88教案网

苏教版六年级上册《解决稍复杂的百分数问题(1)》数学教案

在每学期开学之前,老师们都要为自己之后的教学做准备。有的老师会在很久之前就精心制作一份教学计划。这样不仅拉进了学生与自己的距离,还让学生学到了知识,那么老师怎样写才会喜欢听课呢?小编收集整理了一些“苏教版六年级上册《解决稍复杂的百分数问题(1)》数学教案”,欢迎您参考,希望对您有所助益。

苏教版六年级上册《解决稍复杂的百分数问题(1)》数学教案

第六单元 百分数

第13课时 解决稍复杂的百分数问题(1)

教学内容:

课本第102--103页例10和“练一练”,练习十七第1-3题。

教学目标:

1、引导学生在已学会的一些基本的百分数实际问题的基础上,引出列方程解一些稍复杂的百分数实际问题的方法。

2、能根据题中的信息,熟练地找出基本的数量关系,培养学生的分析解题能力。

教学重点:

分析数量关系。

教学难点:

找等量关系。

课前准备:

课件

教学过程:

一、铺垫练习

(一)解方程:

χ+40%χ=7 χ-15%χ=10.2 140%χ-χ=0.5

(二)列出方程解应用题。

(1)阳光机械厂有职工130人,男工人数是女工人数的 。阳光机械厂男、女职工各多少人?

(2)阳光机械厂中男工人数比女工人数少26人,男工人数是女工人数的3/5。阳光机械厂男、女职工各多少人?

二、探究新知

1、教学例10,出示例10。

(1)读题,理解题意

问:60%是哪两个数量比较的结果?比较时,要把哪个数量看作单位“1”?你能想出怎样的数量关系式?

(2)让学生根据上面的分析画线段图

(3)学生列方程解答

(4)交流解答过程及结果

(5)让学生尝试检验 ;

(6)小结:这样的题目告诉我们什么?求的是什么?我们可以怎么思考?

2、教学“练一练”。

(1)第1题,先把数量关系填写完整,再列方程解答。

(2)第2题,学生独立尝试解答,完成后交流讨论:

1、是怎样想到列方程解的?

2、列方程时,依据了怎样的等量关系?

三、课堂总结

今天学的百分数应用题有什么特点?解决这类题目怎样思考?

四、课堂作业

练习十七第1-3题.

教学反思:

延伸阅读

苏教版六年级下册《列方程解稍复杂的百分数实际问题》数学教案


苏教版六年级下册《列方程解稍复杂的百分数实际问题》数学教案

教学目标:

1、让学生经历稍复杂的百分数实际问题的解决过程,进一步掌握分析数量间相等关系的方法,会列方程解决稍复杂的“已知一个数的百分之几是多少求这个数”的实际问题。

2、在分析问题、解决问题的数学活动中,发展学生的数学思考能力,提高用方程表示数量关系的能力,进一步积累解决问题的经验,增强数学应用意识

3、让学生通过自学、交流、反馈、应用的学习方式,逐步培养主动学习的意识和能力,获得一些成功的体验,提高数学学习的兴趣和积极性。

教学重点:

分析数量关系。

教学难点:

找等量关系。

教学过程:

一、知识铺垫

1、解方程:χ+60%χ=48χ-25%χ=27χ-35%=0.52

2、列出方程解应用题。

(1)六年1班有学生55人,男生人数是女生的。六年1班男、女生各多少人?

(2)六年1班有男生比女生多11人,男生人数是女生的。六年1班男、女生各多少人?

【设计意图】:旨在唤起学生解形如ax+bx=c、ax-bx=c方程的方法,解决第二题时重点让学生说说数量关系式,为新课的教学环节中解决重、难点打下基础,做好铺垫。

二、新课教学

1、教学例5:出示例5:朝阳小学美术组有36人,女生人数是男生人数的80%。美术组男、女生各有多少人?

(1)读题,理解题意。

提问:把哪个数量看作单位“1”?80%是哪两个数量比较的结果?

(2)引导学生画图:提问:如果画图,应该先画一条线表示哪个量?然后呢?你是怎么想的?如何画?

追问:怎样表示36人?

引导得出数量关系式:男生人数+女生人数=美术组的总人数

【设计意图】:画线段图是问题解决中常用的一种思考策略,在问题解决过程中,利用线段图将题中蕴涵的抽象的数量关系以形象、直观的方式表达出来,能有效促进问题的解决,启迪学生的思维,本环节通过追问“怎样表示36人?”让学生思考两个部分量与总量之间的关系,自然而然地引导出数量关系式:男生人数+女生人数=美术组的总人数。为列方程解决了难题,有效地突破了难点。

(3)确定解题策略:你认为用什么方法解决这个问题比较合适?你是怎么想到的?

追问:如果用x表示男生的人数,那么女生人数怎样表示?(逐步完善线段图)

(4)组织学生列方程、解方程。

(5)交流解答过程及结果。

(5)检验让学生尝试检验;

交流总结:看男生+女生是不是等于36人,并且还要看女生除以男生是不是等于80%。

【设计意图】:以上几个步骤的教学,目的是让学生根据前面读题画图的体会,自主确定解题策略,掌握分析数量关系、设未知数、解方程以及检验的基本思想方法。学生在画图分析数量关系的过程中,不仅确定了解决问题的方法,同时对数量关系有了认识。教学时,交流“问什么想到列方程解决”这个问题,使学生体会列方程解决实际问题的特点,体会数量关系式对于列方程的重要性。

2、引导回顾解决问题的过程。

提问:刚才我们是经历怎样的过程来解决这个问题的,先做什么,再做什么,你觉得关键是什么?

【设计意图】:这个环节虽然短,但很重要。有效地回顾解决问题的过程,可以使学生理清列方程解决实际问题的步骤,进一步体会列方程解决实际问题的思考特点,加深对方程思想方法的认识。

3、出示例5的比较题:朝阳小学美术组女生人数是男生人数的80%,女生比男生少4人。美术组男、女生各有多少人?

4、教学“练一练”

(1)学生练习

(2)交流讨论两点:一:是怎样想到列方程解的?二:列方程时,依据了怎样的等量关系?

(3)比较两题有什么共同点和不同点?

追问:你觉得怎样的问题适合列方程解决?列方程解决实际问题的关键是什么?

【设计意图】:比较是人脑把各种相关事物和现象加以对比,来确定它们之间的异同的思维过程。本环节的设计有助于突出寻找等量关系解答这些题的关键,有助于提高学生找等量关系的能力,有助于进一步体会列方程解决实际问题的思考特点。

三、巩固练习

完成练习四2、3两题。

四、用百分数表示部分数之间的数量关系拓展到用整数和分数

做练习四第4题。

1、引导学生理解“桃树的棵树是梨树的3倍”和“桃树的棵树是梨树的”的含义,再解答。

2、联系。

3、小结:两个数量之间的倍数关系用整数、分数和百分数都能表示,这两个问题与例题的解题思考方法是一样的。

【设计意图】:巩固所学知识,本环节的拓展不是单纯的依赖模仿与记忆,而是通过与书本有联系的知识与能力的拓展,把用百分数表示部分数之间的数量关系拓展到用整数和分数表示,以扩大解决问题的范围,沟通新旧知识之间的联系。

五、课堂小结

通过今天的学习,你有哪些收获?还有什么不明白的问题?

板书设计:

列方程解稍复杂的百分数实际问题

36人

x人

男生

()人

男生人数+女生人数=美术组的总人数

解:设美术组有男生x人,女生就有80%x人。

x+80%x=36

1.8x=36

x=20

80%x=20x0.8=16

答:美术组有男生20人,女生16人。

教材分析:本节课教学的内容是解决稍复杂的“已知一个数的百分之几是多少求这个数”的实际问题。学生已有的基础是解决稍复杂的“求一个数的百分之几是多少” 和简单的“已知一个数的百分之几是多少求这个数”的实际问题。由于这套教材在六年级上册没有安排稍复杂的“已知一个数的百分之几是多少求这个数”的实际问题,这节课的教学就有了难度,也更显得重要。教材选择了已知总数和两个部分数之间用百分数表示的关系求这两个部分数各是多少的实际问题作例题,这种结构的问题基本数量比较明显,可以降低学习的难度。教材先用线段图使数量关系直观化,然后引导学生填写基本的数量关系式,继而呈现了设未知数,列方程,解方程的全过程,为学生示范了这类问题的解决方法。教材还安排了检验。“练一练”第一题是与例题结构相同的题目,第二题与第一题情节紧密联系但数量关系发生变化,安排学生分析数量关系并解答。练习四第1至4题安排解方程和解决问题的练习,巩固所学知识,并把用百分数表示部分数之间的数量关系拓展到用整数和分数表示,以扩大解决问题的范围,沟通新旧知识之间的联系。

学法指导:例5是较复杂的已知一个数的百分之几是多少,求这个数的问题,列方程解答。例题把相并关系作为列方程的相等关系,虽然相并是学生早就认识的数量关系,但在复杂的百分数情境里不容易看到。为此,例题利用线段图给予直观帮助,让学生在例5 的线段图右边的括号里填“36”,体会男生人数与女生人数合起来是美术组的总人数。教材完整地写出等量关系,让学生感受等量关系式右边美术组的总人数已知,在这样的情况下,列方程是解题的有效方法。虽然有了等量关系,但列方程还会遇到一个问题,即为什么设男生人数为x。要引导学生抓住题目中已知的那个百分数,分析它的意义,体会这样的设句是合理的,不仅用x表示了单位“1”的数量,还很容易用含有字母的式子表示出女生人数。

用百分数解决问题 六年级数学教案


【教学内容】

《义务教育课程标准实验教科书·数学》六年级上册第85页例1及练习二十一第1~4题。

【教学目标】

1. 认识一些常用的百分率,理解它们表示的具体意义。

2. 掌握求一个数是另一个数的百分之几的问题的解答方法。

3. 感受百分率在生活实际中的应用价值,提高学生分析、解决问题的能力。

【教学重、难点】

掌握求一些常用的百分率的方法。

【教具准备】

课件(或挂图)。

【教学过程】

一、复习准备

出示信息:西大街小学六(1)班有40人,其中男生有24人,女生有16人。

问题:六(1)班男生是全班人数的几分之几?女生是全班人数的几分之几?

学生独立解答,交流解题思路,总结求一个数是另一个数的几分之几用除法解决,关键是先弄清谁和谁相比,谁是单位“1”。

二、学习新课

1. 把复习准备的问题改成:六(1)班男生是全班人数的百分之几?女生是全班人数的百分之几?

(1)学生尝试解决。

(2)让学生交流解决思路,比较改动后的问题与复习中的问题的相同之处和不同之处。

引导学生由相同之处再次深化数量关系和解题思路,明确还是分别用男生人数÷总人数和女生人数÷总人数来解答,由不同之处可得知结果要化成百分数。

从而共同揭示出:解决百分数的问题可以依照解决分数问题的方法。求一个数是另一个数的百分之几用除法解决。关键是先弄清谁和谁相比,谁是单位“1”。

2. 学习例1。

出示课件:学生在操场上进行体育测试的情景。

出示两条信息:六年级有学生160人,已达到《国家体育锻炼标准》(儿童组)的有120人。

小精灵提出一个问题:六年级学生的达标率是多少?

(1)师:对于小精灵给我们带来的这个问题,同学们有什么疑问呢?

可以简单介绍《国家体育锻炼标准》的有关内容,重点解释:达标率是指达标学生的人数占学生总人数的百分之几。(可根据学生已有知识经验,采取生与生、生与师的对话方式)

(2)学生独立解答, 再在小组内交流解题思路,让学生总结求达标率的计算公式。

(3)全班交流达标率的计算公式,阅读课本第85页,看看书上的公式与自己总结的有什么不同。讨论:书上的计算公式为什么要乘100%?对此,你有何看法?

3. 学习例2。

(1)先让学生观察统计表,你看懂了什么?有什么疑问?(重点理解发芽率的含义)

(2)学生独立列式计算,完成统计表。

(3)分组交流讨论,概括求发芽率的计算公式。

(4)让学生观察填写完整的统计表,解释绿豆的发芽率是97.5%、花生的发芽率是92%、大蒜的发芽率是95%的具体意义。根据这三个信息,你知道了什么?你对这里的同学们所做的种子发芽实验有了怎样的认识?

(5)简单介绍发芽率的应用价值。

4. 认识一些常见的百分率。

(1)让学生在认识例1和例2中的达标率和发芽率的基础上,讨论:“率”指什么?

引导学生理解“率”是两个数相除的商所化成的百分数,即百分比或百分率。

(2)师指出生活中用百分率进行统计的还很多,师生共同补充常见的一些百分率的例子。

(3)课本第86页“做一做”的第一题

小组讨论:怎样求出我们所知道的百分率?说一说它们的含义和列出相关计算公式。(采取小组比赛的形式,比一比哪个小组列举的公式多而且合理)

(4)全班反馈交流。

5.深化理解百分率的意义。

(1)课件出示例1的信息:六年级学生的达标率是75%。用1个圆表示六年级学生的总人数。让学生思考如何在图上表示达标率是75%。课件显示这个圆的75%的部分涂上红色。

(2)这个圆的红色部分表示六年级学生的达标率是75%,那么剩下的部分表示什么?引导学生发现剩下的部分表示未达标率是25%。

(3)达标率和未达标率这一组百分率有什么关系?

引导学生发现达标率+未达标率=1,理解只要知道了其中的一个百分率,就能根据它们的关系求出另一个百分率。

(4)你们还能列举出象这样的一组百分率吗?

(5)根据以上的学习,讨论“百分率一定小于100%”这句话对吗?可让学生根据百分率的意义及一些实例来进行辩论。

(6)讨论:结合具体实例说一说哪些百分率不可能超过100%?哪些可能超过100%?说明了什么?

三、巩固练习

1. 课本第86页“做一做”的第2题。

2. 练习二十的第1题。

四、布置作业

课堂作业:练习二十的第2、3、4题。

课外作业:调查一些常见的百分率(课堂上没有涉及的),弄清它们的含义以及计算公式。

五、课堂总结及反思

1. 学了这节课你还有什么疑问呢?

2. 能谈谈学习后的收获或者是感受吗?(作者:湖北省武汉市西大街小学 彭 娟)

人教版六年级上册《用百分数解决问题(四)》数学教案


人教版六年级上册《用百分数解决问题(四)》数学教案

教学目标:

1、学生能够尝试用假设法解决连续求“一个数比另一个数多(或少)百分之几”的问题

2、掌握用抽象“1”解决实际问题的方法。

教学重点:

用假设法解决连续求“一个数比另一个数多(或少)百分之几”的问题

教学难点:用抽象“1”解决实际问题的方法。

一、创设情境,复习导入

口答算式。

(1)100的5%是多少?

(2)50吨的10%是多少?

(3)1000元的8%是多少?

(4)50万元的20%是多少?

二、探索交流,解决问题

1、出示例5

2、分析问题

(1)已知什么?求什么?

(2)商品的原价不知道,怎么办?

3、解决问题

(1)学生尝试解决

(2)汇报思路:找好对应关系

(3)质疑:可不可以将商品原价假设成1?

(4)验证:发现可以直接假设商品的原价是1

4、回顾与反思:在解决问题的过程中,你有什么发现?有什么启示?

三、巩固应用,内化提高

1、91页“做一做”第3题

2、练习十九的9-14题

四、回顾整理,反思提升

本节课你学习了什么知识?你有什么收获?

人教版六年级上册《用百分数解决问题(三)》数学教案


人教版六年级上册《用百分数解决问题(三)》数学教案

教学目标:

1、使学生掌握求稍复杂的已知一个数的百分之几是多少求这个数的应用题的解题方法,并能正确地解答这类应用题。

2、感受数学与生活的联系,培养学生的应用意识和解决简单的实际问题的能力。

教学重点:

掌握比一个数多(少)百分之几的应用题的数量关系和解题思路。

教学难点:

正确、灵活地解答这类百分数应用题的实际问题。

教学过程:

一、创设情境,复习导入

1、出示复习题:学校图书室原有图书1400册,今年图书册数增加了 。现在图书室有多少册图书?

2、学生找出这道题目的分率句,确定单位“1”,并根据数量关系列式:1400×(1+ )

二、探索交流,解决问题

1、教学例4

(1)出示例题:学校图书室原有图书1400册,今年图书册数增加了12%。现在图书室有多少册图书?

(2)学生读题,找条件和问题,明确这道题是把谁看成单位“1”。

(3)引导思考:从“今年图书册数增加了12%”这句话中,你能知道些什么?

① 今年图书增加的部分是原有的12%。

② 今年图书的册数是原有的120%。

(4)学生讨论后分小组交流,并独立列式计算:

第一种:

1400×12%=168(册)

1400+168=1568(册)

第二种:

1400×(1+12%)

=1400×112%

=168(册)

2、 通过这道题的学习,你明白了什么?(求一个数的几分之几和求一个数的百分之几,都要用乘法计算)

3、巩固练习:完成P91“做一做”第1题、第2题

三、巩固应用,内化提高

1、学生做教科书练习十九的第5-8题。

2.希望小学今年毕业的学生比去年毕业的增加了15%。去年毕业80人,今年毕业的学生有多少人?

3.小亮上次数学竞赛的成绩是85分,这次成绩提高了10%。小亮这次得了多少分?

4.小林原来每分钟能打90个字。经过假期练习,现在打字的效率提高了20%。小林现在每分钟能打多少字?

四、回顾整理,反思提高

今天我们学习了什么知识?解决这类题的关键是什么?

苏教版六年级上册《百分数与分数的互化》数学教案


苏教版六年级上册《百分数与分数的互化》数学教案

第六单元 百分数

第4课时 百分数与分数的互化

教学内容:

课本第87页例3,“试一试”和“练一练”,练习十四第16-20题。

教学目标:

1、利用已有知识迁移、类推、发现百分数和分数互化的规律和方法。

2、理解、掌握百分数和分数互化的方法,并能熟练运用,进一步体会数学

之间的内在联系,增强思维的深刻性。

3、通过合作交流、探索发现等数学学习活动教给学生学习方法培养学生分析、比较的思维能力。

教学重点:

探索百分数与分数的互化方法。

教学难点:

正确进行分数、百分数与小数的互化。

课前准备:

小黑板

教学过程:

一、复习铺垫

小黑板出示

1、把下面的数改写成百分数。

0.12 1.8 5 0.07 0.109

2、把下面的百分数改写成小数。

106% 0.8% 34% 200%

3.、把下面的分数改写成小数。

二、探究新知

1、教学例3。

(1)出示例3。

(2)引导讨论。

师问:你会用百分数表示上面的分数吗?

(3)师根据学生发言评点两种方法。

方法一:将分数先改写成小数,再改写成百分数。

方法二:将分数先改写成分母是100的分数,再改写成百分数。

2、教学方法一。

师问:分数可以怎样改写成小数?

指出:在除不尽的情况下,一般保留三位小数,也就是百分号前保留一位小数。

3、教学方法二。

(1)师:有时候,也可以将分数先改写成分母是100的分数,再改写成百分数。

例如:3/5=60/100=60%

(2)像这样很容易改写成分母是100的分数还有哪些?

(3)这种方法有没有局限性呢?引导学生思考。

(4)引导归纳:将分数先改写成分母是100的分数,再改写成百分数这种方法有它的好处和局限性,同学们要合理善用。

4、完成“练一练”。

先让学生说一说思考过程再归纳。

师:根据以上学习,说一说分数和百分数的互化方法。哪些地方要特别注意?

三、巩固练习

1、完成“练一练”。

师:分数化成百分数时要注意什么?

小结:

(1)能化成分母是100的分数,先将分数化成父母是100的分数,再改写成百分数;

(2)不能的,用除法先将分数改写成小数,再化成百分数;

(3)除不尽时,要保留三位小数;

(4)百分数化成小数,要注意运用约分和通分。

2、完成练习十四第16题。

独立完成、评价。说一说“求一个数是另一个数的几分之几”的思考过程。

3.完成练习十四第17题。

先分别说一说:4/7和9/11改写成百分数的过程,125%和0.6%改写成分数的过程。

4、完成练习十四第18题。

提醒学生:能化简的要先化简。

5、完成练习十四第19、20题。

指名分别说一说每组中分数、小数和百分数的意义。

四、课堂总结

师:通过今天的学习,你又掌握了什么知识?

教学反思:

苏教版六年级上册《百分数的意义和读写》数学教案


苏教版六年级上册《百分数的意义和读写》数学教案

第六单元 百分数

第1课时 百分数的意义和读写

教学内容:

课本第84--85页例1,“试一试”和“练一练”,练习十四第1-3题。

教学目标:

1、使学生在现实的情境中,初步理解百分数的意义,会正确地读、写百分数。

2、使学生经历百分数意义的探索过程,体会百分数与分数、比的联系和区别,积累数学活动经验,进一步发展数感。

教学重点:

理解百分数的意义,会正确地读、写百分数。

教学难点:

百分数与分数、比的联系和区别.

课前准备:

课件

教学过程:

一、创设情境,引发探究需求

谈话引入:学校篮球队组织投篮练习。李星明等三名队员的投篮情况如下:

提问:根据这张表,你认为哪位同学投篮练习的成绩好一些?为什么?

教师引导学生比较各种方法,并在讨论中确认最后一种方法是合理的。(在统计表右边增加“投中的比率”一栏)

二、自主探究,初步理解百分数的意义

1、引入百分数。

结合学生的汇报,教师完成统计表。指名说说16/25、13/20、3/5分别表示哪个数量是哪个数量的几分之几。

提问:根据上面的计算结果,你能比较出谁投中的比率高一些吗?

指出:为了便于统计和比较,通常把这些分数用分母是100的分数来表示。

指名口答改写结果,教师板书。

2、揭示百分数的意义。

(1)提问:64/100表示哪两个数量比较?表示哪个数量是哪个数量的百分之几?

(2)指出:像上面这样表示一个数是另一个数的百分之几的数叫做百分数。百分数又叫做百分比或百分率。

3、介绍百分数的读、写法。

指导学生阅读教材并提问:通过阅读这段文字,你知道了什么?教师进一步示范64/100的读、写方法,并要求学生模仿着读一读、写一写。

指导做练习十四第1题。

指导做练习十四第2题。

提问:根据题中的百分数,你对我国的西部地区有了哪些直观的印象?

三、指导完成“试一试”,加深理解百分数的意义

1、指导完成第(1)题。

启发:根据“男生人数是女生的45%,如果把女生人数看作100份,那么男生人数相当于这样的多少份?由此,你知道男生人数是女生的几分之几吗?男生与女生人数的比是几比几?

2、指导完成第(2)题。

3、提问:通过解答上面两题,谁来说说百分数为什么又叫做百分比或百分率?

四、巩固应用

1、做”练一练“第1题。

2、做”练一练“第2题。

3、做练习十四第3题。

告诉学生:百分数只表示两个数量的倍比关系,不能用来表示具体的数量。这是百分数与分数的区别。

五、课堂总结

提问:通过这节课的学习,你有哪些收获?你认为自己表现得怎样?

教学反思:

人教版六年级上册《百分数的复习》数学教案


人教版六年级上册《百分数的复习》数学教案

教学内容:六年级上册P94--95

教学目标:

1.知识与技能目标:整理百分数的有关知识,理清百分数、小数、分数之间的关系,能正确运用百分数知识解答实际问题。

2.过程与方法目标:在解决问题的过程中,发展思维能力,感受数学的应用价值。

3.情感与态度目标:在分析、思考、交流中获得成功的体验,培养学习数学的积极情感。

教学重难点

1.进一步理解百分数的意义,掌握百分数的读法和写法。

2. 进一步掌握百分数和小数、百分数和分数互化的方法,熟练解答求一个数是(比)另一个数(多或少)百分之几应用题以及百分比应用题。

教具准备:教学课件或小黑板、 “收获卡”卡纸。

教学过程:

一、创设情境,引入复习

出示一组练习题,学生独立完成。

3.2+1.68= 0.8×0.5= 14-7.4= 0.3÷1.5=

48×0.02= 4÷20= 11.2-9.8= 1.5×0.04=

43÷0.01= 0.8×125= 3.8﹪+4.2﹪= 80﹪-30.6﹪

集体订正,让学生算一算自己做题的正确率。

学生汇报:90﹪、100﹪、86﹪、98﹪……。

利用学生做题的正确率引入新课,这节课就一起来复习有关百分数的知识,(板书课题)

二、回顾整理,建构网络

(一)自主梳理师:经过这段时间的学习,我们对百分数已经不再陌生,现在就请同学们回忆一下这单元我们都学了哪些有关百分数的知识,并用你喜欢的方式整理在“收获卡”上。

(二)展示成果:谁愿意把自己整理的知识网络图给大家展示展示?

(三)交流矫正,优化再建

意义(读法、写法)

百分数与小数、分数的互化

百分数

百分数的应用

三、重点复习,强化提高

(一)基本练习

1、某农场去年产小麦20吨,今年增产二成,今年产小麦多少千克?

2、一种商品, 先提价20%, 再降价20%后,现价和原价相等吗?为什么?

3、某种商品,原定价为20元,甲、乙、丙、丁三个商店以不同的销售方促销。

甲店:打九折出售。

乙店:降价9%出售。

丙店:买够百元打八折。

(1)明明买一件商品花了18.2元,他是在( )商店买的。

(2)兰兰买了10件这种商品用了160元,小兰是在( )商店买的。

(3)如果买的多,到( )商店去买最便宜。

引导学生进一步巩固百分数的意义。

小组交流:

(1)百分数、分数在意义上有什么不同?

(2)在实际应用中,什么情况下最多能达到100%?什么情况下达不到100%?什么情况下超过能100%?

(二)百分数、分数、小数的互化 完成教材“整理和复习”第2题

师生共同回忆转化方法,结合具体数据进行巩固。

(三)求一个数是(比)另一个数的(多几或少几)百分之几

1. .你还知道哪些常用的百分率?这些百分率表示什么意义?

李师傅某天生产的零件经过检验合格率100%。他这一天生产的产品中有不合格的吗?他生产的产品合格率还能提高吗?

2、练习:

①一批产品共200个,经检测有196个合格,求这批产品的合格率。

②一批产品共200个,经检测有4个不合格,求这批产品的合格率。

③一批产品进行抽样检测,经检测有196个合格,4个不合格,求这批产品的合格率。学生解答后对比:这三题有什么共同的地方?为什么第1题可以直接计算,而后面的题目不行?

四、自主检评,完善提高。

这节课复习了哪些知识?一起来谈谈你的收获吧?

利用基础训练进行检评。

苏教版六年级上册《百分数与小数的互化》数学教案


苏教版六年级上册《百分数与小数的互化》数学教案

第六单元 百分数

第3课时 百分数与小数的互化

教学内容:

课本第86-87页例2,“试一试”和“练一练”,练习十四第12-15题。

教学目标:

1、利用已有知识迁移、类推、发现百分数和小数互化的规律和方法。

2、理解、掌握百分数和小数互化的方法,并能熟练运用,进一步体会数学之间的内在联系,增强思维的深刻性。

3、通过合作交流、探索发现等数学学习活动教给学生学习方法、渗透数学思想方法,培养学生勤于思考、勇于探索的优良品质。

教学重点:

探索百分数与小数的互化方法。

教学难点:

能正确、熟练地进行百分数与小数的互化。

课前准备:

课件

教学过程:

一、新知引入

1、出示例2。

师问:1.15倍是指什么?110%是什么意思? 讨论:比较两位同学完成仰卧起坐个数多少的方法?

师再问:求谁完成的个数多?

2、师明确:要比较两位同学完成仰卧起坐个数的多少,就是要比较1.15和110%这两个数的大小。

二、讨论比较方法

1、师:讨论一下,你们有什么办法可以比较出这两个数的大小?

2、组织交流讨论结果。

归纳:(1)可以把1.15改写成百分数,与110%比较。

(2)也可以把110%改写成小数,与1.15比较。

3、体会互化方法

(1)师问:怎样将1.15改写成百分数呢?

师板书:1.15=115%

(2)完成比较

因为115%﹥110%;所以1.15﹥110%。王红完成的多。

想一想:那怎样将110%改写成小数进行比较呢?

三、归纳改写方法

1、完成试一试。

师呈现去掉中间环节的两个等式:

0.3=30% 0.248=24.8%

问:百分号前面的数与原来的小数比较,你有什么发现?

师:谁能总结一下小数直接改写成百分数的方法?

2、师:根据刚才总结出的小数化成百分数的方法,想一想,怎样直接将百分数改写成小数呢?

指名说一说,并相机总结。

四、巩固练习

1、完成“练一练”第1题。

师:再说一说小数直接改写成百分数的方法。

2、完成“练一练”第2题。

师:引导学生根据上述发现进行逆推,并在应用规律解题的基础上,适当总结。

3、完成练习十四第12题。

4、完成练习十四第13-15题。

(1)指名说一说:1.36和3.9改写成百分数的过程和结果。

(2)师:200%和0.7%是怎样改写成小数的?

五、课堂总结

师:通过今天这节课你掌握了什么本领?

教学反思:

苏教版数学六年级上册教案 百分数的意义和写法


教学目标

1.使学生了解百分数的意义,会正确读写百分数。

2.指导学生在理解百分数也是表示两个量间的倍数关系的同时,认识事物间的相互联系及发展变化规律,培养学生分析、概括能力。

教学重点和难点

理解百分数的意义。

教学过程

(一)复习准备

1.在日常生活中,同学们会经常看到或听到这样一些数:(出示投影)

(1)在12届亚运会中,各国金牌情况如下:中国占40.3%,韩国占18.5%,日本占17.4%,其它国家占23.8%。

(2)五(三)班学生在期末考试中,85%的人获优秀成绩,15%的人成绩达标。

提问:谁知道这些数是什么数?

师:这就是百分数。在生产、工作和生活中,进行调查统计、分析比较时,经常要用到百分数。什么是百分数?怎么读写百分数,是我们这节课研究的内容。

板书:百分数的意义和写法。

2.在学习新课之前,我们还要来复习有关知识。

提问:这两道题的结果表示的意义相同吗?

是一个分率。)

导入新课:由上面两道题可以看出,分数既可以表示量,又可以表示两数量之间的倍数关系。请你们看看下面题中的分数表示什么?我们今天学习的百分数又表示什么?

(二)讲授新课

(投影)

1.某小学六年级的100名学生中有三好学生17人,五年级的200名学生中有三好学生30人。六年级三好生占全年级的几分之几?五年级三好生占全年级的几分之几?

提问:第一问怎么列式解答?

提问:五年级三好生占全年级人数的几分之几?怎么做?

提问:根据所得的数,你能一眼看出哪个年级三好生人数的比例高吗?你能直接比较它们的大小吗?为什么?(分子不同,分母也不同,不容易看出。)

讨论:怎样做才容易比较这两个分数的大小呢?(通分,化成分母相同的分数。)根据什么?(分数的基本性质。)

师小结:像这样分母不同的分数进行比较时,一般要进行通分,使分母相同。尤其是在日常生活、生产、科研中,通常把分母化成是100的分数,这样便于比较。下面我们把这两个数变成分母是100的分数。

几,也表示三好生和年级总人数之间的倍数关系。)

2.练习。(出示投影)

(1)一个工厂从一批产品中抽出500件,经过检验,有490件合格。合格的比率是多少?

品与产品总数之间的倍数关系。)

(2)学校图书馆有文艺书900本,有故事书450本,故事书占文艺书的几分之几?

3.概括百分数的意义。

什么?(表示一个数是另一个数的百分之几)

提问:请你们想一想,什么是百分数?百分数表示两个量之间什么关系?(分组讨论)

小结:表示一个数是另一个数的百分之几的数叫做百分数,百分数也就叫做百分率或百分比。

提问:百分数表示两个数之间什么关系?(倍数关系。)应不应该有单位名称?

4.学习百分数的读法和写法。

提问:百分数和分数比,相同点和不同点是什么?(相同点:都表示两个数量之间的倍数关系。不同点:形式不一样。)

百分数应该用什么形式表示呢?

(1)写法:写百分数时,通常不写成分数形式,而采用(%)表示。写百分数时,去掉分数线和分母,在分子后面添上百分号。例如:

(板书)百分之九十写作90%;

百分之六十四 写作64%;

百分之一百零八点五 写作108.5%。

(2)读法:读百分数时,只要把百分号看作分母是100,百分号前面的数看作分子,就可以和分数一样读了。例如:

17%?读作百分之十七;

0.03% 读作百分之零点零三;

15.2% 读作百分之十五点二。

5.百分数与分数的联系和区别。(讨论)

百分数是分数中的一种情况。分数既可以表示一个具体数量,又可以表示一个数是另一个数的几分之几,所以分数后面既可以有计量单位,也可以没有计量单位;而百分数只表示两个量之间的倍数关系,所以没有计量单位。

(三)巩固练习

1.第125页“做一做”,在书上做,然后订正。

2.第126页第1,2题,做在练习本上。

3.(投影)判断:

(1)分母是100的分数叫做百分数。

(  )

(  )

(3)百分数的分母一定是100。

(  )

(4)五(三)班45人,体育全部达标,达标率100%。

(  )

4.填空:

(1)一本书看了40%,表示(  )占(  )的40%。如果书是100页,看了(  )页;书是 200页,看了(  )页。

(2)一条公路,修了25%,还剩(  )%没修。

(3)火车的速度比汽车快25%,火车的速度是汽车的(  )%。

这是一道难度较大的题,因为有了分数应用题的基础,可让学生讨论后解答。

5.一个工厂十月份的产值相当于九月份的百分之一百零八,写出这个百分数。十月份的产值比九月份的多了还是少了?

(四)课堂总结

这节课我们学习了哪些知识?(百分数的意义、读法和写法。)

你知道人们在日常生产和生活中都在什么时候用百分数吗?(在计算优秀率、合格率、体育达标率等方面。)

师:百分数的应用十分广泛,所以希望同学们学好百分数并学会在实际中应用。

(五)布置作业

(略)

课堂教学设计说明

本课引用日常生产、生活中运用的百分数的例子,导入新课,引起学生的学习兴趣。又通过对分数意义的复习,引出百分数的意义,为突破教学的重点、难点做了铺垫。同时初步渗透转化思想,使学生易于接受新知识。教案通过对分数、百分数的分析、比较,加深了学生对百分数意义的理解。在练习过程中,重点突出了百分数意义的练习,达到了在知识点的关键处或难点处进行重点练习的目的。在教案中列举了一部分生活中使用百分数的例子,目的是引起学生对百分数的兴趣,了解百分数在日常生产生活中的重要作用,让学生体会到百分数就在我们身边,逐步学会使用百分数。

苏教版数学六年级上册教案 百分数应用题(四)


教学目标

1.在学生学习了解答“一个数是另一个数的百分之几”的应用题的基础上,学习“求一个数比另一个数多(或少)百分之几”的应用题,使学生初步掌握分析方法,能够正确解答此类应用题。

2.进一步提高学生分析、比较、解答应用题的能力,培养认真审题的好习惯。

教学重点和难点

掌握求一个数比另一个数多(或少)百分之几这类应用题的分析方法;能够正确地进行列式。

教学过程设计

(一)复习准备

1.解答“一个数是另一个数的百分之几”用什么方法?(用除法)

2.解答“一个数是另一个数的百分之几”的应用题,关键是什么?(找应用题中的标准量,也就是单位“1”,谁是标准量,谁就做除数。)

3.口答,只列式不计算。(用投影出示)

(1)5是4的百分之几?4是5的百分之几?

(2)甲数是50,乙数是40,甲数比乙数多多少?甲数比乙数多的数是乙数的百分之几?

(3)甲数是48,乙数是64,甲数比乙数少多少?甲数比乙数少的数是甲数的百分之几?

4.板书应用题。

一个乡去年计划造林12公顷,实际造林14公顷。实际造林是原计划的百分之几?

分析:通过读题,在这道题中,谁是标准量?

你是从哪句话中找出来的?应怎样列式呢?

如果将这道题的问题变为“实际造林比原计划多百分之几?”,应该怎样分析解答呢?这就是我们这节课要继续研究的比较复杂的百分数应用题。

板书课题:百分数应用题

(二)学习新课

1.出示例3。

例3 一个乡去年计划造林12公顷,实际造林14公顷。实际造林比原计划多百分之几?

(1)学生默读题。

(2)例3与复习题4比较,有什么异同?

(两道题条件相同,问题不同。)

问题不同在哪儿?

(复习题4求的是实际造林是计划造林的百分之几,例3是求实际造林比原计划多百分之几。)

教师在例3中用红笔画出“多”字。

(3)在这道题中,谁是单位“1”?是从哪句话中找到的?

教师用双引号画出单位“1”。

(4)求实际造林比原计划造林多百分之几是什么意思?学生分组讨论。

(意思是:实际造林比原计划多的公顷数是原计划的百分之几?)

板书:多的公顷数是计划的百分之几?

(5)根据多的公顷数是计划的百分之几这句话,怎样列文字表达式?

板书:  多的÷计划的

(6)怎样列式计算呢?

板书:

(14-12)÷12

=2÷12

≈0.167

=16.7%

答:实际造林比原计划多16.7%。

问:14-12是在求什么?

问:为什么除以12,而不除以14呢?

(7)还有其它的解法吗?(学生讨论)

汇报讨论结果:

板书:

14÷12-1

≈1.167-1

=0.167

=16.7%

答:实际造林比原计划多16.7%。

问:14÷12得到的是什么?再减去1又得到什么?

2.把例3中的问题改为“原计划造林比实际造林少百分之几?”

问:你怎样理解“原计划造林比实际造林少百分之几”这句话的?

问:谁做单位“1”?(实际公顷数)

问:怎样用文字算式表达?

板书:少的÷实际的

问:怎样列式计算?

投影订正:

(14-12)÷14

=2÷14

≈0.143

=14.3%

答:原计划造林比实际造林少14.3%。

问:14-12得到什么?为什么再除以14呢?

问:还有不同的解法吗?

板书:1-12÷14

问:为什么例3与改变后的题得数不同?(单位“1”不同。)

问:这两道题有什么相同之处?(解题思路完全一样。)

3.把例3的一个条件改变。

一个乡去年计划造林12公顷,实际造林比原计划多2公顷。实际造林比原计划多百分之几?

(1)学生独立思考解答。

(2)指名说解题思路。

(3)板书算式:

多的公顷数÷计划的

2÷12≈0.167=16.7%

答:实际造林比原计划多16.7%。

问:此题和例3相比较,哪儿相同,哪儿不同?(条件不同,问题相同,解题思路相同。)

4.把3题的问题稍作改变。

一个乡去年计划造林12公顷,实际造林比原计划多2公顷。原计划造林比实际造林少百分之几?

(1)学生只列式不计算。

(2)说解题思路。

板书:少的÷实际的

2÷(12+2)

(三)课堂总结

今天我们学习了什么知识?解决这类题的关键是什么?

师述:今天我们学习了求一个数比另一个数多(或少)百分之几的应用题。解决这类题的关键就是要找准单位“1”,然后根据问题列出文字算式来帮助大家列式计算。

(四)巩固反馈

1.分析下面每个问题的含义,然后列出文字表达式。

(1)今年的产量比去年的产量增加了百分之几?

(2)实际用电比计划节约了百分之几?

(3)十月份的利润比九月份的利润超过了百分之几?

(4)1999年电视机的价格比1998年降低了百分之几?

(5)现在生产一个零件的时间比原来缩短了百分之几?

(6)第二季度的产值比第一季度提高了百分之几?

(7)十一月份比十月份超额完成了百分之几?

(8)男生人数比女生人数多百分之几?

2.在练习本上只列式不计算。(投影出示)

(1)某校有男生500人,女生450人。男生比女生多百分之几?

(2)某校有男生500人,女生450人。女生比男生少百分之几?

(3)一种机器零件,成本从2.4元降低到0.8元。成本降低了百分之几?

(4)某工厂计划制造拖拉机550台,比原计划超额了50台。超额了百分之几?

3.判断题。

男生比女生多20%,女生就比男生少20%。(  )

课堂教学设计说明

本节课是在学生学习了一个数是另一个数的百分之几的基础上进行的。教学时抓住这一知识的连接点以旧引新,使学生很自然地由旧知识过渡到新知识。两个知识点连成一线,融会贯通。在新课教学中引导学生思考求比一个数多(或少)百分之几的题的解题思路,培养学生的分析能力。在教学方法上采取一题多变的方法,让学生在比较、区别中理解数量之间的关系,提高学生的辨别能力和思维水平。

苏教版数学六年级上册教案 百分数和分数、小数的互化


教学目标

1.使学生掌握百分数、小数、分数互化的方法,并能正确的互化。

2.在学习互化的过程中使学生认识到这三者之间的内在联系,为后面学习百分数的计算和应用打下基础。

3.在学习的过程中培养学生的分析思维和抽象概括能力。

教学重点和难点

1.使学生理解掌握百分数和分数、小数互化的方法。

2.明确三者之间的关系。

教学过程

(一)复习准备

1.我们以前学过小数和分数,现在又学习了百分数。小数和分数之间可以互相转化吗?

2.出示投影片。

(1)把下面的小数化成分数。

0.45 1.2 0.367

提问:小数怎样化成分数?

(2)把下面的分数化成小数。

提问:分数又怎样化成小数?

(3)把下列分数写成百分数的形式。

3.引入。

在生产、工作和生活中进行统计和分析时,为了便于统计和比较,我们常用百分数表示一些数据。除了用百分数表示,还可以用什么数表示?(小数和分数。)

这节课我们就来学习百分数和小数的互化以及百分数和分数的互化。

(二)学习新课

1.百分数和小数的互化。

(1)回忆小数化分数的过程。

(2)小数要化成百分数,分母应是多少?怎样使它的分母变成100呢?

(3)出示例1。

例1  把0.25,1.4,0.123化成百分数。

①小组讨论转化的方法;

②小数化百分数分几步进行?

(先把小数化成分母是100的分数,再化成百分数。)

③学生回答,教师板书:

1.4怎样化成分母是100的分数?根据什么?

(根据分数的基本性质)

④“做一做”:把下面各小数化成百分数。

0.38  1.05  0.055  3

⑤观察例1的各小数,化成百分数后发生了怎样的变化?(把小数点向右移动了两位,添上了百分号。)

你所做的练习的各数是不是也发生了同样的变化?这一变化符合什么?(分数的基本性质。)

⑥现在你能很快地把下列小数化成百分数吗?(口答)

2.5  0.785  0.16

(4)百分数又怎样化成小数呢?根据上面的推导过程,小组讨论百分数化小数的方法。

(5)出示例2。

例2把27%,124%,0.4%化成小数。

①说一说百分数化小数的方法。

(先把百分数化成分母是100的分数,再化成小数。)

②观察百分数化成小数发生了什么变化?

(小数点向左移动了两位,去掉了百分号。)

③把下面各百分数化成小数

15%  80%  3.5%

(6)小结。

通过刚才的分析、归纳,谁能说一说百分数和小数怎样互化?

把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号;把百分数化成小数,只要把百分号去掉,同时把小数点向左移两位。

2.百分数和分数的互化。

(1)分数可以化成小数,刚才我们又学习了小数化成百分数的方法,你能利用已有的知识把分数化成百分数吗?

(2)出示例3。

循环小数不能化成百分数怎么办?(取0.16的近似值。)

怎样取近似值呢?一般要求百分数的分子要保留一位小数,那么当把分数化小数时应保留几位小数?(保留三位小数。)

第一步做什么?(分数化小数,取近似值时要用约等于号。)

第二步做什么?(小数化百分数,数值相等所以用等于号。)

(3)掌握了分数化百分数的方法。百分数化分数又怎么做呢?依据百分数与分数的联系想一想,互相说一说。

(4)出示例4。

例4  把17%,40%,12.5%化成分数。

①说说你的想法。

(先把百分数写成分母是100的分数,再约成最简分数。)

把12.5%化成分数后,分子部分是小数应怎样处理?

(先利用分数的基本性质把分子、分母同时扩大若干倍,去掉分子的小数点,然后再约分。)

②练习:把下面各百分数化成分数。

14%  2.5%  120%

(4)说一说百分数和分数应怎样互化?

打开课本看129页百分数和分数互化的方法。

(三)课堂总结

通过今天的学习,你能把分数、小数,百分数三者之间任意转化吗?互相说一说转化的方法。

(四)巩固反馈

1.把下列各数化成百分数。

2.把下列各数化成小数。

3.把下列各数化成分数。

15% 125% 3.75% 0.6% 0.625 0.04

4.选择题。

(1)和2.5相等的数有

[  ]

A.25%

C.2.5%

D.250%

(2)0.75%等于

[  ]

A.0.75

C.0.0075

[  ]

A.9%

B.9.0%

C.9.1%

(五)布置作业

课本第130页第1~4题。

课堂教学设计说明

百分数、小数、分数这三者之间有着密切的联系,而且可以互相转化。本节教案的设计也正是围绕三者之间的联系进行教学的。

通过复习准备,学生先明确了分数、小数互化的方法,以及分母是100的分数如何改写成百分数,为下面的学习做好了铺垫。

在例题的教学中,重在引导。让学生利用已有的知识自己思考怎样互化,再归纳出互化的方法。对于比较难掌握的分数化百分数时除不尽的情况,采用了逐步提问的方法,便于学生理解和掌握。

在练习的设计中,针对学生易错的几种情况设计选择题,在选择的过程中纠错,以避免学生在互化过程中出现错误。

总之本节课的设计重在发挥学生的主体作用,使学生主动获取知识。

苏教版数学六年级上册教案 百分数应用题(一)


教学目标

1.使学生了解储蓄的意义和一些有关利息的初步知识,知道本金、利息和利率的含义,会利用利息的计算公式进行一些有关利息的简单计算。

2.提高学生分析、解答应用题能力,培养认真审题的良好习惯。

教学重点和难点

理解本金、利息和利率三者之间的关系及运用公式进行计算。

教学过程设计

(一)复习准备

1.某工厂的一车间有男工51人,女工40人。男工是女工的百分之几?女工是男工的百分之几?

2.六一班有男生25人,女生是男生的80%。女生有多少人?

3.小丽1998年1月1日把100元钱存入银行,存定期一年。到1999年1月1日,小丽从银行共取回105.22元。小丽现在取回的钱比存入银行前多了百分之几?

板书:(105.22-100)÷100

=5.22÷100

=5.22%

问:这道题叙述了一件什么事?

师述:今天我们就来研究有关储蓄问题的应用题。

板书课题:百分数应用题

(二)学习新课

1.导入。

师述:人们常常把暂时不用的钱存入银行储蓄起来,这样不仅可以支援国家建设,也使得个人用钱更加安全和有计划,还可以增加一些收入。

问:谁去银行存过钱?那你知道储蓄都有哪几种方式吗?

存款主要分为定期存款、活期存款和大额存款等。

板书:存入银行的钱叫本金。

问:在刚才那道题中,哪个数是本金?

板书:取款时银行多付的钱叫做利息。

问:哪个数是利息?

板书:利息与本金的百分比叫做利率。

问:哪个数是利率?

师述:利率的高低是由中国人民银行按照国家经济发展的程度来制定。银行会按照国家经济的发展来调整利率的。利率有按年计算的,称年利率;按月计算的,称月利率。

2.出示例1。

例1 张华把400元钱存入银行,存定期3年,年利率是5.22%。到期后,张华可得利息多少元?本金和利息一共是多少元?

(1)学生默读题。

(2)年利率5.22%是什么意思?是怎样得到的?(用利息除以本金等于5.22%。)

板书:利息÷本金=利率

怎样求利息呢?

板书:本金×利率=利息

这样求的是几年的利息?一年的还是三年的?为什么?

(是一年的利息,因为一年的利率是5.22%。)

要想求三年的利息,还应怎么办?

这说明利息的多少还和什么有关系?是怎样的一个关系?

板书:×时间

(3)那么求利息应怎样列式计算呢?

板书:400×5.22%×3

=20.88×3

=62.64(元)

(2)要求本金和利息一共多少元应怎样列式?

板书:400+62.64=462.64(元)

答:张华可得利息62.64(元),本金和利息一共462.64元。

3.出示例2。

例2 五年级一班今年1月1日在银行存了活期储蓄180元,每月的月利率是0.315%。存满半年时,可以取出本金和利息一共多少元?

(1)学生默读题。

(2)指名学生说解题思路。

(3)应怎样列式计算呢?

板书: 180×0.315%×6+180

=3.402+180

≈183.40(元)

答:可以取出本金和利息一共约183.40元

问:为什么要保留两位小数?

(人民币的单位是元、角、分,只有两位小数,再往下就没有了,所以应自动保留两位小数。)

问:有一个同学这样列的算式,你们大家判断一下,他列得对不对,为什么?

板书:180×(1+0.315%×6)

学生讨论。

师追问:0.315%×6表示什么意思?

又追问:1+0.315%×6又表示什么呢?

再追问:再用180乘以这个结果得到什么?

(三)课堂总结

今天我们学习了哪些知识?

师述:我们学习了有关储蓄的知识,知道了本金、利息和利率,以及它们三者之间的关系。特别是学会了求利息的方法:本金×利率×时间=利息。还知道了储蓄的意义。

(四)巩固反馈

1.小华今年1月1日把积攒的零用钱50元存入银行,定期一年。准备到期后把利息捐赠给“希望工程”,支援贫困地区的失学儿童。如果年利率按10.98%计算,到明年1月1日小华可以捐赠给“希望工程”多少元钱?

2.王宏买了1500元的国家建设债券,定期3年。如果年利率是13.96%,到期后他可获得本金和利息一共多少元?

3.赵华前年10月1日把800元存入银行,定期2年。如果年利率按11.7%计算,到今年10月1日取出时,她可以取出本金和利息共多少元?下列列式正确的是 [  ]

A.800×11.70%

B.800×11.70%×2

C.800×(1+11.70%)

D.800×(1+11.70%×2)

4.王老师两年前把800元钱存入银行,到期后共取出987.2元。问两年期定期存款的利率是多少?

5.1993年末,我国城乡储蓄存款余额达14764亿元,比1992年末增加3219亿元。增长百分之几?(百分号前面保留一位小数。)

6.李佳有500元钱,打算存入银行两年。有两种储蓄办法,一种是存两年期的,年利率是11.70%;另一种是先存一年期的,年利率是10.98%,第一年到期时再把本金和利息取出来合在一起,再存入一年。选择哪种办法得到的利息多一些?

课堂教学设计说明

本节课是在学生学习了一个数是另一个数的百分之几和求一个数的百分之几是多少的基础上进行的。教学时,紧紧抓住这两种类型的应用题,引到新知识上。在教学方法上采用了老师讲解和学生自学相结合,让学生有较大的空间去发挥自己的思路。在整个教学过程中,都渗透着爱国主义教育。另外,本节课中概念较多,在教学时,注意在教授解题方法和分析解题思路中去帮助学生理解和记忆概念。在最后练习中,还设置了一道离生活比较近、但难度不是很大的题,既利于帮助学生巩固知识,而且学生也会比较有兴趣。

苏教版数学六年级上册教案 百分数应用题(三)


教学目标

1.使学生理解成数和折扣的含义,以及成数和折扣与分数、百分数之间的关系;会解答有关成数和折扣的应用题。

2.提高学生分析、解答应用题的能力,发展学生思维的灵活性。

教学重点和难点

理解成数和折扣的含义;理解成数和折扣与分数、百分数的含义。

教学过程设计

(一)复习准备

1.把下列各数化成百分数。

2.李庄去年种小麦50公顷,今年种小麦60公顷。今年比去年多种小麦百分之几?

3.小华家承包了一块菜田,前年收白菜41.6吨,去年比前年多收了25%。去年收白菜多少吨?

师述:农业收成,有时用成数来表示。今天我们就来学习有关成数和折扣的应用题。

板书:分数应用题

(二)学习新课

1.成数的含义。

师述:什么是成数呢?“几成”就是十分之几,如“一成”就是十分之一,也就是10%。

(1)填空:

“三成”是十分之(  ),改写成百分数是(  )。

“三成五”是十分之(  ),改写成百分数是(  )。

(2)把下面的“成数”改写成百分数。

七成 二成五 五成  九成九

十成 二成八 七成四  八成二

2.出示例1。

例1 小华家承包了一块菜田,前年收白菜41.6吨,去年比前年多收了二成五。去年收白菜多少吨?

(1)学生默读。

(2)这道题和复习中的第三题有什么不同之处?

(3)指名学生说解题思路。

师述:在列式计算时,我们可以直接把“成数”化成百分数,用百分数进行列式计算。

板书:

=41.6×(1+25%)

=41.6×1.25

=52(吨)

答:今年收白菜52吨。

3.练习。

小丽家承包了一块地,前年收小麦8000千克,去年比前年增产一成半。去年收小麦多少千克?

4.折扣的含义。

师述:工厂和商店为了推销商品,有时将商品减价百分之几销售,这就是平常说的打“折扣”销售。

某种商品打“八折”出售,就是按原价的80%出售,也就是减价20%。打五折出售,就是按原价的(  )%出售,也就是减价(  )%。

5.出示例2。

例2 商店出售一种录音机,原价330元。现在打九折出售,比原价便宜了多少元?

(1)学生读题。

(2)问:打九折出售是什么意思?

(3)求比原价便宜了多少元?你想怎样解答?

(4)指名说解题思路。

板书:方法(一) 330-330×90%

=330-297

=33(元)

方法(二) 330×(1-90%)

=330×10%

=33(元)

答:比原价便宜了33元。

6.课堂小结。

今天我们学习了哪些知识?

师述:今天我们学习了有关“成数”和“折扣”的知识,知道了“成数”和“折扣”的含义,以及“成数”和“折扣”与分数和百分数之间的关系,并且学习了有关“成数”和“折扣”的一些实际的、简单的应用题。

(三)巩固反馈

1.填空:

(1)某县今年棉花产量比去年增产三成。这句话的意思是(  )是(  )的30%。

(2)一块麦地,改用新品种后,产量增加了四成五。这句话的意思是改用新品种后产量是(  )的(  )%。

(3)一种皮茄克打九折出售。这句话的意思是(  )是(  )的90%。

(4)一批旧书打五五折出售。这句话的意思是现价比(  )便宜了(  )%。

2.把下面的折扣数改写成百分数。

七折  九折  六五折  八五折  六八折

3.把下面的百分数改写成“成数”。

75%  60%  42%  100%  95%

4.一套西服,商店在节日里按八五折优惠出售。西服的原价是560元,西服现售价多少元?

5.东门乡去年的棉花产量比前年增加二成。去年的棉花产量是267.6吨,前年的棉花产量是多少吨?

6.一种画册原价每本6.9元,现在按每本4.83元出售。这种画册按原价打了几折?

7.张利在减价商品柜台买了一个水壶,打“八五”折,实际花了25.5元。这个水壶原价多少元?

8.小强花315元买了一台收录机,这台收录机是打七五折出售的。小强买这台收录机少花了多少元?

课堂教学设计说明

本节课从概念入手,并和原来学习的百分数应用题进行比较,学生易于找到突破口,便于学生理解、掌握本节课的重点和难点。通过和百分数应用题的比较,加深了学生对百分数应用题的理解和掌握,培养了学生分析能力。另外,课本上出现了大量生活中的实例,使学生体会到百分数就在我们身边,学好百分数应用题,能解决大量实际问题,从而提高了学生学习百分数应用题的兴趣。

《苏教版六年级上册《解决稍复杂的百分数问题(1)》数学教案》一文就此结束,希望能帮助您在小学教学中起到作用,如还需更多,请关注我们的“小学数学教案六年级”专题。

文章来源:http://m.jab88.com/j/113240.html

更多

猜你喜欢

更多

最新更新

更多