先横后竖

教后反思:

第二单元 分数乘法

单元目标:

1、使学生理解分数乘法的意义,掌握分数乘法的计算法则,并能熟练地进行计算。

2、使学生掌握分数乘加、乘减混合运算,理解整数乘法运算定律对于分数乘法同样适用。

3、使学生理解分数乘法应用题中的数量关系,会解答求一个数的几分之几是多少的应用题。

4、 使学生理解倒数的意义,掌握求倒数的方法。

单元重点:

分数乘法的意义和计算法则。

单元难点:

1、 理解分数乘法的意义,根据分数乘法的意义去解答这类应用题。

2、 分数乘法计算法则的推导。

教案

教学内容 分数乘整数 课型 新授

教学目标 1、在学生已有的分数加法及分数基本意义的基础上,结合生活实例,通过对分数连加算式的研究,使学生理解分数乘整数的意义,掌握分数乘整数的计算方法,能够应用分数乘整数的计算法则,比较熟练地进行计算。

2、通过观察比较,指导学生通过体验,归纳分数乘整数的计算法则,培养学生的抽象概括能力。

引导学生探求知识的内在联系,激发学生学习兴趣。通过演示,使学生初步感悟算理,并在这过程中感悟到数学知识的魅力,领略到美。

教学重点 使学生理解分数乘整数的意义,掌握分数乘整数的计算方法。

教学难点 引导学生总结分数乘整数的计算法则。

教具准备

教学过程 一、 复习

1.出示复习题。

(1)列式并说出算式中的被乘数、乘数各表示什么?

5个12是多少? 9个11是多少? 8个6是多少?

(2)计算:

+ + = + + =

2.引出课题。

+ + 这题我们还可以怎么计算?今天我们就来学习分数乘法。

二、 新授

1、 利用 + + 教学分数乘法。

(1) 这道加法算式中,加数各是多少?(都是 )

(2) 表示几个相同加数的和,我们还可以用什么方法来计算?怎么列式?(乘法, ×3)

(3) + + =9,那么 + + = ×3,所以 ×3=____________=9。同学们想想看, ×3=9计算过程是怎样的?谁能把它补充完整。

2、 出示例1,画出线段图,学生独立列式解答。

(1) 引导学生看图,理解“人跑一步的距离相当于袋鼠跳一下的 ”,就是把袋鼠跳一下的距离即这一整条线段看作单位“1”。把这条线段平均分成11份,其中的2份就表示人跑一步的距离。

(2) 引导学生根据线段图理解,人跑一步是袋鼠跳一下的 ,那么“人跑3步的距离相当于袋鼠跳一下的几分之几?”就是求3个 是多少?(列式: ×3 = )

3、 结合以上两题,归纳出分数乘整数的计算法则:分数乘整数,用分数的的分子和整数相乘的积作分子,分母不变。

4、 练习:练习完成“做一做”第2题。

5、 教学例2

(1)出示 ×6,学生独立计算。

(2)根据计算结果,学生观察讨论:乘得的积是不是最简分数?应该怎么办?

(3)学生通过自己的想法的来约分:A、先约分再计算;B、先计算得出乘积后约分。

三、练习

1、 完成“做一做”的第一题。(提醒学生,计算前先观察分数的分母与整数是否可以约分,养成先约分在计算的习惯)

2、 “做一做”第3题。(先让学生说说解题思路,讨论先算什么可以使计算简便。如果用连乘算式,要提醒学生先约分再计算。)

三、 作业

练习二第1、2、4题。 个人修改

《人教版六年级数学上册全册教案1》一文就此结束,希望能帮助您在小学教学中起到作用,如还需更多,请关注我们的“小学六年级数学比教案”专题。

文章来源:http://m.jab88.com/j/113486.html

更多

最新更新

更多