相信很多老师都希望自己的课堂上同学们能够积极的与自己互动。有的老师会在很久之前就精心制作一份教学计划。这样我们可以在上课时根据不同的情况做出一定的调整,如何才能编写一份比较全面的教案呢?以下是小编为大家收集的“人教版六年级数学上册第一单元《分数乘法》教案(二)”,仅供参考,欢迎大家阅读。
人教版六年级数学上册第一单元《分数乘法》教案(二)
1教学目标
1、经历对分数乘整数的意义和计算方法的探索过程,养成善于动脑、勤于思考的好习惯,使学生理解分数乘整数的意义,掌握分数乘整数的计算法则。
2、能正确、熟练地进行分数乘整数的计算。
3、培养学生在生活中发现数学问题的能力,并进一步培养学生的分析、判断和推理、计算能力。
2学情分析
本课是在整数乘法和分数加法的基础上学习的,通过直观操作帮助学生理解算理并正确进行计算,在此基础上拓宽学生的知识面。
3重点难点
重点
让学生理解算理,掌握计算法则。
难点
引导学生总结分数乘整数的计算法则。
4教学过程
4.1第一课时
4.1.1教学活动
活动1【导入】分数乘整数
一、导入新课
(1)把下列式子写成乘法算式的形式。
15+15+15+15= 6+6+7+5=
7+7+7= 23+23+23+23+23=
(2)说一说35×5表示什么含义。
(3)说一说 3/12表示什么?它是最简分数吗?怎么约分?约分的规则有哪些?
2.引出课题。
分数加法是否也有简便算法?今天我们学习分数乘法。(板书课题:分数乘整数)
二、新课学习
出示例1。
(1)分析演示:
师:每人吃2/9块蛋糕,每人吃的够一块吗?(不够一块)接着出示如课本的三个扇形图。问:一个人吃了2/9块,三个人吃了几个2/9块?使学生从图中看到三个人吃了3个2/9块。让学生用以前学过的知识解答3个人一共吃了多少块?(教师在3个扇形下面画出大括号并标出?块)订正时教师板书:2/9+2/9+2/9=2+2+2/9=6/9=2/3(块),(教师将3个双层扇形图片拼成一个一块蛋糕的2/3图片)
(2)观察引导:
这道题3个加数有什么特点?使学生看到3个加数的分数相同。教师问:求三个相同分数的和怎样列式比较简便呢?引导学生列出乘法算式。教师板书:2/9×3。再启发学生说出2/9×3表示求3个2/9相加的和。
想一想分数与整数相乘时有什么特点,计算方法是什么?
交流小结:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。分数乘整数的计算方法是用整数与分子相乘的积做分子分母不变。
(3)教学分数乘以整数的计算法则。
观察计算过程想想在计算分数和整数相乘时,有哪些约分的方法?
教师指出可以有两种方法,一是计算过程不约分,先计算得出结果后再约分;二是在计算过程中先约分再计算得出结果。所以2/9×3可以先将3和9进行约分,剩分子是一,分母是3,再将所剩的分子1与2相乘得2/3。
根据2/9×3的计算过程,明确指出:分子、分母能约分的要先约分,然后再乘。约分后约得的数要与原数上下对齐。然后让学生将2/9×3按简便方法计算。
出示例2。
出示教材例题,让学生思考并回答下列各题:
(1)1桶水有12L,3桶共多少升?
引导学生理解题意,求3个12L就是求12L的3倍是多少。
学生列式:12×3
桶是多少升?
与问题(1)类比,引导学生理解题意,求12L的一半,就是求12L的1/2是多少。
学生列式:12×1/2
桶是多少升?
与问题(1)(2)类比,引导学生理解题意,求1/4桶是多少,就是求12L的1/4是多少。
学生列式:12×1/4
观察(1)(2)(3)发现,12×3表示12的3倍,12×1/2表示12的1/2,12× 表示12的1/4(分数一般不说倍),所以,一个数乘几分之几表示的是求这个数的几分之几是多少。
三、结论总结:
1.谁来说一说:这节课你有什么收获?
2.说一说分数乘整数的计算方法?
四、课堂练习
1.做一做第1题
一袋面包重3/10kg,3袋重?kg
2.计算
5/12×4 5/12×8 2×3/4
五.课堂作业
1只树袋熊一天大约吃6/7kg的桉树叶,10只树袋熊一星期大约能吃多少千克桉树叶/
六.板书设计
分数乘整数
计算方法:分数的分子与整数相乘,分母不变。能约分的先约分,然后再乘。
一个数乘几分之几表示的是求这个数的几分之几是多少。
点击查看更多:六年级数学上册教案
提醒:
扫码关注回复“教案”
获得上下册教案资料!
在每学期开学之前,老师们都要为自己之后的教学做准备。这时就需要自己去精心研究如何做一份学生爱听老师爱讲的教案。上课才能够为同学讲更多的,更全面的知识。那你们知道有哪些优秀的小学教案吗?以下是小编为大家收集的“人教版六年级数学上册第一单元《分数乘法》教案(四)”,仅供参考,欢迎大家来阅读。
人教版六年级数学上册第一单元《分数乘法》教案(四)
【教学内容】小学数学六年级上册第2页。
【教学目标】
1. 让学生在探索过程中理解分数乘整数的意义及算理,掌握分数乘整数的计算方法。
2.让学生通过观察、操作、比较等活动,经历数学建模的过程,积累数学活动经验。
3.通过观察比较,引导学生探求知识的内在联系,注重培养学生的推理能力,发展学生的思维。
【教学重难点】
重点:让学生在探索过程中理解分数乘整数的意义及算理,掌握分数乘整数的计算方法。
难点:通过观察比较,引导学生探求知识的内在联系,注重培养学生的推理能力,发展学生的思维。
【教学准备】
课件、作业纸
【教学过程】
一、建立“算法”模型
(一)直观体验
1.出示:小新、爸爸一起吃一块蛋糕,每人吃块,2人一共吃多少块?
(1)列出算式,并说说这样列式的道理。
(2)汇报并板书:或。
引导得出:求几个几分之几相加,可以直接列乘法算式。
(3)这道乘法算式与我们以前学过的有什么不一样?(板书课题:分数乘整数)
(4)如果用直条图表示1块蛋糕,你能在图中表示吗?
(5)根据图,的结果是多少?(板书:)
2.如果有4个人一共吃多少个?
(1)列出算式。(板书:)
(2)在直条图中表示,并写出结果。
(3)板书:
3. 如果有7个人一共吃多少个?
(1)列式,并在直条图中涂一涂找到结果。
(2)板书:
(二)比较发现。
1.比较: ,你发现了什么?
2.思考:为什么分母不变,分子乘整数?
(1)结合图,从分数的意义上解释:里有1个2份,表示有2个2份,所以一共涂出4,其他两道算式同理。
(2)转化为加法算式,利用同分母分数计算法则解释。
,其他两道算式同理。
3.验证。
出示
(1)直接算出结果。
(2)在方格图中涂一涂,表示。
(3)验证计算结果是否与实际涂色结果一致。
(三)推而广之。
1.每人吃块蛋糕,C人一共吃多少块?
列式并计算。(板书;)
2. 每人吃块蛋糕,C人一共吃多少块?
列式并计算。(板书;)
(四)回顾反思。
1.说一说,分数乘整数可以怎样算?(板书:用分子乘整数的积作分子,分母不变。)
2. 我们怎么找到分数乘整数的计算方法的?
三、应用“算法”模型
(一)在应用中优化。
1.介绍另一种算法--先约后乘:
2.感受优越性。
出示:
(1)展示做法:
(2)比较两种做法:你觉得哪种方法好?好在哪里?
3.专项练习。
先判断能否先约分,再计算出结果。
二、在解决问题中应用。
1.一袋面包重千克,3袋重多少千克?
2.李老师用铁丝围了一个正方形,围成的正方形的边长是,那李老师围这正方形用去多少铁丝(接头处忽略不计)?
(三)在应用中分化。
《分数乘整数》教学设计说明
《分数乘整数》是小学数学计算教学中重要的一环。它是在学生学习了整数乘法,理解了分数的意义和性质,掌握了分数加、减法的基础上进行教学的,同时又是学生学习分数乘分数和分数乘百分数的重要基石。
本节课设计的理念主要有以下两个方面:
一是注重依靠算理掌握算法。
计算课的教学不仅需要掌握算法也需要讲清算理,算理是算法的理论依据,算法是算理的提炼和概括。二者是相辅相成的。在教学中采用数形结合、转化等教学策略促成算理与算法的有效融合。
二是注重“算法”的模型的建立。
分数乘整数的计算法则就是一个数学模型,教学时应该让学生在理解算理时适时、适度、抽象地提炼算法,有效建模。
本节课设计的说明主要有以下三个方面;
1.在直观体验环节中,通过具体的涂色操作,一方面加深学生理解分数乘整数的意义,另一方面通过数形结合,帮助学生直观地理解算理。
2.算法模型的建立不是靠一个例子来完成的,而是在不同算式的背后找到共性,并通过验证活动,让学生先初步建构分数乘整数的计算方法,然后逐步将数抽象为字母,让学生用简练、准确的符号将分数乘整数的计算方法表达出来,形成模型,最后通过回顾反思,帮助学生将获得算法模型的过程进行有效梳理。直观操作、比较分析、猜测验证、概括抽象等活动是形成模型的必要环节,经过学生的整理与总结,模型的建立更加扎实,同时积累了相关建模活动经验。
3.在应用环节的教学中分三个层次。第一个层次,通过比较让学生直观感受到“先约后乘”
方法的优越性。方法的优化不是刻意的,而是学生在应用对比中乐于接受的。第二个层次,将计算教学与应用教学紧密结合起来,利用模型求解可以帮助学生深刻领会所学知识,顺利构建数学体系,从而大大提高学生解决实际问题的能力,使学生数学素养得以提升。第三个层次的练习,便于让学生进行模型与模型之间的区分,明白模型与模型的建立和使用是在特定范围内的。
点击查看更多:六年级数学上册教案
提醒:
扫码关注回复“教案”
获得上下册教案资料!
老师讲课学生爱听,还愿意自学的情况下,往往少不了一份教案。有的老师会在很久之前就精心制作一份教学计划。才能有计划、有步骤、有质量的完成教学任务,那么优秀的教案是怎么样的呢?为了让您在使用时更加简单方便,下面是小编整理的“人教版六年级数学上册第三单元《分数除法》教案(一)”,欢迎大家阅读,希望对大家有所帮助。
人教版六年级数学上册第三单元《分数除法》教案(一)
1教学目标
1.观察实物图,理解分数除法的实际意义。
2.理解分数除以整数的计算法则的推导过程,会正确的进行分数除以整数计算。
2学情分析
六年级学生是在掌握了整数除法的意义、分数乘法的意义,计算及其应用基础上来学习分数除法的。高年级学生喜欢通过动手来解决相关问题,而不是老师简单的灌输。分数除法算理的探索与理解是教学的一个难点,根据小学生的思维特点采用手脑并用、数形结合的策略加以突破更能激发学生学习的乐趣。
3重点难点
教学重点,难点:
1、理解并掌握分数除以整数的计算方法。
2、渗透转化的的数学思想,培养学生的归纳概括能力。
4教学过程
4.1第一学时
4.1.1教学活动
活动1【导入】
一、旧知铺垫 出示教学目标,课件展示内容
1、写出下列各数的倒数
3/12 1/3 6/7 14/3 1/9 9/10 8 5 20
2、口算大比拼
4×3/8 2/15×3 2/5×2 2/9×0 7/9×1 3/9×3
3、智力大考验
(1)根据乘法算式写出两道除法算式:4657 ×2368=11027776
11027776 ÷2368=4657 11027776 ÷4657=2368
通过练习回忆整数除法的意义。
(2)出示2/5×2=4/5,4/5÷2=?通过与整数除法意义的对比,再次让学生感受分数除法的意义与整数除法意义相同。为学习新知做好铺垫。今天这节课我们就来研究分数除以整数的计算方法。(板书课题:分数除以整数。)
活动2【活动】
二、引入操作情境,尝试计算
学习教材第30页例1
1、出示问题,引出思考
把一张纸的4/5平均分成2份,每份是这张纸的几分之几?
你能用阴影表示手中的那张白纸的4/5吗?(学生用水彩笔画试着折一折,画出长方形白纸的4/5)
根据上面的问题, 你能列出算式吗?(启发学生列出算式4/5÷2)
借助手中的学具,折一折,画一画,表示出 4/5 ÷2 的意义。(学生利用手中的白纸,折一折,涂一涂,算一算。)
2、借助直观,实现沟通交流
(1)用算式表示出刚才折或画的过程。
(2)结合画好的图,汇报交流各自的折纸方法、计算过程及其算理。
(3)学生展示汇报两种折纸方法与相应的算法:
4/5÷2=4÷2/5=2/5
把4/5平均分成2份,就是把4个1/5平均分成2份,每份就是2个1/5,就是2/5。
4/5÷2=4/5×1/2=2/5
把4/5平均分成2份,每份就是4/5的1/2,也就是4/5×1/2。
师:这两种方法都正确,你喜欢哪一种呢?接下来就请你用自己喜欢的方法来解决下面这个问题 吧。
3、体验冲突,发现一般规律
如果把这张纸的4/5平均分成3份,每份是这张纸的几分之几?
借助手中的学具,折一折,画一画,表示出 4/5÷3 的意义。
结合画好的图,说一说你的计算过程,在计算时,你遇到了什么问题?说说你的想法。
4/5÷3=4÷3/5(难以计算)
4/5÷3=4/5×1/3=4/15
(3)根据上面的折纸实验和算式,你能发现什么规律?
通过比较,学生不难看出把除法转化成乘法计算比较适合。
(4)归纳发现的规律。
师:根据上面的实验和算式,你能发现分数除法计算的方法吗?
生:汇报
师生总结,
教师板书:分数除以整数(0除外),等于分数乘这个整数的倒数。
学生齐读一次。(这就是我们今天要讨论的分数除以整数的计算法则)
活动3【练习】
三、巩固练习
1.完成书30页做一做,练习七3、4题.
活动4【活动】
四、师生共同小结
活动5【活动】
板书设计
分数除以整数
4/5÷2=4/5×1/2=2/5 4/5÷3=4/5×1/3=4/15
分数除以整数的意义与整数除法意义是一样的
分数除以整数(0除外),等于分数乘这个整数的倒数。
点击查看更多:六年级数学上册教案
提醒:
扫码关注回复“教案”
获得上下册教案资料!
老师在上课时经常会遇到难解决的问题而耗费半节课的时间吧,所以大多数老师都会选择制定一份教学计划。这样可以让同学们很容易的听懂所讲的内容,你们见过哪些优秀教师的小学教案吗?以下是小编为大家精心整理的“人教版六年级数学上册第三单元《分数除法》教案(六)”,仅供参考,希望能为您提供参考!
人教版六年级数学上册第三单元《分数除法》教案(六)
1教学目标
1.让学生经历用假设法来解决分数工程问题的过程,理解并掌握把工作总量看作单位“1”的分数工程问题的基本特点,解题思路和解题方法.
2.通过自主探究,评价交流的学习活动,培养学生分析、比较、综合、概括能力。
3.培养学生运用所学到知识解决生活中的实际问题.
2学情分析
对于分数除法六年级的孩子在实际问题中的解决只理解数量的计算,对于抽象的分数解决问题工程问题是第一次接触,许多孩子不明白为什么要这样计算,不明白抽象的工程问题与具体的工程问题之间的关系,加强两者间的对比和联系是本节课的重点。
3重点难点
教学重点:
能利用假设法掌握分数工程问题的解题思路与方法。
教学难点:
理解理解假设不同的数据得出的相同结果的道理.
4教学过程
4.1第一学时
4.1.1教学活动
活动1【讲授】分数除法
教学过程
一、复习:口答下列各题
思考:下面各题研究的是哪三种量的关系?仔细读题,了解每一道题已知哪些数学信息,要求什么? 分别说出数量关系式.
维修一条300米的公路,甲工程队单独修5天完成,乙单独修6天完成,问:
如果: 1.甲单独修每天修( )米?甲每天修这条路的( )。
2.乙单独修每天修( )米?乙每天修这条路的( )。
分析:这里要我们求的是什么?它们有什么不同?
总结:我们既可以用具体的数量来表示效率也可以用分率来表示效率。
二、出示例题1
1. 一段公路长30千米。甲队单独修10天完成,乙队单独修15天完成。两队合修几天可以完成?
①从题目中你知道了那些数学信息?
学生交流对题意的理解:这道题是工程问题,工作总量就是公路的总长,工作时间就是修路的时间,工作效率就是每天修的路的长度.如果两队合修,那么工作效率就是两队的工作效率和.
②要解决“两队合修,多少天修完?”这个问题,需要知道哪些信息?
工作总量(这条路的总长度)和工作效率和
③如果知道了这两个信息,这个问题可以怎样解决?
生汇报:工作总量÷工作效率(和)=工作时间 生计算并汇报。
师总结:合修必须求出工效和。
三.出示例题2:一段公路甲队单独修10天完成,乙队单独修15天完成。两队合修几天可以完成?
① 这道题与刚才这道题有什么异同?我们需要的这两个信息题目中都没有给,怎么办?
② 我们能不能先假设出这条路的长度,再计算呢?可以怎样假设?
③根据各自假设,尝试解答.完成表格生汇报师总结
讨论分析:展示并说说自己的解题思路和方法.评价交流各种不同的假设.启发学生思考公路的长度可能是18千米,30千米……不管公路全长是多少千米,虽然具体的效率不一样,但是当把这条公路的全长看作单位“1”, 两个队的工作时间不变,他们每天修路的长度随着公路的总长变化而变化,但是在无论假设公路全长是多少,他们每天修了这条公路的几分之几没有变化.那么,一队和二队的工作效率是多少呢?学生讨论计算师板书
④观察思考:不同的假设,计算的结果都一样,为什么?
画线段图帮助理解:
六、回顾与反思
引导发现不管假设这条路有多长,答案都相同.把这条道路的总长度看做单位“1”,解决问题简便.
七、小结
解决工程问题一般方法:①把工作总量看作单位“1”
②工作效率就是1÷工作时间(工作时间的倒数)
③用工作总量÷工作效率(和)=工作时间
八、练习.
1.填空:一条路,甲单独4天完成,每天完成这条路的( )。
一条路,甲每天完成这条路的1/3 ,( )天完成。
2.解决问题:一堆货物,甲车单独运6次才能运完,乙车单独运3次才能运完,如果两车一起运,多少次能运完这批货物?
3.挖一条水渠,王伯伯每天挖整条水渠的20分之1,李叔叔每天挖整条水渠的30分之1,两人合作,几天能挖完?
4. 一批零件,王师傅单独做要15小时完成,李师傅单独做要20小时完成,两人合做,几小时能加工完这批零件的 四分之三?
六、评价延伸.
这节课你有什么收获?
今天我们这节课学习了新的分数应用题-工程应用题.其解答特点是什么?(把工作总量看作单位“1”,工作效率用“工作时间的倒数”表示.)(合作时间=工作总量÷工作效率和)
板书设计
工程问题
工作总量÷工作效率(和)=工作时间
例7.这条道路,如果我们一队单独修,10天能修完,如果我们二队单独修,15天能修完。如果两队合修,多少天能修完?
1÷(1/10+1/15)
=1÷ 1/6
=6天
答: 如果两队合修,6天能修完.
点击查看更多:六年级数学上册教案
提醒:
扫码关注回复“教案”
获得上下册教案资料!
作为大家敬仰的人民教师,要对每一堂课认真负责。老师需要提前做好准备,让学生能够快速的明白这个知识点。上课才能够为同学讲更多的,更全面的知识。那你有没有为了一个问题而去做过一份教案呢?小编特地为您收集整理“人教版六年级数学上册第三单元《分数除法》教案(五)”,仅供参考,大家一起来看看吧。
人教版六年级数学上册第三单元《分数除法》教案(五)
1教学目标
1、通过画图,使学生能够理解两类问题的解法,更好的理解单位“1”。
2、使学生经历画图解决问题的过程,感受获得成功的喜悦。
3、渗透数形结合、极限、函数、化繁为简等数学思想方法,培养学生归纳总结的能力。
2学情分析
学生已经对单位“1”有了较深的理解,并能准确地找出单位“1”,而且已经会求一个数的几分之几是多少?在分数除法这一章,学生已经有了画线段图的基本经验。
3重点难点
教学重点:使学生掌握画图解决问题的方法,感受数学思想方法。
教学难点:两类问题一般规律的总结。
4教学过程
4.1第一学时
4.1.1教学活动
活动1【导入】激趣导入
出示两张照片,一张“庄子”,一张“强子”。
设计意图:使学生感受题目的新颖别致,激发学生学生学习的兴趣。
活动2【讲授】探索问题一
(一)庄子问题
1、出示庄子天下篇的三句话:一尺之棰,日取其半,万世不竭。
(1)有不认识的字吗?
(2)有不理解的字吗?
(3)既然是日取其半,两天就取完了,为什么还会万世不竭呢?
设计意图:通过问题的设计,使学生理解问题的本质,理解单位“1”的变化。
2、探索 的和。
(1)第一天取了多少尺?
(2)第二天、第三天…第六天呢?
(3)前六天一共取了多少尺?
3、学生自主画图探究和的规律。
设计意图:发挥学生的创新意识,使学生用不同的表达形式说明问题。
4、课件展示几种图形。
设计意图:再次使学生理解如何用图形进行求和。理解问题的本质。渗透数形结合的思想。
5、探索 的和。
6、利用折现统计图使学生感受极限的思想。
设计意图:再次利用数形结合的思想使学生感受到极限的思想。
活动3【讲授】探索问题二
(二)强子问题
1、课件出示问题。
(1)学生代表读题,并读出关键字词。
设计意图:突破这个问题的难点,单位“1”的变化。
(2)教师板演第一天、第二天的画图过程。
设计意图:指导学生如何正确的画线段图。
(3)学生填写表格。(第一天和第二天“取”和“剩”的情况)
2、学生自己画图,找出第三天“取”和“剩”的情况。
3、不画图,直接写出第四天“取”和“剩”的情况。
4、直接写出第6天“取”和“剩”的情况。
5、直接写出第n天“取”和“剩”的情况。
活动4【练习】利用规律,解决问题
利用规律,解决问题。
1、如果这根绳子长10米,第三天去了多少米?
2、如果这根绳子长10米,第四天取完后还剩下多少米?
活动5【作业】作业
列式求“庄子”问题中的每一个数。
活动6【活动】课后反思
本节课,是一节大胆的尝试课,它不属于教学大纲的要求,它是在我校“课程整合”大背景下产生的,并且在本节课中,我们还为“小初衔接数学思想方法的渗透”这一课题进行了大胆的探索。
这节课,我们将数学与文学进行整合,从《庄子天下篇》的三句古文入手,找出数学的元素,提出问题并解决,将本册教材《数学广角》的一个内容整合到本节内容中来,再次体现了学科内知识的整合。在本节课中,我们力图体现数学思想方法的渗透,特别是数形结合、极限、函数的思想。从课程一开始,我们就紧紧围绕图形展开,从画图探究 的和到使学生感受极限的思想,从解决庄子问题到寻找强子问题的答案,我们的每一步都有不同图形的展示,而且在教师的引导下,学生可以独立画图,并有所创新。虽然本节课的难度有些大,但是我们的教学目标达成的较好。
本节课,我觉得比较成功的有以下几个方面:
1、标题的确定,我把本节课的标题定为《从“庄子”到“强子”》,在我们自己的学校执教这节课,学生对这个标题会感到很有意思,特别是一开始呈现两张照片,学生都会不自觉的加入到猜想他们是谁的过程中来,兴趣盎然的投入到教学过程中。
2、利用折现统计图直观的使学生感受极限的思想,比单纯的想象和说教更具说服力。图形一出来,根据折现统计图的特点,学生会很容易的想象到数据的发展趋势。在此处,教师的语言一定要准确,“随着……,越来越……”虽然没有提到函数的任何信息,但是函数的思想已经深入其中。在此环节,我感受到,数学的思想方法不是孤立存在的,一个思想方法必然以其他思想方法为依托,多种思想方法的融合,才能使学生更好的理解问题的本质。
3、学生读题这一个环节必不可少,在这节课中,我共安排了两次读题。第一次读“关键字”至关重要,学生能够找出关键字并解释关键字的作用,是本节课的难点不攻自破,学生对单位的理解更深一步。第二次读题,是让学生读出省略号的内容,既突破了另一个难点,也在一定程度上反映出学生的“联想”能力。
4、本节课,也为学生解决实际问题提供了一种有效的方法:数形结合和化繁为简。通过学生多次画图,使学生感受到数形结合为解决问题提供了方便,也培养了学生的画图能力,两个重要结论的产生都来自最简单的形式,通过层层递进,是规律跃然纸上。
5、听课的老师和学校领导觉得这节课中能比较好的渗透数学思想方法,虽然有些拖堂,但是能在一节课上将这么大密度的知识呈现,真的很不错!
本节课最大的遗憾就是学生的兴奋劲没有充分的调动起来,这样一节难度较大的课,只有学生兴奋,才能更专心的投入。
点击查看更多:六年级数学上册教案
提醒:
扫码关注回复“教案”
获得上下册教案资料!
作为大家敬仰的人民教师,要对每一堂课认真负责。就必须编写一份较为完整的教案,这样有利于我们准确的把握教材中的重难点。才能有计划、有步骤、有质量的完成教学任务,那么一份优秀的教案应该怎样写呢?小编收集整理了一些人教版六年级数学上册第三单元《分数除法》教案(二),仅供参考,欢迎大家阅读。
人教版六年级数学上册第三单元《分数除法》教案(二)
1教学目标
1.结合具体情境,使学生掌握分数混合运算的顺序,能正确进行计算
2.能运用所学知识解决简单的实际问题,提高综合解题能力。
2学情分析
本班共有72名学生,男女生人数协调,基础知识比较扎实,应用题的解决较差,少数学生数学成绩很差。
3重点难点
1.掌握分数混合运算的顺序,正确计算分数混合运算。
2.解决有关的实际问题。
4教学过程
4.1复习导入
4.1.1教学活动
活动1【导入】复习导入
不计算,说说下面各题的运算顺序。
3700÷9 0.3×9÷6
50×【(900-90)÷9】
活动2【讲授】合作探究
1.出示例3
一天吃三次,每次吃半片,12片药可以吃几天?
2.理解题意
(1.)分析题意,列出算式。
(2.)提问:求小红可以吃几天,应先求什么?再求什么?
(3.)小组合作讨论并填写预习卡。方法一:每次吃半片,吃3次:
12片可以吃几天?
方法二:12片可以吃:12÷ =12×2=24(次)
24次可以吃:24÷3=8(天)
(4)互相交流,请两位同学板演并说一说解题思路。
(5)列出这两种方法的综合算式。
(6))提问:综合算式里分别含有几级运算?应先算什么,再算什么?
7)小结:分数混合运算和整数混合运算相同,在同级运算中,如果
没有括号,按从左往右的顺序计算。如果有两级运算,先算乘除,再算
加减。有括号的先算小括号,再算中括号。
活动3【练习】巩固练习
1.完成教材第33页“做一做”。
提问:梯形的面积公式是什么?
2.完成教材第35页第10题。
活动4【作业】课堂小结
这节课你有什么收获?
点击查看更多:六年级数学上册教案
提醒:
扫码关注回复“教案”
获得上下册教案资料!
每一位任课老师,为了能够给学生给一个最简单易懂的教学思路。就必须编写一份较为完整的教案,这样有利于我们准确的把握教材中的重难点。让同学听的快乐,老师自己也讲的轻松。你知道有哪些教案是比较简单易懂的呢?以下是小编收集整理的“人教版六年级数学上册第三单元《分数除法》教案(四)”,欢迎您参考,希望对您有所助益。
人教版六年级数学上册第三单元《分数除法》教案(四)
1教学目标
1.借助工程问题的生活实例,进一步理解工作总量、工作效率、工作时间三者之间的关系,能准确利用其中的两个量求出第三个量。
2.通过课前先学,能发现、提出“工作总量不知道”等问题,提高发现问题、提出问题的能力,体会探索的快乐,激发学习的兴趣。
3.通过交流讨论,掌握用假设法及把工作总量抽象为单位“1”等解决问题的基本策略,能用这些方法解决一些类似的实际问题,提高分析问题、解决问题的能力。
2学情分析
学生已经学习过简单的工程问题,并且知道了工作总量、工作时间、工作效率三者之间的关系,同时学生已经学习了分数乘除法,会把一个整体抽象为单位“1”,这些都为学习本节课做好了知识铺垫。另外学生已经具备一些发现问题、提出问题、独立探索、合作交流的能力,这些能力为本节课的学习做好了保障。
课前我对于我们学校的部分学生做了前测和访谈,大约有40%多的学生从课外辅导班或父母那里已经知道该如何计算,会把工作总量假设为两队单独完成所用时间的最小公倍数或把工作总量看作单位“1”。但是当问及“除了可以把工作总量假设为公倍数之外还能假设为别的数吗?”和“为什么可以把工作总量看作单位”1“时,学生一脸茫然,不知道还能不能假设为别的数,觉得”一条路“就可以看做单位”1“没有为什么。
3重点难点
通过交流讨论,掌握用假设法及把工作总量抽象为单位”1“等解决问题的基本策略,能用这些方法解决一些类似的实际问题,提高分析问题、解决问题的能力。
4教学过程
4.1第一学时
4.1.1教学活动
活动1【导入】一、独立探索-----发现问题、提出问题
1.课前学生独立完成自主学习单的以下内容,发现问题。
(一)知识链接、做好铺垫。
一条水渠长600米,甲队单独挖需要20天,乙队单独挖需要30天。如果两队合作,几天能挖完?
我的解答:
我的想法:
(二)独立思考、个体探究。
一条路,一队单独修,12天能修完。二队单独修,18天能完成。如果两队和修,多少天能修完?
1.认真读题,找出题中的已知信息和所求问题,整理在下面。
2.尝试解答。
(1)我的解答
(2)我的想法。
3.在探索的过程中你遇到了什么困难?有什么疑问?(不会解答的同学可以不解答,只需要把你的疑问和困惑写下来即可。)
2.课上交流,提出问题。
(1)说一说知识链接题该如何解答?
(评价:说说每一步算的是什么?为何这样算?检测学生对于工作总量、工作时间、工作效率三者之间的关系的理解层度。当学生说不清楚或表达不准确时,教师引导其他学生或教师自己帮助准确表达。)
说说在独立探索中你有哪些疑问?
(评价:鼓励学生大胆表达自己的疑问和困惑,只要表达清晰、明确都给予肯定;对于能发现”工作总量不知道“的问题给予表扬。)
(3)揭示课题:这节课我们就一起从疑问开始研究。继续学习解决问题。(板书课题:解决问题)
活动2【活动】二、小组合作-----分析问题、解决问题
1.寻找众多问题中最想先解决的问题。即:“工作总量不知道该怎么办?”
2.课前研究出这个问题的学生给小组同学介绍自己的想法,说清楚自己是如何分析问题、解决问题的。小组同学共同交流、讨论,共同寻找合适的解决问题的方法。
活动3【活动】三、展示交流-----提升拓展研究
1.分层次展示学生的研究成果。
(设最小公倍数→设公倍数→设除零以外的任何数→用字母x表示设的数。)
预设一:36÷12=3(米/天)、36÷18=2(米/天),36÷(3+2)= =7.2(天)。
生1质疑:你是怎么想到设具体数的?
生2质疑:你们为什么把这段路假设长36米?
生3质疑:还能假设为别的数吗?
生4质疑:不设他们的公倍数,设别的数如:10、20、100等等的数行吗?
(评价:小组展示完后其余同学、老师可以对她们的方法进行质疑、补充,从而修正、完善每种方法,充分理解小组分析问题、解决问题的思路,明确他们采用的是设具体数的方法解决“工作总量不知道”的问题。
当生质疑不出来时,教师可以质疑,并引导学生思考他们是采用什么办法解决“工作总量不知道”的问题?在讨论“还能设别的数吗?”的问题时,根据学生出现的情况来调整教学,如果还有学生设的是别的数,就让学生来展示;如果没有设别的数想,或对于能不能设公倍数以为的数有争议的时,教师要引导全班学生在练习本上亲自动手试一试。进而发现这里的具体数可以是除零以外的任何数。)
预设二:设这条路为X米,X÷12= (米/天)、X÷18= (米/天)、X÷( + )=X÷ = (天)。
生1质疑:每一步求的是什么?
生2质疑:怎么求着求着x没有了?
生3质疑:设x,怎么没有求出X是多少?
(评价:对于这种方法,当学生出现时就展示,学生没有出现就不再展示,质疑时,当生质疑不出来教师可以站出来质疑,并引导学生思考:这里是不是解方程?进而发现他的这种方法并不是解方程,在这里用X表示具体的数,X是帮助我们计算两队合修的工作时间的一个桥梁,我们不需要把它求出来。利用这样桥梁我们也算出来了两队合修的工作时间。)
2.观察以上方法,你有什么发现?引导学生发现“虽然假设的数不一样,但是最后的结果都是一样的。”
思考为什么假设的数不一样,但是最后的结果都是一样的呢?最终发现“变中的不变”。
预设一:工作时间不变,工作总量假设的大,工作效率就大;工作总量假设的小,工作效率就小。所以最后算的合作时间是一样的。
预设二:工作总量和工作效率有倍数关系。一队的工作总量总是工作效率的12倍;二队的工作总量总是工作效率的18倍。所以最后算的合作时间是一样的。
预设三:虽然工作总量设的不一样,但是一队每天修的长度都是总长度的 ,二队的每天修的长度都是总长度的 ,所以求出来的两队合修的工作时间是一样的。
(评价:如果大部分学生都迷茫时,可以让学生先小组讨论一下,然后再全班交流。只要学生的表述意思是对的都给予肯定和鼓励,对于表述不完整的引导学生表述完整。对于预设一、预设二,要在肯定、表扬的基础上引导学生观察工作效率占工作总量的几分之几。如何学生三个预设都没有说到,教师也要引导学生一起观察工作效率与工作总量之间的关系,找到“变中的不变”。)
既然无论我们设什么,一队每天修的长度都是总长度的 ,二队的每天修的长度都是总长度的 ,那么我们就可以把这条路看作一个整体,抽象为单位“1”。进而展示把工作总量抽象为单位“1”的方法。
预设一:1÷12= (米/天),1÷18= (米/天),1÷( + )= (天)。
预设二:1÷12= ,1÷18= ,1÷( + )= (天)。
生质疑:1÷12= ,1÷18= ,后面带不带单位?
(评价:小组展示完后其余同学、老师可以对她们的方法进行质疑、补充,理解小组分析问题、解决问题的思路,明确他们采用的是把工作总量抽象为单位“1”的方法解决“工作总量不知道”的问题。
不管出现哪个预设都要引导学生质疑,如果学生没有在这里的质疑,教师要质疑,并引导学生思考为什么当我们把工作总量抽象为单位“1”时不用带单位?这里的 、 表示的是什么?并与把工作总量假设为1米时做对比,明白这里的 是一个分率,表示的是一队的工作效率占工作总量的几分之
活动4【活动】四、回顾与反思-----总结概括认知。
1.回顾一下我们共同找到了哪些解决“工作总量不知道该怎么办?”问题的方法?
2. “工作总量不知道该怎么办?”问题解决了,我们独立探索中遇到的其他问题呢?(发现当工作总量不知道的问题解决之后其它问题都迎刃而解了。)
3.回顾一下,从课前的独立探索到课上的小组讨论、全班交流,在整个问题解决的过程你有什么收获?
活动5【练习】五、灵活运用,解决问题。
1.挖一条水渠,王伯伯每天挖整条水渠的 ,李叔叔每天挖整条水渠的 。两人合作,几天能挖完?
2.如果两辆车一起运,多少次能运完这批货物?
3.甲车从A城市到B城市要行驶2小时,乙车从B城市到A城市要行驶3小时。两车同时分别从A城市和B城市出发,几小时后相遇?
(评价:学生能正确利用模型解决这些问题,能准确说出自己采用的是什么方法解决问题的?每一步算的是什么?为何这样算?)
点击查看更多:六年级数学上册教案
提醒:
扫码关注回复“教案”
获得上下册教案资料!
人教版六年级上册《分数乘法(一)》数学教案
学习目标:
1、知识与技能,结合具体情境,借助示意图理解分数乘整数的意义,渗透数形结合思想。
2、过程与方法,借助转化的方法理解分数乘整数的算理,并能正确地进行计算,提高计算能力。
3、情感态度与价值观,在探索与交流活动中培养观察、推理的能力。
教学重点:理解分数乘整数的意义,掌握分数乘整数的计算法则。
教学难点:理解分数乘整数的算理。
教具运用
教学过程:
一、创设情境,复习导入。
1、5个12是多少?
用加法算:12+12+12+12+12
用乘法算:12×5
问:12×5算式的意义是什么?
2.计算:
问:这两个算式有什么特点?应该怎样计算?
教师总结:整数乘法的意义,就是求几个相同加数的和的简便运算。同分母分数加法计算法则是分子相加作分子,分母不变。
通过将算式:3/10 +3/10 +3/10 改写成乘法算式,引出课题。
二、探索交流,解决问题。
1、 分数乘整数的意义。
(1)谈话并提问:今天是小新的10岁生日。妈妈买来了一个大蛋糕。小新和爸爸、妈妈一起分享了生日蛋糕。他们每人吃2/9 个。你能提出一个数学问题吗?(预设:3个人一共吃多少个?)
(2)提出要求:你能解决这个问题吗?请你在草稿本上解决这个问题。请你画一画,算一算,争取让同学们看清你的想法。
引导学生看图,理解“他们每人吃2/9 个”,就是把整个蛋糕看作单位“1”。把这个圆平均分成9份,其中2份就表示一个人所吃蛋糕的大小,就是2/9 个。那么三个人一共吃的就是求3个2/9 是多少?
追问:你们用画示意图的方法将问题分析得很清楚,那你们是怎样列式的呢?说说你的想法。
预设:
①2/9 +2/9 +2/9 =2+2+2/9 =6/9 =2/3 (个)表示3个2/9 连加的和是多少。
②2/9 ×3=2X3/9 =6/9 =2/3 (个)也表示3个2/9 连加的和是多少。
追问:不同的算式都表示“3个2/9 连加的和是多少”由此你有什么发现吗?(预设:用乘法计算更简便一些。)
分数乘法和整数乘法一样,也是求几个相同加数和的简便运算,所不同的是相同加数是分数。
(3) 探究分数乘整数的计算方法。
①引导学生观察算式2/9 ×3=2x3/9 =6/9 =2/3 (个)并提问。请你们看看这个算式,你能理解它是怎么计算的吗?
②引导学生再次观察算式并提出问题:这个算式是先计算再约分的,你有不同的想法吗?
预设:
引导学生对比观察这几个算式并提出问题:通过比较算式你有什么发现?
小结:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。(分母与整数能约分的先约分再计算)
(4)小练习。
(1)计算1/12 ×4
(2)教材第2页“做一做”第1题。
2、借助情境理解整数乘分数的意义。
1桶水有12L。3桶共多少L?1/2 桶是多少L?1/4 桶是多少L?
(1)理解题意,明确题中的数量关系:单位量×数量=总量
(2)根据题意列出算式:
3桶水共多少L?12×3
1/2 桶是多少L?12×1/2
1/4 桶是多少L?12×1/4
(3)探究每道算式的意义
1/2×3表示求3个1/2L,也就是求12L的3倍是多少。
1/2 是一半,1/2×1/2 表示12L的一半,也就是求12L的1/2 是多少。
1/2×14 表示求12L的1/4 是多少。
发现:一个数乘分数表示的是求这个数的几分之几是多少。
(4)解决问题。
(5)小练习:
2/9 ×6= 12×3/4 = 3/10 ×4=
观察巡视学生是否先约分再计算。在约分时,是否有学生将分子与约分,为什么只能将整数与分数的分母约分。
集体订正时,请学生说说计算与约分方法。教师展示一种学生将分子与整数约分的错误方法,让学生辨析。
三、巩固应用,内化提高。
1、
1)、教材第2页“做一做”。
2)、教材第5页第3题
2、
1、计算。
3、 列式计算
(1)12个相加的和是多少?
(2)kg的6倍是多少kg?
(3)一块长方形的铁皮,长是6分米,宽是分米,这块铁皮的面积是多少平方分米?
四、回顾整理,反思提升
说说这节课的收获?
六年级数学上册解决问题--分数乘法应用教案
课题 2.2.1解决问题
分数乘法 (一) 课时 第 1节 共 4节
授课时间 月 日
教学
目标 1.会画线段图分析分数乘法一步 的数量关系。
2.会运用一个数乘分数的意义,正确地列式解答分数乘法一步应用题。
3.培养学生初步的逻辑思维能力。
重
点 根据一个数乘分数的意义分析和解答求一个数的几分之几是多少的一步计算的应用题。 难
点 理解单位“1”的量,理清数量关系。
教具 (或小黑板)
板书
设计 分数乘法应用(一)
例1:求我国人均耕地面积是多少平方米就是求2500平方米的2/5是多少?
2500×2/5=1000(平方米)
答我国人均耕地面积是1000平方米。
自主预习提纲 教学意图 复备栏
1.怎样画线段图分析分数乘法一步应用题的数量关系?
2.怎样运用一个数乘分数的意义,正确地列式解答分数乘法一步应用题?
1.会画线段图分析分数乘法一步应用题的数量关系。
2. 会运用一个数乘分数的意义,正确地列式解答分数乘法一步应用题。
课堂导学过程 学生合作探究 复 备 栏
一、创设情境
1、多媒体展示以下图片。
(1)土地流失。
(地球上每天有700万吨肥沃地表土流失)
(2)土地沙漠化。
(地球上每天有1.4万公顷土地变成沙漠)
(3)世界人口同中国人口对比图。
(世界上每5个人中约有1个中国人)
教师:看了这些图片,你了解到哪些信息,有什么感想?
2、教师出示例1信息。
教师:是啊、我国在世界上是一个人口大国,但我国的人均土地面积却很少。(多媒体出示)
据统计,2003世界人均耕地面积为2500m2,我国人均耕地面积仅占世界人均耕地面积的2/5。
教师:根据这条信息,你想提出一个什么样的数学问题?
二、探究新知
1、 完善例1,提示课题,指名学生读题。
2、引导学生 意。
(1)让学生探讨“2/5”的意义。
(2)引导学生画线段图。
2500m2
?m2
2/5
(3)探究算理,列式计算。鼓励学生从多方面思考。
用乘法计算的,教师可以追问:用乘法算的依据是什么?
(一个数乘分数的意义)
出现第二种情况,教师可以质疑:这样列式的依据是什么?
(分数的意义)
(4)评价两种解法,重点引导学生分析归纳第一种解法。
三、应用反馈
1、教材第17页下面的“做一做”。
2、做一做练习四第2题。
3、讨论练习四第3题。
四、课堂小结
向同学们说说你学习的情况。
五、布置作业
1.学生纷纷说出自己的感受。
可能会说:耕地面积太少了。
也可能会说:要珍惜宝贵的土地资源等。
2.学生提出问题。
可能是:我国人均耕地面积是多少平方米?
1.学生读题,弄清已知条件和要求的问题。
2.(1)学生讨论2/5的意义,然后交流。
学生可能会说:2/5表示把世界人均耕地面积2500m2看作单位“1”,平均分成5份,我国人均耕地面积占其中的2份。
(2)学生根据理解画线段图,再给小组里的同学讲一讲。
(3)学生自主探究。
学生可能这样分析:要求我国人均耕地面积是多少平方米,也就是求2500平方米的2/5是多少,可以用乘法计算。
用2500×2/5=1000(m2)
学生也可能这样分析:要求2500平方米的2/5是多少,就是要把2500平均分成5份,取其中的2份。列式为:2500÷5×2=1000(m2)
(4)小组讨论,归纳求一个数的几分之几是多少的分数乘法应用题的分析思路和数量关系。
单位“1“的量×几/几=几分之几对应的量。
1.学生独立做。
先试画线段图。做后讲讲算理。
2.学生分析数量关系,并写出数量关系式。
3.弄清单位“1”的量,先画线段图,再解答。
学生或交流经验或提出问题。
人教版六年级数学上册第一、二单元教案
第一单元 位置
内容:确定物体位置的方法(教材2~3页的例1、例2,练习一1~5题)
目标:
1、使学生能结合教材提供的素材,自主探索确定物体位置的方法,并能利用方格纸依据两个数据确定物体的位置
2、能把自己的思维过程与结果用语言表达出来,并与同伴进行很好的交流、合作。
3、体会生活中处处有数学,感受数学的价值,产生对数学的亲切感。
重难点、关键:
1、重难点:
运用两个数据准确表示物体位置。
2、关键
利用方格纸正确表示列与行。
教学过程:
一、旧知铺垫、导入新课
1、介绍位置
由学生介绍自己座位所处的位置,然后再介绍几个好朋友所处的位置。
学生介绍位置的方式可能有以下两种:
(1)用“第几组第几座”描述。
(2)用在我的“前面”、“后面”、“左面”、“右面”来描述。
2、谈话导入
(1)教师肯定以上学生描述的方式。
(2)明确说明本节课我们要进一步学习确定位置的有关知识。
板书课题:位置
二、探索活动,获取新知
1、教学例1
实物投影出示主题图:班级座位图
(1)说一说
学生观察座位图,想说谁的位置就跟同伴说一说。
(2)想一想
师:李刚的位置在哪里?可以怎样说?
学生可能有不同的回答,只要合理都予以肯定。
(3)写一写
请学生用自己喜欢的方式把李刚的位置表示出来
A:学生独立操作,教师巡视课堂,记录不同的表达方式。
B:展示几个不同的表达方式
(4)讨论
师:同样都是李刚的位置,大家表示的方法却各有不同。虽然所有的方法都有道理,但是总让人感到太麻烦。你有什么好建议,可以用一种统一的既清楚又简便的方法来表示?
(5)探索用数据表示位置的方法。
结合已有的表示方法“第6列,第3行”,并在学生讨论的基础上教师引导学生认识用数据表示位置的方法。
A:明确说明:李刚在第6列,第3行可以用(6,3)这样的一组数来表示。
B:学生尝试用这样的方法表示李芳、李小冬、赵强、王宏伟的位置。
要求:
a、先说一说他们分别在第几列第几行,再用数据表示;
b、根据数据再说一说在第几列第几行。
C、总结方法
师、:请你仔细观察这些数据和他们所在的位置,你能总结出用数据表示位置的方法吗?
学生先独立思考,然后与同学交流,再汇报。
归纳:
先看在第几列,这个数就是数据中的第一个数;再看在第几行,这个数就是数据中的第二个数。
2、教学例2
投影出示课本中的“动物园示意图”
(1)观察示意图,说一说那看到了什么。
(2)解决第(1)个问题
师:如果用(3,0)表示大门的位置,你能表示出其他场馆所在的位置吗?
A:学生独立操作,解决问题。
B:投影展示学生解决的结果。
熊猫馆(3,5) 海洋馆(6,4)
猴 山(2,2) 大象馆(1,4)
(3)解决第(2)问题
A:出示要求
在图上标出下面场馆的位置
飞禽馆(1,1) 猩猩馆(0,3) 狮虎山(4,3)
B:学生按要求在书上完成
C:反馈练习结束
学生回答,利用投影展示。
3、全课总结
(1)通过这节课的学习,你有什么收获?刚才,我们是怎样探究出用两个数据表示位置的方法的?
(2)教师简要介绍确定位置的方法的重要作用。比如播放有关地球经纬度的知识等。
三、巩固练习
完成教材练习一中的1~5题
第1题:
(1)说一说(9,8)中的“9”表示什么?“8”表示什么?
(2)按照题目给出的数据,涂一涂
第2题
(1)观察棋盘,与第1题方格图比较,说一说有什么不同。
(2)引导学生正确说出黑方的“五”所处的位置。
(3)引导学生说出其他棋子的位置,并与同学交流。
(4)完成题中第(2)小题,并和同学交流。
第3题
第1小题,用投影展示学生所确定的区域。
第2小题,同学之间相互交流表示结果。
第4题
学生独立完成,然后同学之间互相检验交流,最后,教师再展示学生的作品,学生评价。
第5题
(1)学生自己在方格纸上画一个简单的多边形。各顶点用两个数据表示。
(2)同桌互相合作,一人描述,一人画图。
第二单元 分数乘法
1、分数乘法
第一课时 分数乘整数
教学内容:教材第8页的例1,第9页的例2以及“做一做”,练习二中的第1、2题。
教学目标:让学生掌握分数乘正整数的计算方法,并能准确地进行计算。
重难点、关键
分数乘整数的计算方法。
教学准备:电脑课件
教学过程: 一、旧知铺垫
1、计算下列各题
2/11 +2/11+2/11
过程要求
(1) 写出计算过程。
(2) 说一说分数加法的计算方法。
2、想一想,能不能把 2/11+2/11+2/11改写成乘法算式呢?
二、探索新知
1、教学例1
(1) 出示例题
根据题意,电脑课件呈现示意图。
(2) 根据题意列出解答算式:
2/11+ 2/11+2/11 = 2+2+2/11 = 6/11
2/11×3= 6/11
(3)探索分数乘整数的计算方法。
师:2/11×3= ,说一说你是怎么想的?
① 学生在小组交流各自的想法
② 小组讨论后反馈思维的过程和结果
教师板书:
③总结分数乘整数的计算方法。
A、学生口述分数乘整数的计算方法;
B、 教师整理并板书:
分数乘整数,整数与分子相乘的乘积作分子,分母不变。
2、教学例2
计算:3/8×6
(1) 学生独立计算。
(2) 交流计算方法和步骤。
(3) 比较计算过程,看一看哪一种更为简单
(3)归纳:能约分的要先约分,再计算。
三、巩固练习
1、 完成课本“做一做”。
(1) 学生独立完成,然后计算过程和结果。
(2)第3题,说一说你是怎样计算的?怎样想的?
一般要求学生列综合算式计算。如:
6/7×10×7==60(kg)
2、课本练习二第1、2题
四、课后作业设计
一、计算
7/8× 7 3/4×8 1/9×3 1/2×4
5/6×5 5/18×3 27× 2/3 3/8 16×
三、列式计算
1、3个5/8是多少? 2、2/3的6倍是多少?
3、5/14扩大7倍以后是多少? 4、5/6与24的积是多少?
课后反思:
第二课时 分数乘分数
教学内容:教材第10页例3,第11页例4以及“做一做”,练习二中的3、4题
教学目标:
1、理解一个数乘分数就是求一个数的几分之几是多少。
2、掌握分数乘分数的计算方法,并能正确地进行计算。
重难点、关键:
1、重难点:分数乘分数的计算方法。
2、 关键:理解一个数乘分数就是求一个数的几分之几是多少。
教学准备:实物投影或者电脑课件。
教学过程:
一、创设情境引入新课
教师谈话,以学校粉刷教室或家庭装修新房等学生身边的实例引入。
出示粉刷墙壁的画面,给出条件:每小时粉刷这面墙的1/5。
师:能提出什么问题?
学生提问题,教师板书。
以分数乘整数的问题作研究内容,如“4小时可以粉刷这面墙的几分之几?”
师:怎样列式?(板书1/5×4)
师:列式的依据是什么?为什么用乘法?(工作效率×工作时间=工作总量)
让学生计算,并说说怎样计算。
师:我们解决了4小时粉刷多少的问题,那么1/4小时可以粉刷这面墙的几分之几?(出示问题)怎样列式?依据是什么?
学生讨论汇报。(根据“4小时可以粉刷这面墙的几分之几”的列式类推出,或根据工作效率×工作时间=工作总量,可以列出1/5×1/4)。板书算式。
师:(结合板书讲解)我们已经知道求4小时粉刷这面墙的几分之几,就是求4个1/5是多少。求1/4小时粉刷这面墙的几分之几,就是求1/5的1/4是多少。那么1/5×1/4如何计算呢?这就是我们今天学习的内容。
板书课题:分数乘分数
二、操作探究计算算理
1?师:下面我们来探讨分数乘分数怎样计算。我们每人准备了一张纸,把它看作这面墙,先在纸上涂出1小时粉刷的面积,应该涂出这张纸的几分之几?
学生操作。
学生交流是怎样涂的?(用折或量、分的方法把纸平均分成5份,涂出其中的1份,如下图)
师:我们已经知道,求1/4小时粉刷这面墙的几分之几,就是求1/5的1/4是多少。再涂出1/5的1/4,小组讨论一下,应该怎样涂?
小组汇报(把涂出的1/5部分再平均分成4份,涂出其中的1份)。
学生自己涂色。
师:从涂色的结果看,1/5的1/4占这张纸的几分之几?1/20
师:我们可以得到1/5×1/4=1/20。根据涂色的过程,你能说说是怎样得到的吗?
学生讨论交流汇报。
教师归纳(用多媒体或投影片演示涂色过程):我们先把这张纸平均分成5份,1份是这张纸的1/5,又把这1/5平均分成4份,也就是把这张纸平均分成了5×4=20份,1份是这张纸的1/20。由此可以得到 (板书)。
三、迁移延伸,归纳法则
提出问题:3/4小时粉刷这面墙的几分之几?
师:“3/4小时粉刷这面墙的几分之几?”是求什么?(1/5的3/4是多少?)
小组讨论并操作:怎样列式?涂色表示15的34。怎样计算?
交流计算方法和思路:与前面一样,也是把这张纸分成5×4份,不同的是取其中的3份,可以得到 (板书)
根据板书的两个计算算式讨论归纳计算方法。
通过学生讨论交流得到:分数乘分数,用分子乘分子,分母乘分母。
四、反馈提高,巩固计算
出示例4,读题。
师:怎样列式?依据什么列式?
由学生讨论得到:根据“速度×时间=路程”,列出3/10×2/3。
让学生独立计算。通过请学生在黑板演算或用投影展示学生的演算过程及结果交流计算情况,强调能约分的要先约分再乘,这样可以使计算简便。并结合学生的演算情况说明约分的书写格式。
课堂总结:今天我们学习了什么?分数乘分数怎样计算?
课后反思:
第三课时 练习课
练习内容:练习二中的第5~10题
练习目标:使学生熟练掌握分数乘法的计算方法,并能正确地进行计算。
练习过程:
一、基础练习
1、口算
2/9×3/5 6/7 × 7/9 5/8 × 4/15 9/20 × 5/21
14× 3/8 15× 7/30 3/4× 2/3 1/5×5
2、计算
6/5× 5/3 1/2×4 27×5/12
过程要求:
(1) 请三位学生上台板演,其余学生做在练习本上。
(2) 集体反馈,学生评价计算过程。
(3) 着重强调约分的操作步骤。
二、专项练习:
完成练习二第5~10题
1、第5题
(1) 提问各算式的意义。
要求学生根据示意图,分别说一说×、×、×各表示什么?结果是多少?
(2) 将结果写在书上。
2、第6题
(1) 认真审题,弄清题意。
(2) 分别说明三个问题各属于什么类型的问题。
(3) 列式计算。
3、第7题
学生独立完成后,说一说你是怎样做的?
4、第8题
学生列式计算,教师巡视,然后集体订正。
5、第9题
(1) 学生判断正误,并说明原因。
(2) 改正算式。
6、第10题
(1) 学生列式计算,教师巡视进行个别指导。
(2) 说一说你有什么体会。
三、课后作业设计:
一、计算。
6/5× 5/3 7/25 × 15/14 3/11 × 1/2 14× 4/21
120× 5/6 5/6×24 5/6×18
二、列式计算
1、12/35米的7/10是多少米?
2、7、60千克的2/7是多少千克?
3、8/15吨的3倍是多少吨?
三、解答下列问题。
1、一辆汽车每小时行驶60千米,2/3小时行驶多少千米?
2、一个长方体长1/2米,宽3/5 米,高5/6米,它的体积是多少立方米?
课后反思:
第四课时 混合运算
教学内容:分数乘加、乘减混合运算,练习三第3题
教学目标:
1、使学生掌握分数乘加、乘减混合运算的运算顺序。
2、通过练习,提高学生计算的熟练程度。
教学重难点:分数乘加、乘减混合运算的运算顺序。
教学过程:
一、复习
计算下面各题
5×6+7×3 15×(34-29)-+
过程要求:
1、学生独立计算,然后集体订正。
2、说一说运算顺序。
二、讲授新知
1、教师明确说明:分数混合运算的顺序和整数的运算顺序相同。
2、举例说明
计算:(1/10+1/4)×4
(1) 观察算式说一说运算顺序。
(2) 学生尝试练习,教师巡视进行个别指导。
(3) 学生汇报计算过程,教师板书。
3、尝试练习
3/5×1/6×5
三、巩固练习
完成练习三第3题
1、学生独立列式计算,教师巡视,发现问题及时纠正。
2、选出两题,请学生进行板演,学生评价。
四、课后作业设计:
一、计算:
(3/4-2/5)×200 (3/4+1/6)×2
二、列式计算
1、3/8与3/10的差的1/5是多少?
2、3/8减去3/4的1/5,差是多少?
3、2/3的1/5比5/6少多少?
课后反思:
第五课时 简便运算
教学内容:整数乘法运算定律推广到分数乘法(教材第14页例5、例6,练习三的1、2、4、5题)
教学目标:
1、使学生会用整数乘法的运算定律推广运用到分数乘法,并使一些计算简便。
2、培养学生灵活计算的能力,发展学生逻辑思维能力。
重难点、关键:运用运算定律进行简便运算。
教学过程:
一、教学例5
1、观察每组的两个算式,看看它们有什么关系。
(1)1/2×1/3○1/3×1/2
① 学生计算,发现乘积一样,两个算式相等。
② 说一说存在的规律。
③ 用字母表示。
板书:乘法交换律:a×b=b×a
(2)(1/4×2/3)3/5○1/4×(2/3×3/5)
①学生计算,发现乘积一样,两个算式相等。
②说一说存在的规律。
③用字母表示。
板书:乘法结合律:(a×b)×c=a×(b×c)
(3) (1/2+1/3)×1/5○1/2×1/5+1/3× 1/5
①学生计算,发现乘积一样,两个算式相等。
②说一说存在的规律。
③用字母表示。
板书:乘法分配律:(a+b)×c=ac+bc
2、小结。
整数乘法的运算定律对于分数乘法同样适用。
师:应用这些乘法的运算定律,可以使一些计算简便。
二、教学例6
1、计算3/5×1/6×5
(1) 观察算式,说一说你有什么想法。
(2) 学生独立列式计算,教师巡视检查。
(3) 汇报计算过程。
3/5×1/6×5
=3/5× 5 ×1/6(问:运用了什么运算定律?)
= 3 × 1/6
=2
(4)想一想:不改写算式,直接进行约分行不行?
抽生板演
通过观察、思考、交流,使学生明白像这样连乘的算式,可以直接约分同时计算。
(5)试一试
2/3×1/4×3
学生独立计算,请两位学生上台板演,完成后集体评价,发现问题及时纠正。
2、计算(1/10+1/4)×4
(1) 观察算式,说一说你认为怎样计算比较简便。
(2) 学生独立列式计算,请两位上台板演。
(3) 集体评价,发现问题及时纠正。
板书:(1/10+1/4)×4
=1/10×4+1/4×4
=2/5+1
(4)试一试
(8/9+4/27)×27
学生独立计算,教师巡视进行个别指导,发现问题及时纠正。完成后,请一位学生上台板演计算过程。
3、计算:87× 3/86
(1)观察算式,说一说算式有什么特征?
(2)你认为应该怎样算比较简便?
(学生先独立思考,然后在小组中交流。
(3)反馈交流结果
板书:87× 3/86
=(86+1)× 3/86
=86× 3/86 + 3/86
=3+ 3/86
三、巩固练习:完成练习三的1、2、4、5题
四、课后作业设计:
一 用简便方法计算
1、(5/12+7/8)×24 2、5/7×4/5×21
3、5/3×2/15×64、39×3/38
教学反思:
2、解决问题
第一课时 求一个数的几分之几是多少的一步应用题
教学目标:在理解分数乘法意义的基础上,使学生学会分析乘法应用题的数量关系;借助线段图,能正确解答求一个数的几分之几是多少的实际问题;培养学生认真审题,仔细计算的好习惯。
教学重、难点:理解“求一个数的几分之几是多少”用乘法计算的算理;正确找准单位“1”所对应的量,初步学会画线段图。
教学过程:
(一)、导入
1、出示口算卡片,让学生说出每个算式的意义
12×1/2 3/5×7/8
2、口头列式
20的 4/5是多少? 6的2/3 是多少? 120的 4/5是多少?
(二)、教学实施
1、出示第17 页例1
学生读题,找出已知条件和要解决的问题;
在理解题意的基础上用图表表示数量关系,如:
?㎡ ?㎡
2500㎡
2500㎡
2、指导学生画线段图,并板书:
2500㎡
?㎡
| | | | | |
提问:想一想,应重点抓住哪个已知田间分析?这条线段表示什么?
根据“我国人均耕地面积仅占世界人均耕地面积的 ”这个条件,应该把这条线段平均分成几份?怎样表示?(请一学生板演,其他学生尝试自己画图,教师巡视)对照板书,把不正确的地方改正过来。
1、分析题中的数量关系
提问:想一想,“我国人均耕地面积仅占世界人均耕地面积的 ”这句话是什么意思?(是把世界人均耕地面积看成单位“1”,把单位“1”平均分成5份,我国人均耕地面积占这样的2份。)求我国人均耕地面积,就是求谁的几分之几是多少?根据以上数量之间的关系,这道题应该怎样列式?根据什么?
板书: 2500× =1000(㎡) 或 2500÷5×2=1000(㎡)
这样列式是什么意思?(先把2500平均分成5份,再求这样的份是多少。也就是求2500的 是多少。)
(三)、巩固练习
1、一本书,看了 3/5,表示把( )看着单位“1”,平均分成( )份,看完的页数占这样的( )份,剩下的占( )份。
2、完成教材17页的“做一做”注意提示:一个人的身高是鲸体长的 ,这里把谁看成了单位“1”,把谁平均分成了几份?能用线段图表示吗?求这个人的身高多少米,也就是求什么?
3、完成练习四中的第2题,第3 题。
(四)、课堂小结
我们在解答“已知一个数,求它的几分之几是多少?”这种类型的分数乘法应用题时,首先要找准题中的单位“1”所对应的量,然后再根据分数乘法的意义列式计算。
教学反思:
第二课时 分数连乘应用题
教学目标:使学生学会分析分数乘法应用题的数量关系,会应用一个数乘分数的意义解答两步计算的分数乘法应用题;培养学生解决问题的能力,提高学生的分析能力;进一步提高学生思考问题的逻辑性。
教学重,难点:掌握分数连乘的计算方法,突出一次计算,会解答分数连乘计算的实际问题。
教学过程:
(一)、导入
1、说出下面各题算式所表示的意义,再口算各题
1/2×2= 2/5×3= 2/3× 1/2= 3/4× 5=
2、说出下面各题中的两个量,应该把谁看着单位“1”。然后再给每题补充一个已知条件和一个问题,使它成为一道一步计算的分式乘法应用题。
母牛的头数是公牛的 1/3, 公牛头数的2/3 和母牛相等。
母牛的头数相当于公牛头数的 3/4, 公牛的头数相当于母牛头数的 1/2。
小组完成,集体订正。
(二)、教学实施
1.板书:公牛有30头,母牛的头数相当于公牛的1/3 ,小牛的头数相当于木牛的2/5 ,小牛有多少头?(认真读题,弄清题意)
2.指导学生画线段图:怎样用线段图表示已知条件和问题?要求小牛的头数,就要知道哪个量?(母牛的量)母牛的头数又和哪个数量有关?(公牛的头数)先画一条线段,表示哪个数量?(公牛的头数)崽化一条线段,表示哪个数量?(母牛的头数)画多长?根据什么?表示小牛的头数的线段应该怎样画?板书:
公牛: | | | | | | | | | | |
30头
母牛: | |
小牛:
?头
3.分析数量关系:
求小牛有多少头,必须先求什么?(母牛的头数)求母牛的头数应该怎样做?解答这道题需要几步?
4.列式解答:根据以上分析,这道题应该怎样解答?怎样列综合算式解答?板书:
30× 1/3× 2/5=
根据综合算式让学生说说每一步分别求的是什么,每一步分别是把哪个数量看着单位“1”。同时强调:分数连乘不必像整数,小数连乘那样,逐次计算,可以一次计算,遇到整数和分数相乘,要用整数与分数的分母约分,不能约分的直接与分数的分之相乘。
(三)巩固练习
完成第18页第4、5、9、10题,学生要说明每一步所表示的意义,每一步是把哪个数量看着单位“1”。
(四)课堂小结:解答两步计算的分数乘法应用题与解答一步计算的分数乘法应用题的相同点都是求一个数的几分之几是多少的应用题,不同点是分数连乘应用题要连续求一个数的几分之几是多少。解题关键是要找准每一步的单位“1”。
教学反思:
第三课时 求比一个数少几分之几的数是多少的实际问题
教学目标:使学生认识“求比一个数少几分之几的数是多少”的应用题的结构特征,学会利用线段图来分析数量关系,掌握解答这类应用题的思路和方法,并能正确列式计算;培养学生分析问题及综合运用所学知识的能力。
教学重、难点:了解“求比一个数少几分之几的数是多少”的应用题的结构特征;正确分析数量关系,比较熟练的画出线段图。
教学过程:(一)导入
板书:超市运来花生油和豆油共600桶,花生油的桶数占总桶数的 2/5。
(二)、教学实施
1.根据以上两个条件,我们可以提出以下数学问题:
花生油有多少桶?豆油有多少桶?豆油不花生油多多少桶?这些问题中哪个问题可以一步解决?明确任务,重点研究第二个问题
2.能用图表示豆油的部分吗?板书:
“1”
花生油占总桶数的
| | | | | |
豆油?桶
600桶
3.分析数量关系;看图想想,豆油占总桶数的几分之几?求豆油的桶数就是在求什么?交流讨论得出:豆油的桶数占总桶数的 ,求豆油的桶数也就是在求600的 是多少,用乘法计算。
4.列式: 600×(1 – 2/5 )或 600 - 600× 2/5
后者方法很容易理解,主要是从“总桶数 — 花生油的桶数 = 豆油的桶数”这个数量关系入手分析,也就是“和 — 一个量 = 另一个量”
5.出事例2: 明确题意:降低是指什么意思?(比原来少)减少了哪个量的 ?现在听到的声音分贝是原来噪音的几分之几?请个别学生尝试板演画线段图
“1”
原来:| | | | | | | |
85分贝
降低了
现在:| | | | | | | |
?分贝
根据线段图想到了什么?
3.分析数量关系:求现在听到的声音是多少分贝该怎样计算?先求什么,再求什么?(先求降低了多少分贝,再求现在听到的声音分贝是多少;还可以先求现在声音的分贝占原来声音分贝的几分之几,再求现在听到的声音是多少分贝。)
4.列式解答:
方法一:80 — 80× 1/8方法二: 80 ×(1 —1/8 )
=80—10 =80× 7/8
=70(分贝) =70(分贝)
(三)、深化练习
完成教材20 页的“做一做”;完成练习五的第2、4、5、8、10题
(四)课堂小结
今天我们学习了“求比一个数少几分之几的数是多少”的应用题,这类题需要两步完成,通过今天的学习我们能够准确地分析并计算出这类题。
课后反思:
第四课时 求比一个数多几分之几的数是多少”的实际问题
教学目标:
使学生回解答“求比一个数多几分之几的数是多少”的应用题;进一步培养学生画线段图的能力,从而提高学生解答这类应用题的熟练程度。
教学重、难点:周围分析方法,正确熟练的解决时间问题。
教学过程:(一)复习旧知
1. 完成教材练习五第6 题,并把计算结果相等的算式连接起来。
2. 说出单位“1”及单位“1”比较量是”1”的几分之几。
男生的人数是女生人数的 , 一瓶墨水已经用了 ,
草莓酱的瓶数比沙拉酱的瓶数多 。
(二)教学实施
1.出示例2,集体读题,理解题意,提问:“婴儿每分钟心跳的次数比青少年多 4/5”是什么意思?
3. 指导学生画图
根据这句话,应当把什么看着单位“1”?板书:
“1”
青少年: | | | | | |
75次比青少年多
婴儿: | | | | | | | | | |
?次
4. 列式解答:
借助线段图想想,婴儿的心跳次数相当于哪两部分?婴儿每分钟心跳的次数相当于青少年每分钟心跳次数的多少?
方法一: 75 + 75 ×4/5 方法二:75 ×(1 + 4/5 )
请学生将这两题的解题思路完整的叙述出来。
5. 深化练习
完成教材21页的“做一做”,完成练习五的第3、7、9题
(三)课堂作业设计
分析数量关系
小红读一本书,已读了这本书的 3/5,( )是单位“1”, 表示( ),没读的页数用( )表示。
面粉比大米多 表示( )。
(四)课堂小结
今年天我们学习了“求比一个数多几分之几的数是多少”的应用题,解答这类应用题要先找准数量关系,画出线段图,然后列式计算。
课后反思:
3、倒数的认识
倒数的认识
教学目标:
引导学生通过观察、研究、类推等数学活动,理解倒数的意义,总结出求倒数的方法;通过互助活动,培养学生与人合作、与人交流的习惯;通过自行设计方案,培养学生自主探索和创新的意识。
教学重、难点:理解倒数的含义,掌握求倒数的方法。
教学过程:
(一) 导入
1.找找下面文字的构成规律
呆———杏 土———干 吞———吴
2.按照上面的规律填数
——( ) ——( ) ——( )
能根据分之和分母的位置关系,给这三组数取个名吗?揭示课题:倒数
(二)教学实施
关于倒数同学们想知道些什么呢?学习倒数的含义
1. 观察教材24 页的例1,归纳,总结倒数的含义,
2. 举例验证:4和 1/4, 7和1/7 , 3和 1/3
4乘 1/4的积是1,所以4和1/4 互为倒数;7可以看成分母是1的分数,把分子、分母调换位置后就是1/7 ,所以7和 1/7互为倒数。
归纳:乘积是1的两个数互为倒数。
3. 特殊数:0和1 (引导学生辩论0有没有倒数,1有没有倒数,是多少?)
教师归纳板书:0没有倒数,1 的倒数就是它本身。
4. 学习例2——求倒数的方法
让学生根据已学知识独立解决怎样求一个数的倒数,集体订正,教师归纳,板书:求倒数的方法
5. 反馈练习
完成教材24页的“做一做”,完成练习六的第3、4题
(二) 课堂练习
找一找下列数中哪两个数互为倒数
2 10 1/2 1/10
填空
1的倒数是( ),( )的倒数是2/3 。
10的倒数是( ),( )没有倒数。
(三)课堂小结
学完本节课,我们知道了乘积是1 的来年各个数互为倒数。1的倒数是它本身,0没有倒数。
课后反思:
整理复习
教学目标:
复习分数乘法的意义和计算法则,掌握乘法运算定律在分数乘法中的推广和分数乘法的简便计算;提高学生分析,解答分数应用题的能力;进一步培养学生认真书写及良好的审题习惯。
教学重、难点:巩固分数乘法的意义,提高灵活计算的能力,正确分析数量关系,熟练掌握求一个数的倒数的方法。
教学过程:
(一)复习分数乘法的意义
1/2×6= 2/3×5= 2/5×8=
以上几道题都是分数乘整数,想想,分数乘整数的意义同整数乘法的意义相同吗?能说说分数乘整数表示的意义是什么吗?
口算
75 ×2/15 = 3/2 ×1/3 = 4×3/8 = 36×5/9 =
以上几道题有的是整数乘分数,有的是分数乘分数,都可以看成是一个数乘分数,一个数乘分数的意义是什么?分别说出以上几道题的意义。
(一)复习分数乘法的计算方法
让学生看教材第26 页的第1题,问:为了计算简便,在分数乘法中应该先做什么?(先约分,再做乘法)在本题中,都有一个因数是整数,约分的时候要注意什么?(整数与分数的分母约分)
(二)复习乘法运算定律和简便计算
问:我们学过哪些乘法定律?它们在分数乘法中适用吗?然后独立完成第26 页第2题,练习七第1、4题,再请个别学生说说自己是怎样做的,着重说说在进行简便运算时运用了什么定律。
(三)复习分数乘法的应用题
1、完成教材第26 页第3题,练习七第2、3题
学生独立完成,同时请一名学生板演,并讲一讲是怎样分析数量关系的,在计算中把什么数量看着单位“1”。教师要进一步强调在解答分数乘法应用题时,一定要找准单位“1”。因为分数乘法应用题是根据分数乘法的意义计算的,求哪个数量的几分之几,就是要把哪个数量当做为单位“1”。在解答两步计算的分数应用题,要注意每一步是把什么数量关系看作单位“1”,在两步计算中的单位“1”可能是不同的。
(四)复习倒数的知识
什么是倒数?怎样求一个数的倒数?完成教材第26 页第4题及27 页第7题。
课堂小结:
通过复习,我们能正确分析“求一个数的几分之几是多少”的应用题的数量关系,可以熟练地求出一个数的倒数。
人教版六年级数学上册第三单元分数除法导学案
《倒数的认识》导学单
班级:六年级 姓名: 小组:
学习目标:
1、理解倒数的意义,自主 出求倒数的方法。
2、通过合作活动学会与人合作,愿与人交流的习惯。
3、培养自主学习和发展创新的意识。
学习重点:理解倒数的意义和怎样求倒数。理解倒数的意义,掌握求倒数的方法。
学习难点:掌握求倒数的方法。
课时安排:1课时
学习过程:
〖自主学习〗
【学法 】请同学们自学课本第28页,独立思考完成自主学习任务,并把自己遇到的或生成的问题记下来。你们可要动脑筋,多思考哦!
一、轻松准备:
1、口算:
(1)
(2)
2、观察第二组算式有什么特点?
。
二、自主预习:看图填空。
1、自学书上第24页的例题,思考下面的问题:
(1)什么是倒数?
(2)“互为”是什么意思?
(3)互为倒数的两个数有什么特点?
2、下面那两个数互为倒数,请写出来。
6 1 0
( )与( ) ( )与( ) ( )与( )
小组长评价: 学科长评价: 教师评价(抽查):
〖合作探究〗
【学法 】请同学们在预习的基础上,小组讨论交流下面的问题;小组长负责组织讨论后派出代表,进行全班交流展示。看谁最棒哟!
1、写出 的倒数: 思考怎样求一个分数的倒数?
2、写出6的倒数:想想怎样求一个整数的倒数?
3、1有没有倒数?怎么理解?
4、0有没有倒数?为什么?
小组评价:
〖达标检测〗
【学法指导】请同学们独立完成下面的习题。老师相信你们是很棒的!相信自己,加油!
1、判断对错。
(1) 与 的乘积为1,所以 和 互为倒数。( )
(2) × × =1,所以 、 、 互为倒数。
(3)0的倒数还是0。( )
(4)一个数的倒数一定比这个数小。( )
(5)1的倒数就是1。 ( )
(6)真分数的倒数都比原数大。 ( )
(7)假分数的倒数都比原数小。 ( )
(8)假分数的倒数都比1小。 ( )
2、填一填。
(1)( )×5=( )×6=( )×7= ×( )=1
(2) ×( )=( )×9=( )× = ×( )
3、想一想:0.35的倒数是多少? 2 的倒数是多少?
4、完成《课堂练习册》相关习题。
小组评价: 教师评价:
【课后反思】
《分数除以整数》导学单
班级:六年级 姓名: 小组:
学习目标:
1、借助已有的经验理解分数除法的意义并掌握分数除法的计算方法,能正确计算分数除以整数。
2、通过富有启发性的问题情景和探索性的学习活动,培养自己主动参与、独立思考、合作交流,形成计算技能。
3、在教学中渗透转化的思想,充分感受转化的美妙与魅力。
学习重点:理解分数除法的意义,掌握分数除以整数的计算方法。
学习难点:掌握分数除以整数的计算方法。
课时安排:1课时
学习过程:
〖自主学习〗
【学法指导】请同学们自学课本第30页,独立思考完成自主学习任务,并把自己遇到的或生成的问题记下来。你们可要动脑筋,多思考哦!
一、轻松准备:
1、口算: × = × = × = × = × = × =
2、说出下面各数的倒数: 8 20
3、根据算式100×3=300写出两道除法算式。
二、自主预习:
每盒水果糖重 千克,3盒有多重?
(1)列式计算。
(2)改变成两道用除法计算的问题,并列式。
小组长评价: 学科长评价: 教师评价(抽查):
〖合作探究〗
【学法指导】请同学们在预习的基础上,小组讨论交流下面的问题;小组长负责组织讨论后派出代表,进行全班交流展示。看谁最棒哟!
1、回忆一下整数除法的意义,联系自主预习中的题目,说说分数除法的意义是什么?
2、探索分数除以整数的计算方法。
(1)阅读例2题目,自己拿出一张纸试着折一折,涂一涂,看你能够想到几种不同的折法?
对照不同的折法,列式计算,注意它们的计算过程以及算理。
① ÷2= = 把 平均分成( )份,就是把( )个 平均分成2份,每份就是( )个 ,就是 。
② ÷2= × = 把 平均分成2份,每份就是 的( ),也就是 × 。
(2)阅读例2的第二个问题,独立列式计算,并用折纸来验证自己算对了没有。
(3)当分子能被整数整除时用上面的第( )种方法才方便,当分子不能被整数整除时用第( )种方法简单,并且在一般情况下都可以进行计算,可普遍使用。
(4)根据自己的折纸实验和算式,说一说分数除以整数要如何计算?
分数除以整数(0除外),用分数乘以这个整数的( )。
〖达标检测〗
【学法指导】请同学们独立完成下面的习题。老师相信你们是很棒的!相信自己,加油!
1、口算。
÷3= ÷3= ÷6= ÷15=
2、列式计算。
(1)把 平均分成4份,每份是多少?
(2)什么数乘6等于 ?
3、 ÷ 和 ÷3( =? 0),哪道题的结果大,为什么?
4、完成《课堂练习册》相关习题。
小组评价: 教师评价:
【课后反思】
《一个数除以分数》导学单
班级:六年级 姓名: 小组:
学习目标:
1、通过画线段图分析并归纳一个数除以分数的计算法则。能运用法则,正确迅速地计算分数除法。
2、通过探索知识,从而获得知识,体验成功的乐趣,树立学习的自信心。
学习重点:通过画线段图分析并归纳一个数除以分数的计算法则。
学习难点:能运用法则,正确迅速地计算分数除法。
课时安排:2课时
学习过程:
〖自主学习〗
【学法指导】请同学们自学课本第31-32页,独立思考完成自主学习任务,并把自己遇到的或生成的问题记下来。你们可要动脑筋,多思考哦!
一、轻松准备:
1、计算下面各题。
÷3= ÷2= ÷4= ÷5=
分数除以整数等于分数乘( )。
2、只列式不计算:
(1)小明 小时走了2㎞,平均每小时走多少千米?
(2)小红 小时走了 ㎞,平均每小时走多少千米?
二、自主预习:
自学教材P30例2题,并填写下面的空。
1、已知( ),求( )?求谁走得快些?就是比较( )
2、你能根据题意列出算式吗?
小组长评价: 学科长评价: 教师评价(抽查):
〖合作探究〗
【学法指导】请同学们在预习的基础上,小组讨论交流下面的问题;小组长负责组织讨论后派出代表,进行全班交流展示。看谁最棒哟!
1、2÷ 如何计算?结合线段图进行理解。
(1)2 km÷2得到的1km,有什么具体的含义?是线段图上的哪一段?
(2)1小时里有( )个小时,能求1小时行多少千米了吗?
(3)2÷ =2× ×( )=2× =( )
2、 ÷ = × =( )
3、请你观察上面的算式,怎样把除法转化成为乘法来进行计算?你能说出转化的要点吗?
①( )没有变化;
②( )号变( )号;
③除数变成了它的( )。
4、你能用自己的语言叙述一个数除以分数的计算方法吗?
〖达标检测〗
【学法指导】请同学们独立完成下面的习题。老师相信你们是很棒的!相信自己,加油!
1、计算。
9÷ ÷3 ÷4
÷ ÷6 ÷
25÷ ÷
2、下面的题做得对吗?把不对的改正过来。
÷ ﹥ ÷ = ÷
÷ = × ÷ = ×
3、判断,并说明理由。
甲数除以乙数,等于甲数除以乙数的倒数。
4、完成《课堂练习册》相关习题。
小组评价: 教师评价:
【课后反思】
《分数混合运算》导学单
班级:六年级 姓名: 小组:
学习目标:
1、结合具体情境,掌握分数四则混合运算的顺序,能正确地进行计算。
2、能运用所学知识解决简单的实际问题,提高综合解题的能力。
3、培养认真审题、准确计算的好习惯。
学习重点:掌握分数、小数混合运算的计算方法。
学习难点:培养自己根据数据特点灵活选择计算方法的能力。
课时安排:2课时
学习过程:
〖自主学习〗
【学法指导】请同学们自学课本第33页,独立思考完成自主学习任务,并把自己遇到的或生成的问题记下来。你们可要动脑筋,多思考哦!
一、轻松准备:
1、笔算下面各题。
24÷4+16×5-37 46+50×[(900-90) ÷9]
2、计算下面各题。
2÷ - ×2 ÷ ÷
三、自主预习:
1、整数、小数四则混合运算的运算顺序都是先算( )法,再算( )法。有括号的( )。还可以使用( )使计算更简便。
2、自学教材33页例3,分析数量关系,尝试列式计算。
小组长评价: 学科长评价: 教师评价(抽查):
〖合作探究〗
【学法指导】请同学们在预习的基础上,小组讨论交流下面的问题;小组长负责组织讨论后派出代表,进行全班交流展示。看谁最棒哟!
1、学习例3题。
(1)根据自主预习中的算式,列出综合算式,想一想它的运算顺序,再独立计算。
(2)比较课本中两种做法的运算顺序有什么不同?
2、计算 ÷( + )×15 3、计算 ÷[( + )×15 ]
4、 分数混合运算的顺序
在一个没有小括号的算式里,只有乘除法或加减法,应该 ;如果既有加减法又有乘除法,应该先算 ,后算 。在一个有小括号的算式里,应该先算 ,后算 。在一个既有小括号又有中括号的算式里,应该先算 ,后算 ,最后算 。
〖达标检测〗
【学法指导】请同学们独立完成下面的习题。老师相信你们是很棒的!相信自己,加油!
1、计算下面各题。
20- × ( - )×( - ) 640× ×(1 + )
2、下面各题怎样算简便就怎样算。
÷7+ × + ÷ + ÷3+ ×
3、完成《课堂练习册》相关习题。
小组评价: 教师评价:
【课后反思】
《分数除法应用一》导学单
班级:六年级 姓名: 小组:
学习目标:
1、学会“已知一个数的几分之几是多少,求这个数”的 的解答方法,会根据关键句列出数量关系式,会熟练地列方程解答这类 。
2、 自主探索解答问题的策略,会分析、推理和判断,提高解答应用题的能力。
3、体验数学发展是生活实际的需要,激发学习数学的兴趣。
学习重点:“已知一个数的几分之几是多少,求这个数”的应用题的解答方法
学习难点:会用列方程的方法解答应用题。
课时安排:2课时
学习过程:
〖自主学习〗
【学法指导】请同学们自学课本第37页,独立思考完成自主学习任务,并把自己遇到的或生成的问题记下来。你们可要动脑筋,多思考哦!
一、轻松准备:
1、下面各题中应该把哪个量看作"1"。
(1) 小军的体重是爸爸体重的 ; (2) 书的本数占图书总数的 ;
(3)棉田的面积占全村耕地面积的 ; (4) 汽车的速度相当于飞机速度的 。
2、填空。(1)白兔的只数占总只数的 , 总只数× =( );
(2)男生人数的 恰好和女生同样多, ( )× = ( );
(3)甲数正好是乙数的 , ( )×( )=( )。
二、自主预习:
1、一个儿童体重35千克,他体内所含的水分占体重的 。他体内的水分有多少千克?
请写出它的数量关系并解答。
2、请把上题改为一道除法应用题。
小组长评价: 学科长评价: 教师评价(抽查):
〖合作探究〗
【学法指导】请同学们在预习的基础上,小组讨论交流下面的问题;小组长负责组织讨论后派出代表,进行全班交流展示。看谁最棒哟!
1、学习例4题。
(1)说一说占体重的 这句话是什么意思?并根据题意判断把哪个量看作单位“1”?
(2)请用线段图表示题中的条件和问题。请结合自己画的线段图分析解答。
① 是哪个数量的 ?以哪个数量为标准把它看作单位“1”?单位“1”是已知的还是未知的?
②哪个数量占体重的 ?换句话说,体重的 是什么?可以用怎样的数量关系式表示?
③要求这个儿童的体重可以用什么方法解答?
A.用方程的方法 B.还可以用算术方法
2、比较例4和自主预习题(小组讨论)
(1)这两道题在结构上的异同点,相同点:题中给出的数量( ),数量间的关系也( );不同点:已知条件和问题不同。
(2)这两道题在解法上的异同点,相同点:都要先确定单位“1”;不同点:自主预习题中的单位“1”是已知的,用( )算;例1中的单位“1”是未知的,可以用( )解答。
小结:解答分数应用题的一般步骤:1、要认真审题,确定好单位“1”。2、分析它是已知的还是未知的。3、正确找出题中的数量关系。4、根据数量关系确定方法并解答。
〖达标检测〗
【学法指导】请同学们独立完成下面的习题。老师相信你们是很棒的!相信自己,加油!
1、文字题
(1)56米的 是多少? (2)一个数的 是 ,这个数是多少?
2、王新买了一本书和一枝钢笔。书的价格是4元,正好是钢笔价格的 。钢笔的价格是多少元?
3、完成《课堂练习册》相关习题。
小组评价: 教师评价:
【课后反思】
《分数除法应用二》导学单
班级:六年级 姓名: 小组:
学习目标:
2、进一步学习稍复杂“已知一个数的几分之几是多少,求这个数”的应用题的解答方法,能根据题干中的信息找出其中数量关系,能熟练地列方程解答这类应用题。
2、 用列方程的方程解决实际问题的优势。能借助解方程的方程的方法顺利解决实际问题。
3、体会列方程解决实际问题的优势,激发学习数学的兴趣。
学习重点:学会 中的数量关系,找出对应关系。
学习难点:掌握用方程解决较复杂的分数除法应用题的方法。
课时安排:2课时
学习过程:
〖自主学习〗
【学法指导】请同学们自学课本第38页,独立思考完成自主学习任务,并把自己遇到的或生成的问题记下来。你们可要动脑筋,多思考哦!
一、轻松准备:
1、女生人数比男生人数少 ,女生占男生的几分之几?
2、美术小组比航模小组多 ,美术小组占航模小组的几分之几?
二、自主预习:
1、自学课本第38页的例5,完成填空,画出线段图。
2、小明的体重占爸爸体重的几分之几?
小组长评价: 学科长评价: 教师评价(抽查):
〖合作探究〗
【学法指导】请同学们在预习的基础上,小组讨论交流下面的问题;小组长负责组织讨论后派出代表,进行全班交流展示。看谁最棒哟!
1、学习例5题。
(1)结合线段图,列出数量关系。
(2)试试你可以怎样解答
3、方法比较,说说列方程的优势。
4、比较例5题和例4题有什么不同?
5、小结列方程解决实际问题的方法步骤。
〖达标检测〗
【学法指导】请同学们独立完成下面的习题。老师相信你们是很棒的!相信自己,加油!
1、画线段图表示下面各数量关系,并写出等量关系式。
(1)杨树比柳树少 (2)柳树比杨树多
2、街心公园有草坪 公顷,比花圃的面积多 ,花圃的面积有多少公顷?
3、美术小组有20人,美术组的人数比航模小组多 ,航模小组有多少人?
4、完成《课堂练习册》相关习题。
小组评价: 教师评价:
【课后反思】
《分数除法应用三》导学单
班级:六年级 姓名: 小组:
学习目标:
6、会用线段图理解题意,并根据关键句弄清楚数量关系设未知数,能列方程解答稍复杂的“已知一个数的几分之几是多少,求这个数”的实际问题的解答思路,掌握解题方法。
2、会用把一个整体看作单位“1”,根据数量关系用粉绿解决工程问题的应用题。通过借助线段图培养学生分析问题、解答问题的能力和认真审题的习惯。
学习重点:
列方程解答稍复杂的“已知一个数的几分之几是多少,求这个数”的实际问题的解答思路,掌握解题方法。
学习难点:会把一个整体看成单位“1”,用分率解决实际问题。
课时安排:2课时
学习过程:
〖自主学习〗
【学法指导】请同学们自学课本第41-43页,独立思考完成自主学习任务,并把自己遇到的或生成的问题记下来。你们可要动脑筋,多思考哦!
一、轻松准备:填空
1、兔的只数是鸡的只数的 ,鸡有x只,那么兔有( )只。
2、上衣的价钱是裤子的2倍,裤子的价格为x元,那么上衣的价钱是( )元。
3、杨树的棵树是柳树的一半,柳树为x棵,那么杨树的棵树为( )棵。
二、自主预习:
1、自学课本第41页的例6,画出线段图。
2、根据线段图,写出数量关系式?
小组长评价: 学科长评价: 教师评价(抽查):
〖合作探究〗
【学法指导】请同学们在预习的基础上,小组讨论交流下面的问题;小组长负责组织讨论后派出代表,进行全班交流展示。看谁最棒哟!
1、学习例6题。
(1)根据自己画的线段图和数量关系式,列方程解答。
(2)交流解法,总结解决这类实际问题的方法。
2、学习例7题。
(1)你从题中得到了哪些信息?两队之间有什么关系?你遇到了什么困难?
(2)假设这条路的长度是30千米,180千米和单位“1”。选择你喜欢的方式计算一下,如果两队合修,多少天完成?
(3)观察交流,你发现了什么?
(4)小结:不管假设的路程是多少,计算出来的结果都是( )。也就是说,单位“1”可以表示( ),把路程假设为( ),计算起来更简便。
〖达标检测〗
【学法指导】请同学们独立完成下面的习题。老师相信你们是很棒的!相信自己,加油!
1、小红买了一本书和一支钢笔共花去35元,钢笔价格正好是书的价格的 ,钢笔和书的价格各是多少元?
2、六年级有学生36人,女生人数是男生的 ,六年级有男生和女生各有多少人?
3、明明和丽丽打一份稿件,明明单独完成需要8天,丽丽单独完成需要10天,如果两人一起打需要多少天?
4、完成《课堂练习册》相关习题。
小组评价: 教师评价:
【课后反思】
《分数除法整理和复习》导学单
班级:六年级 姓名: 小组:
学习目标:
1、复习本章所学知识,使学生进一步理解倒数和分数除法的意义,并能应用所学知识解决一些问题。提高学生学习数学的信心。
2、经历整理回顾所学知识的过程,使所学的知识系统化,提高学生解决实际问题的能力。
3、在整理和复习的过程,体会得失,提高学好数学的自信心。
学习重点:三类分数除法实际问题的解答方法。
学习难点:掌握解决三类分数除法实际问题的解题方法。
课时安排:2课时
学习过程:
一、【回忆梳理】
我们已经学习了分数除法这一单元的内容,今天这节课我们就对这些知识进行整理。大家回忆一下我们应该怎么进行知识的整理和复习?
1、回忆单元整理与复习的方法(先将学过的知识呈现出来,再不断地补充完善,进而找到知识之间的联系,最后应用知识解决问题)
2、按照这个环节来完成本单元的整理。
(1)分数除法可以分成几种情况,请你分别举例说说它们的意义和计算方法。
(2)想一想我们学过的分数除法实际问题包括哪几种类型。
二、【课堂检测】
(一)填空。
1、 公顷的 是( )公顷, ( )吨的 是 吨。
2、4÷( )= =( )÷15
3、一本 书有120页,小明第一天读了全书的 ,第二天读了余下的 ,第三天应从第( )页读起。
4、1 的倒数是( ), ( )的倒数是0.25.
5、3千克的 是( ); ( )千米的 是36千米。
6、一个分数,分子加上8就等于1,如果分母减去8也等于1,这个分数可以是( )。
7、一辆汽车 25 小时行24千米,照这样的速度1小时行( )千米,行1千米需
要( )小时。
8、长是宽的 ,应把( )看作单位“1”;松树棵数的 是柏树,应把( )看作单位“1”。
9、把5米长的木料锯成同样长的8段,每段是全长的 ,每段长是( )米。
二、用你的“火眼”去鉴别真伪吧!(正确的打“√”,错的打“×”)
1、甲数是乙数的 15 ,那么乙数是甲数的5倍。 ( )
2、20吨增加 15 吨后,再减少 15 还是20吨。 ( )
3、一个自然数除以分数,商一定大于这个自然数。 ( )
4、 除以一个真分数,所得的商大于 。 ( )
5、梨比苹果多 ,也就是苹果比梨少 。 ( )
三、精挑细选,相信自己!(把正确答案的序号填在括号里)
1、如果A是不等于0的自然数,那么( )
A、1A 是倒数 B、A和1A 都是倒数 C、A和1A 互为倒数
2、小刚310 小时走了1415 千米,他每走1千米,需多少小时?正确的算式是( )
A、 ÷1415 B、 ×1415 C、1415 ÷
3、a是一个不等于0的自然数,下面的算式中得数最大的是( )
A、a÷57 B、a×57 C、57 ÷a
4、同样长的绳子,第一根截去34 ,第二根截去34 米,余下的( )长。
A、第一根 B、第二根 C、无法比较
5、一批水泥,用去58 ,剩下的是用去的( )
A、35 B、35 C、135 倍
6、一种彩电降价 后是960元,这种彩电原价是( )元。
A. B. C.
四、小小神算手,愿你百发百中!
1、直接写出得数:
12 ÷25 = 34 ÷6= 47 ×34 = 8×( 18 +7÷8)= 13 ÷2÷15 =
2、怎样简便怎样算:
79 ÷115 +29 ×511 25 ÷( 34 + 25 ) ( 18 + 14 )×4 78 ×57 ÷78 ×57
( 78 + 1316 )÷1316 2008×20062007 23 +( 47 + 12 )×725
3、解方程。
23 X- 15 X=1 1-45 X=13 1÷( 45 X-15 )=3
4、列式计算:
(1)一个数的 910 是36的 16 ,求这个数?
(2)用 58 除以 56 的商,再去除以 38 得多少?
(3)914 与 67 的和的 13 是多少?
5、漫游图形王国:
(1)在图中用阴影表示出25 公顷。
2公顷
(2)看图列式:(2分)
42千克
西红柿
土豆
白菜 列式:
?
(3)在右图中表示出 的 是多少?
× =( )=( )
五、应用题:
1、一批水泥,用去12吨,剩下的是用去的 59 ,这批水泥有多少吨?
2、桃树有40棵,杨树的棵数是桃树的 58 ,桃树的棵数是柳树的 45 。三种树木共有多少棵?
3、笼册小学六年级有学生112人,它的 34 正好是全校学生人数的 111 ,这所学校共有学生多少人?
4、一辆汽车从甲地到乙地,第一小时行75千米,第二小时行了第一小时的 23 ,两小时正好行了全程的 47 ,甲乙两地相距多少千米?
5、小刚 1周内(7天)看完一本120页的故事书,第一天看了全书的 15 ,剩下的每天看16页,他能否在原定的时间内看完?(计算说明)
6、某工厂运来一堆煤,甲车间用去全部的 ,乙车间用去全部的 ,已知甲车间用了12吨,这堆煤共有多少吨?乙车间用去多少吨?
六年级数学上册第一单元教案
1 位置 2
2 分数乘法 5
3 解决问题 5
4 倒数的认识、整理复习 5
5 分数除法 5
6 解决问题 5
7 比和比例,整理复习 5
8 圆的认识 5
9 圆的周长 5
10 圆的面积 5
11 百分数的意义和写法 5
12 百分数和分数小数的互化 5
13 用百分数解决问题 5
14 用百分数解决问题 5
15 统计 5
16 数学广角 5
17 总复习 5
18 总复习 5
19 总复习 5
20
本册教学目标:
这一册教材的教学目标是,使学生:
1. 理解分数乘、除法的意义,掌握分数乘、除法的计算方法,比较熟练地计算
简单的分数乘、除法,会进行简单的分数四则混合运算。
2. 理解倒数的意义,掌握求倒数的方法。
3. 理解比的意义和性质,会求比值和化简比,会解决有关比的简单实际问题。
4. 掌握圆的特征,会用圆规画圆;探索并掌握圆的周长和面积公式,能够正确
计算圆的周长和面积。
5. 知道圆是轴对称图形,进一步认识轴对称图形;能运用平移、轴对称和旋转
设计简单的图案。
6. 能在方格纸上用数对表示位置,初步体会坐标的思想。
7. 理解百分数的意义,比较熟练地进行有关百分数的计算,能够解决有关百分
数的简单实际问题。
8. 认识扇形统计图,能根据需要选择合适的统计图表示数据。
9. 经历从实际生活中发现问题、提出问题、解决问题的过程,体会数学在日常
生活中的作用,初步形成综合运用数学知识解决问题的能力。
10. 体会解决问题策略的多样性及运用假设的数学思想方法解决问题的有效性,感受数学的魅力。形成发现生活中的数学的意识,初步形成观察、分析及推理的能力。
11. 体会学习数学的乐趣,提高学习数学的兴趣,建立学好数学的信心。
12. 养成认真作业、书写整洁的良好习惯。
第一单元 位置
单元教学目标:
1. 在具体的情境中,探索确定位置的方法,能用数对表示物体的位置。
2. 能在方格纸上用数对确定位置。
教学内容 位置(一) 新授课 新授
教学目标 1.在具体的情境中,探索确定位置的方法,能用数对表示物体的位置。
2. 使学生能在方格纸上用数对确定位置。
教学重点 能用数对表示物体的位置。
教学难点 能用数对表示物体的位置,正确区分列和行的顺序。
教具准备 课件
教学过程 一、 导入
1、 我们全班有53名同学,但大部分的同学老师都不认识,如果我要请你们当中的某一位同学发言,你们能帮我想想要如何表示才能既简单又准确吗?
2、 学生各抒己见,讨论出用“第几列第几行”的方法来表述。
二、 新授
1、 教学例1
(1) 如果老师用第二列第三行来表示××同学的位置,那么你也能用这样的方法来表示其他同学的位置吗?
(2) 学生练习用这样的方法来表示其他同学的位置。(注意强调先说列后说行)
(3) 教学写法:××同学的位置在第二列第三行,我们可以这样表示:(2,3)。按照这样的方法,你能写出自己所在的位置吗?(学生把自己的位置写在练习本上,指名回答)
2、 小结例1:
(1) 确定一个同学的位置,用了几个数据?(2个)
(2) 我们习惯先说列,后说行,所以第一个数据表示列,第二个数据表示行。如果这两个数据的顺序不同,那么表示的位置也就不同。
3、 练习:
(1) 教师念出班上某个同学的名字,同学们在练习本上写出他的准确位置。
(2) 生活中还有哪里时候需要确定位置,说说它们确定位置的方法。
4、 教学例2
(1) 我们刚刚已经懂得如果表示班上同学所在的位置。现在我们一起来看看在这样的一张示意图上(出示示意图),如何表示出图上的场馆所在的位置。
(2) 依照例1的方法,全班一起讨论说出如何表示大门的位置。(3,0)
(3) 同桌讨论说出其他场馆所在的位置,并指名回答。
(4) 学生根据书上所给的数据,在图上标出“飞禽馆”“猩猩馆”“狮虎山”的位置。(投影讲评)
三、 练习
1、 练习一第4题
(1) 学生独立找出图中的字母所在的位置,指名回答。
(2) 学生依据所给的数据标出字母所在的位置,并依次连成图形,同桌核对。
2、 练习一第3题:引导学生懂得要先看页码,在依照数据找出相应的位置
3、 练习一第6题
(1) 独立写出图上各顶点的位置。
(2) 顶点A向右平移5个单位,位置在哪里?哪个数据发生了改变?点A再向上平移5个单位,位置在哪里?哪个数据也发生了改变?
(3) 照点A的方法平移点B和点C,得出平移后完整的三角形。
(4) 观察平移前后的图形,说说你发现了什么?(图形不变,右移时列也就是第一个数据发生改变,上移时行也就是第二个数据发生改变)
四、 总结
我们今天学了哪些内容?你觉得自己掌握的情况如何?
五、 作业
练习一第1、2、5、7、8题。
个人修改
以前我们学过哪些表示 方向的方法?
怎样用数对表示同学的座位?
游戏:说数对猜同学。
板书设计:
位置(一)
用数对表示位置,先横后竖
教后反思:
第二单元 分数乘法
单元目标:
1、使学生理解分数乘法的意义,掌握分数乘法的计算法则,并能熟练地进行计算。
2、使学生掌握分数乘加、乘减混合运算,理解整数乘法运算定律对于分数乘法同样适用。
3、使学生理解分数乘法应用题中的数量关系,会解答求一个数的几分之几是多少的应用题。
4、 使学生理解倒数的意义,掌握求倒数的方法。
单元重点:
分数乘法的意义和计算法则。
单元难点:
1、 理解分数乘法的意义,根据分数乘法的意义去解答这类应用题。
2、 分数乘法计算法则的推导。
教案
教学内容 分数乘整数 课型 新授
教学目标 1、在学生已有的分数加法及分数基本意义的基础上,结合生活实例,通过对分数连加算式的研究,使学生理解分数乘整数的意义,掌握分数乘整数的计算方法,能够应用分数乘整数的计算法则,比较熟练地进行计算。
2、通过观察比较,指导学生通过体验,归纳分数乘整数的计算法则,培养学生的抽象概括能力。
引导学生探求知识的内在联系,激发学生学习兴趣。通过演示,使学生初步感悟算理,并在这过程中感悟到数学知识的魅力,领略到美。
教学重点 使学生理解分数乘整数的意义,掌握分数乘整数的计算方法。
教学难点 引导学生总结分数乘整数的计算法则。
教具准备
教学过程 一、 复习
1.出示复习题。
(1)列式并说出算式中的被乘数、乘数各表示什么?
5个12是多少? 9个11是多少? 8个6是多少?
(2)计算:
+ + = + + =
2.引出课题。
+ + 这题我们还可以怎么计算?今天我们就来学习分数乘法。
二、 新授
1、 利用 + + 教学分数乘法。
(1) 这道加法算式中,加数各是多少?(都是 )
(2) 表示几个相同加数的和,我们还可以用什么方法来计算?怎么列式?(乘法, ×3)
(3) + + =9,那么 + + = ×3,所以 ×3=____________=9。同学们想想看, ×3=9计算过程是怎样的?谁能把它补充完整。
2、 出示例1,画出线段图,学生独立列式解答。
(1) 引导学生看图,理解“人跑一步的距离相当于袋鼠跳一下的 ”,就是把袋鼠跳一下的距离即这一整条线段看作单位“1”。把这条线段平均分成11份,其中的2份就表示人跑一步的距离。
(2) 引导学生根据线段图理解,人跑一步是袋鼠跳一下的 ,那么“人跑3步的距离相当于袋鼠跳一下的几分之几?”就是求3个 是多少?(列式: ×3 = )
3、 结合以上两题,归纳出分数乘整数的计算法则:分数乘整数,用分数的的分子和整数相乘的积作分子,分母不变。
4、 练习:练习完成“做一做”第2题。
5、 教学例2
(1)出示 ×6,学生独立计算。
(2)根据计算结果,学生观察讨论:乘得的积是不是最简分数?应该怎么办?
(3)学生通过自己的想法的来约分:A、先约分再计算;B、先计算得出乘积后约分。
三、练习
1、 完成“做一做”的第一题。(提醒学生,计算前先观察分数的分母与整数是否可以约分,养成先约分在计算的习惯)
2、 “做一做”第3题。(先让学生说说解题思路,讨论先算什么可以使计算简便。如果用连乘算式,要提醒学生先约分再计算。)
三、 作业
练习二第1、2、4题。 个人修改
人教版六年级数学上册第一到第三单元教案
第一单元 位 置
内容:P2~3 位置
目标:1、能用数对表示具体情境中物体的位置。
2、能在方格纸上用数对确定物体的位置,初步体会坐标的思想。
教学重点:能用数对表示具体情境中物体的位置及在方格纸上用数对确定物体的位置。
教学难点:理解数对确定位置的意义。
教学过程:
一、回顾旧知,复习铺垫
我们在前几年的课程中多次学习了位置与方向,说一说我们以前是怎样确定位置的。
二、引导探索,学习新知
1、揭示课题。
今天我们继续学习位置,看一看还可以用什么方法来确定位置。
2、教学例1。
(1)出示P2例1,观察主题图。
(2)问:教师是怎么知道确定张亮的位置的?
(3)介绍操作台的情况。
竖排叫列,横排叫行,第几列是从左往右数,第几行是从前往后数。这是一种约定。
(4)你能指出哪个是张亮同学吗?
(5)说一说其他同学的位置。
(6)张亮的位置可以用(2,3)表示出来。
张亮的位置用了几个数据?
(2,3)中的数字分别表示什么含义?
(7)小结:可以用有顺序的两个数组成数对表示出一个确定的位置:用括号把列数和行括起来,并在列数和行数之间写个逗号,把两个数隔开。
(8)试一试:用数对表示出其他同学的位置。
(9)张亮的位置用(3,2)表示可以吗?
注意:用数对表示位置时,一般先表示第几列,再表示第几行。
3、举出生活中的例子,说一说确定位置的方法。
4、教学P3例2
(1)观察动物园示意图,这幅图和以前见过的示意图有什么不同?
①动物园的各场馆都画成一个点,只反映各场馆的位置,不反映其他内容。
②表示各场馆位置的那些点都分散在方格纸竖线和横线的交点上。
③方格纸的竖线(横线)从左到右(右到左)依次标注了0,1,2……。
(2)找一找动物园大门的位置,可以用数对怎样表示出大门的位置?
(3)说出熊猫馆、大象馆、海洋馆、猴山的位置。
(4)比较大象馆和海洋馆的数对,第2个数都是4,说明什么?
如果两个数对中的第1个数相同,说明这两个场馆的位置有什么特点?
如果用(X,4)表示某场馆的位置,能确定在哪里吗?
(5)在图中标出下面场馆的位置。
飞禽馆(1,1)猩猩馆(0,3)狮虎山(4,3)
三、巩固深化,拓展思维
P4练习一第2题。
四、分课小结,提高认识
这节课学习了什么内容?怎样用数对表示位置?应该注意些什么?
五、课堂练习,辅助消化
P4练习一第1题。
第二单元 分数乘分数
第一课时 分数乘以整数
教学内容:第1~2页内容。
教学目标:使学生理解分数乘以整数的意义,在理解算理的基础上掌握分数乘以整数的计算法则,并能正确运用“先约分再相乘”的方法进行计算。
重点难点:分数乘整数的计算方法
教学过程:
一、展示教学目标:1、理解分数乘以整数的意义2、掌握分数乘以整数的计算法则。
二、自学:计算下面各题:
思考: 有什么特点?应该怎样计算?
出示例1:小新爸爸、妈妈一起吃一块蛋糕,每人吃 块,3人一共吃多少块?
1、 学生自学,教师巡视指导
2、 两名学生用两种不同方法板演
3、 用加法算: (块)
用乘法算: (块)
学生思考:这里为什么用乘法?乘数表示什么意思?
得出:分数乘以整数的意义与整数乘法的意义相同,
都是求几个相同的和的简便运算。学生齐读一遍。
练习:说一说下面式子各表示什么意思?(做一做第3题。)
问:那么分数乘以整数方法应该是怎样算?(通过观察例1,得出分数乘以整数的计算法则)
三、巩固练习。
1.第2页做一做。
2.练习一
第二课时 分数乘法
教学内容:教材第10页例3,第11页例4以及“做一做”练习二中的第3、4题
教学目标:1.理解一个数乘分数就是求一个数的几分之几是多少。2.掌握分数乘分数的计算方法,并能正确地进行计算。
重难点、关键1.重难点:分数乘分数的计算方法。
2.关键:理解一个数乘分数就是求一个数的几分之几是多少。
教学过程:
一、旧知铺垫
1.计算下面各题。
12×3/4 5/16×32 15×3/5 3/8×12
2.说一说,分数乘法的计算方法、步骤。
(1)整数与分子相乘的乘积作分子,分母不变。
(2)能约分的要先约分,再计算.
3.根据题意列出算式。
(1)一袋大米,每天用去3/4千克,3天用去多少千克?
(2)某修路队,每天修路3/2千米,5天修多少千米?
(3)一辆汽车,每小时行驶全程的3/20,4小时行驶全程的几分之几?
二、探索新知
1.教学例3。
出示题目:(出示课文插图)
问题一:1/4小时粉刷这面墙的几分之几?
(1)你想怎样列式?
学生回答,教师板书。
1/5×1/4
(2)分数乘分数怎样计算?
①1/5×1/4 表示什么?
经过讨论,使学生理解1/5×1/4 ,就是求1/5的1/4是多少,也就是说把1/5平均分成4份,取其中的一份是多少?
②画示意图分析。
③从图上可以看出,这面墙的1/5的1/4,是哪一块?它占整面墙的几分之几?
通过观察得出:这面墙的1/5的1/4,是占整面墙的1/20。
板书:1/5×1/4=1/20
④发现分数乘分数的计算方法。
引导学生观察算式和结果,看一看其中的联系。
板书:1/5×1/4=( )/( )=1/20
想一想:应该是怎样的一个计算过程呢?
学生经过思考交流,不难发现其中的计算过程。学生回答,教师板书补充其中的计算过程。
1/5×1/4=(1×1)/(5×4)=1/20
然后,联系以上的算式,让学生说一说计算方法。
学生不难发现:分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。
教师可不急于作出归纳,再提出问题,继续验证学生自己的发现。
问题二:3/4小时粉刷多少呢?
(1)引导学生列出算式
1/5×3/4
(2)你认为计算结果是多少?
学生回答,教师板书。
1/5×3/4=1×3/5×4=3/20
(3)画示意图加以验证。
注意:画示意图时,要紧密结合1/5×3/4的意义加以分析。
(4)总结分数乘分数的计算方法。
师生共同总结,教师板书:
分数乘分数,应该分子乘分子,分母乘分母。
2.教学例4
出示教材例题,学生简要了解蜂鸟。
(1)2/3分钟能飞行多少千米?
①列出算式
3/10×2/3
②学生尝试计算,教师巡视课堂了解学生计算情况。
完成后,选择两位不同计算过程的学生上台板演。
③强调:能约分的要先约分,再计算。
(2)5分钟能飞行多少千米?
①学生独立列式解答,请一位学生上台板演。
②教师出示算式,学生判断可以不可以。
③说明分数和整数相乘时约分的方法。
强调:整数约分后的结果要写在整数的上面,并与分子相乘。
三、巩固练习
1、完成例题后“做一做”
2、完成练习二第3、4题
第三课时 运算定律的应用
教学内容:整数乘法运算定律推广到分数乘法(教材第14页例5、例6,练习三的1、2、4、5题)
教学目标
1、使学生会用整数乘法的运算定律推广运用到分数乘法,并使一些计算简便。
2、培养学生灵活计算的能力,发展学生逻辑思维能力。
重难点、关键:运用运算定律进行简便运算。
教学过程
一、教学例5
1.观察每组的两个算式,看看它们有什么关系。
(1)1/2×1/3○1/3×1/2
①学生计算,发现乘积一样,两个算式相等。
②说一说存在的规律。
③用字母表示。
板书:乘法交换律:a×b=b×a
(2)(1/4×2/3)×3/5○1/4×(2/3×3/5)
①学生计算,发现乘积一样,两个算式相等。
②说一说存在的规律。
③用字母表示。
板书:乘法结合律:(a×b)×c=a×(b×c)
(3) (1/2+1/3)×1/5○1/2×1/5+1/3×1/5
①学生计算,发现乘积一样,两个算式相等。
②说一说存在的规律。
③用字母表示。
板书:乘法分配律:(a+b)×c=ac+bc
2、小结。
整数乘法的运算定律对于分数乘法同样适用。
师:应用这些乘法的运算定律,可以使一些计算简便。
二、教学例6
1.计算3/5×1/6×5
(1)观察算式,说一说你有什么想法。
(2)学生独立列式计算,教师巡视检查。
(3)汇报计算过程。
(4)想一想:不改写算式,直接进行约分行不行?
通过观察、思考、交流,使学生明白像这样连乘的算式,可以直接约分同时计算。
(5)试一试
2/3×1/4×3
学生独立计算,请两位学生上台板演,完成后集体评价,发现问题及时纠正。
2.计算(1/10+1/4)×4
(1)观察算式,说一说你认为怎样计算比较简便。
(2)学生独立列式计算,请两位上台板演。
(3)集体评价,发现问题及时纠正。
板书:
(4)试一试
(8/9+4/27)×27
学生独立计算,教师巡视进行个别指导,发现问题及时纠正。完成后,请一位学生上台板演计算过程。
3.计算:87×3/86
(1)观察算式,说一说算式有什么特征?
(2)你认为应该怎样算比较简便?
(学生先独立思考,然后在小组中交流。
(3)反馈交流结果
板书:
三、巩固练习:完成练习三的1、2、4、5题
第四课时 求一个数的几分之几是多少
教学内容:
解决”求一个数的几分之几是多少”的问题.(课文第17页的例1\ “做一做” , 练习四的第1—4题
教学目标:使学生能根据一个数乘分数的意义,理解"求一个数的几分之几是多少"的问题的数量的关系.
使学生掌握解决"求一个数的几分之几是多少"问题的方法,并能解决有关的问题.
重难点:
掌握"求一个数的几分之几是多少"的解答方法.
教学过程:
一、展示学习目标,学生明确本节课的学习目标
二、展示学习指导:
学生讨论完成下列题目:列式
1、20的2倍是多少?
2、15的2/3是多少?
3、100的1/10是多少?
4、30的3/2倍是多少?
通过交流,使学生明确两点
第一:一个数乘分数,表示求一个数的几分之几是多少
第二:"求一个数的几分之几是多少"与"求一个数的几倍是多少"是一样的道理,用乘法计算.
板书:求一个数的几倍是多少,一个数×几倍
求一个数的几分之几是多少,一个数×几/几
三、教学例1
出示例题:2003年世界人均耕地面积为2500平方米,我国人均耕地面积仅占世界的均耕地面积的2/5。
我国人均面积是多少平方米?
1、分析题中数量关系。
2、题中哪一句话告知我们数量关系?
3、题里的“2/5”表示什么?(把世界人均面积平均分成5份,我国人均面积占其中的2份)
4、画线段图表示
1、引导提问:求我国人均面积就是求什么?(世界人均面积的2/5)
板书: 我国人均面积等于世界人均面积的2/5
我国人均面积==世界人均面积×2/5
我国人均面积==2500×2/5
2、列式解答
学生尝试独立列式解答,教师巡视,请一位学生上台板演
2500×2/5=1000(平方米)
答:略
2.做一做
一头鲸长28米,一个人身高是鲸体长的2/35。这个人身高多少米?
过程要求:
1、学生独立思考,列式解答
2、同伴交流思维过程和结果
3、汇报解答过程
4、关系式:人的身高是鲸体长的2/35
5、算式:28×2/35=56/35(米)
四、当堂练习
完成练习四的第1-5题
第五课时:分数乘加、乘减混合运算
教学内容:课本第12页例6,练习四1~5题。
教学目的:使学生掌握分数加、减、乘混合在一起的算法。提高计算的熟练程度。
教学过程:
一、复习。
1.分数乘以整数的意义?
2.一个数乘以分数的意义?
3.分数乘法的计算法则、带分数乘法的计算方法。
4.口算。
5.计算。
5×6+7×3 15×(34-29)
二、新授。
问:最后两题的运算顺序怎样。
(第一题先算乘法,再算加法;第二题先算括号,再算乘法)
说明:如果我们将那两道题的整数改为分数,它们的运算顺序也是不变的。按照同样的方法算一算下面的题目。
出示例6。
问:这两道题的运算顺序是怎样的?(学生回答后独立完成。让两名学生到黑板上做。)
板书:
三、巩固练习。
1.课本12页做一做。
2.练习四1~5题。
第六课时 稍复杂的求一个数的几分之几是多少
教学内容:
解决稍复杂的求一个数的几分之几是多少的问题.(课文第20 和21页例2 例3,练习五第1到5题)
教学目标: 使学生认识稍复杂的求一个数的几分之几是多少的问题结构特征,学会分析这类问题的数量关系,掌握解题思路和解题方法,并能正确地解决这类问题.
教学过程:
一:复习:
20×4/5表示:
说一说求一个数的几分之几是多少用什么方法解答
二: 探索新知:
师:刚才我们解答的应用题都是一步计算的简单的求一个数的几分之几是多少的问题,今天我们要一起来进一步学习这类问题的解决方法.
1、 教学例2
出示课文例题,结合具体情境整理题目要点
条件:汽车发出的声音强度80分贝
林木可以降低1/8
问题:人现在听到的声音是多少分贝?
(1)分析题中数量关系
①这里的1/8表示什么?
②画线段图表示
③写出数量关系。
④汽车声音强度-降低的声音强度=人听到的声音强度
(2)列式计算
学生尝试解答,完成后汇报解答过程
80-80×1/8=70(分贝)
(3)引导提问
①降低的声音强度是汽车声音强度的几分之几?
②人听到的声音强度是汽车声音强度的几分之几?
线段图表示:
③求人听到的声音强度就是求什么?(就是求汽车声音强度的7/8,就是“1-1/8”)
④求汽车声音强度的7/8是多少,应该怎样计算?
(4)列式解答
①让学生独立解答,教师进行个别指导
②请一位学生上台板演,集体评价
80×(1-1/8)=80×7/8=70(分贝)
(5)比较两种解答思路,看看有什么区别和联系
两种思路 80-80×1/8
80×(1-1/8)
(6)完成后,尝试练习
三.当堂练习
完成做一做,练习五第1-5题
第七课时:倒数的认识
教学内容:课本第24页的例1、例2题,完成“做一做”题目和练习六
教学目标:
1.使学生理解倒数的意义。
2.使学生掌握求一个数的倒数的方法。
教学过程:
一、复习。
1.把带分数化成假分数。
2.把小数化成分数。
0.7 1.5 0.375 0.75
二、新授。
1.引入。
这节课我们要学习一个新知识——倒数。
(板书课题:倒数的认识)
2.倒数的意义。
(1)口算下面各题。
问:上面四个算式都是几个数相乘?
计算的结果有什么特点?
教师说明:具备以上特点的两个数叫做互为倒数,所以我们就说,上面每个算式中的两个数互为倒数。
引导学生总结出倒数的定义。教师板书:
乘积是1的两个数叫做互为倒数。
(2)教师指出倒数的两个条件:
①两个数。
②这两个数的乘积是1。
例如: 和 互为倒数, 就是 的倒数, 的倒数是 。
(3)讨论:
① 怎样的两个数互为倒数?
② 一个数能叫做倒数吗?
③ 5是倒数这样的说法对吗?为什么?
在学生讨论的基础上说明:倒数是对两个数来说的,它们是相互依存的,必须一个数是另一个数的倒数,不能孤立地说某一个数是倒数。
(4)判断下列各组数是否互为倒数。
和 和 和 和
指名说出“为什么”?
(5)让学生举出几组倒数,并对学生的回答让学生自己发表意见,用倒数的意义来检验所举的例子对不对。
3.求一个数的倒数的方法。
(1)引导学生观察板书出的互为倒数的两个数。
问:互为倒数的两个数有什么特点?
(2)引导学生找出:互为倒数的两个数的分子、分母是互相调换位置的。
(3)讨论:
① 2的倒数是多少?
② 所有的自然数都有倒数吗?1的倒数是几?
③ 0有没有倒数?为什么?
④ 怎样求一个数的倒数?
引导学生得出:
1的倒数是1。0没有倒数。
求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。
(4)教学例题。
写出 和 的倒数。
第一小题:让学生讨论怎样写,教师板书:
第二小题:让学生独立完成。
让学生再说一说求倒数的方法。
三、巩固练习。
1.完成课本第23页的“做一做”题目。
使学生明确:
(1) 求自然数的倒数要先把它化成分母是1的假分数,再按调换分子、分母的方法来求倒数。
(2) 求带分数的倒数要先把它化成假分数,再按调换分子、分母的方法来求倒数。
2.完成练习六第1、2题
四.全课小结。
请学生说一说这节课学习了哪些内容。
五.作业
练习六第3~6题。
第三单元 分数除法
第一课时 一个数除以分数
教学内容:整数除以分数和平共处分数除以分数.教科书第30页例3\第31的做一做,练习八的第4和5题。
教学目标:
1. 通过具体的问题情境,探索并理解分数除法的计算方法。
2.确地进行分数除法的计算。
3. 培养学生分析、推理能力。
教学过程:
一、复习引入
1. 列式,说说数量关系。
小明2小时走了6 km ,平均每小时走多少千米?
速度=路程÷时间
2. 填空。
2/3小时有( )个1/3小时,1小时有( )个1/3小时。
3. 口算,说说分数除以整数的计算方法。
(1/6)÷3 (4/5)÷2 (3/8)÷6 (6/7)÷2
(分数除以整数等于用分数乘这个整数的倒数,或者除以几等于乘几分之一)
4. 引入课题。
我们已经学习了分数除以整数的分数除法,想一想,接下去应该学习什么?
今天这节课我们就来学习研究“一个数除以分数”的计算方法,看谁最先学会。
板书课题:一个数除以分数。
二、解决问题,发现算法
1. 理解题意,列出算式。
(1)出示例3。
(2)学生读题,理解题意。
(3)列出算式,说出列式根据什么数量关系。
板书:2÷(2/3) (5/6)÷(5/12)
2. 探索整数 除以分数的计算方法。
(1)2÷(2/3)如何计算呢?让我们画出线段图看看。
(2)先画一条线段表示1小时走的路程(边说边板书),怎样表示2/3小时走了2 km这个条件?
(将线段平均分成3份,其中2份表示的就是2/3小时走的路程。)
(3)指着图启发:已知2/3小时走了2 km,要求1小时走了多少千米?可以先算什么,再算什么?把你的想法与小组成员交流讨论一下。
(4)根据学生的回答把线段图补充完整,板书计算思路。
先求1/3小时走了多少千米,也就是求2的1/2,算式:2×1/2
再求3个1/3小时走了多少千米,算式:2×(1/2)×3
(5)找出计算方法。
板书: (乘法结合律)
现在会算了吗?说说2×1/2是图上的哪一段,表示什么?(1/3小时走了1 km)再乘3,得到的结果是图上的哪一段,表示什么?(1小时走了3 km)
启发:刚才我们用2÷2/3求1小时走的路程,现在我们又发现,2×3/2也可以求1小时走的路程,所以
观察:除法转化成了什么运算?什么没有变?什么变了?是怎样变的?
强调:被除数没有变,除号变乘号,除数变成了它的倒数。
(6)小结:从上面这个推算过程中我们找到了整数除以分数的计算方法是:整数除以分数等于用整数乘这个分数的倒数。
板书,学生齐读。
3. 探索分数除以分数的计算方法。
(1)让学生尝试计算5/6÷5/12。
我们已经通过2÷2/3找到了整数除以分数的计算方法,分数除以分数的计算请你们自己试试看。
(2)学生汇报,教师板书:
(3)为什么写成×(12/5)?
(4)怎样验证这种计算结果是正确的?
学生可能回答:
①先求1/12小时走了多少千米,也就是求5/6的1/5,算式是5/6×1/5
再求12个1/12小时走了多少千米,算式是5/6×1/5×12
②用乘法验算。
(5)回答“谁走得快些”。
(6)小结:现在我们发现,无论是整数除以分数,还是分数除以分数,都是转化为什么运算,怎样用一句话来叙述这个计算方法?
让同桌学生相互议一议,再指名回答。
(7)看书质疑:看看书上是怎样总结的,和你们的叙述有什么不同?
强调:除以一个不等于0的数。
齐读法则。
三、巩固练习
1. 口算。(采用口算对折卡片)
(1)不能约分的2÷3/5= 1/3÷2/5=
(2)能约分的3÷3/4= 2/7÷6/7=
2. 完成课本第31页“做一做”第1题,填在书上。
第2题,写在课堂练习本上,写出过程。
3. 直接写出得数。
1/3÷1/3= 1÷1/3= 5/6÷3= 3/7÷6/7= 3/7×7/9=
四、师生共同小结
1. 这节课我们学习了哪些知识?
2. 一个数除以分数的计算方法是什么?
五、布置作业(略)
第二课时 解决问题
教学内容:教科书第39页的例2。
教学目标:
1. 学习运用线段图帮助分析数量关系。
2. 学习列出方程,解决已知一个数的几分之几是多少,求这个数的实际问题。
3. 在分析数量关系,列出方程解决实际问题的过程中,提高分析问题、解决的能力。
教学过程:
一、复习与准备
1. 根据题意,看图写出代数式。
(1)苹果有x kg,西瓜的质量比苹果重1/4。
西瓜比苹果重()kg,西瓜重()kg。
(2)鸡有x只,鸭的只数比鸡少1/3。
鸭比鸡少()只,鸭有()只。
2. 根据题意列出方程。
(1)六(1)班有15人参加了合唱队,占全班人数的1/3,六(1)班有多少人?
(2)美术小组的人数比航模小组多1/4,美术组的人数比航模组多5人。航模组有多少人?
二、教学例2
出示例2。
1. 审题。
(1)看例题的插图,理解题目的意思。
复述题意,说说知道了什么,要求什么。
(2)分析题意,说说你对“美术小组的人数比航模小组多1/4”这一条件的理解。
(航模小组人数看作单位“1”,美术小组的人数多,多的人数相当于航模小组4等份中的1份。)
(3)理解数量关系,让学生自己试着画图表示两个小组的人数关系。(学生可以选用条形、线段或其他图形表示人数)
2. 分析、解答。
(1)出示线段图。
(2)说说数量关系。
根据已知条件“美术小组的人数比航模小组多1/4”直接得出数量关系:
航模小组的人数+美术小组比航模小组多的人数=美术小组的人数
或者:航模小组的人数+航模小组的人数×1/4=美术小组的人数
(3)学生根据得到的数量关系列方程解答。
(4)交流各自的解法。
(5)阅读课本,完成课本上的填空。
3. 改变例2。
出示:航模小组有20人,美术组的人数比航模小组多1/4,美术小组有多少人?
(1)根据题意改变线段图。(只要改变已知数与未知数的位置)
(2)根据图意解答。
(3)启发学生与例2进行比较,说说你发现什么?
(数量关系相同,已知条件与未知问题交换后,仍然可以根据例2的数量关系列式)
教师:上面用方程解例2的思路与分数乘法问题的思路统一,我们应该好好理解、掌握它。
4. 再次改变例2。
出示:美术小组有24人,美术小组的人数比航模小组少14,航模小组有多少人?
(1)根据题意改变线段图。
(2)改变方程,解方程。
5. 小结:关键是搞清哪两个量比较,谁多谁少,多或少了谁的几分之几。
(三)运用新知,解决问题
1. 看图口头编实际问题。
(1)
(2)
2. 根据条件列方程。
(1)小红买了一本书和一枝钢笔,书的价格是10元,正好比钢笔价格少3/8,钢笔的价格是多少元?
(2)白兔的只数比黑兔多2/3,白兔有450只,黑兔有多少只?
(3)白兔的只数比黑兔多2/3,白兔比黑兔多180只,黑兔有多少只?
3. 根据所给方程口头编实际问题。(小组内交流)
四、全课总结(略)
第三课时 混合运算
教学内容:分数混合运算。课文第34页的 例4、做一做、练习九的1~4题。
教学目标:使学生掌握分数四则混合运算的运算顺序,能正确的进行计算
使学生能综合运用所学的分数知识解决有关的问题。
重难点:分数四则混合运算、带括号的分数除法运算。
教学过程:
一、 展示学习目标
二、 出示例题:小红用长8米的 彩带做了一些花,每朵花用2/3米的彩带。他把其中的 四朵送给了同学,还剩几朵花?
1 说一说你的思路。
生:要求小红还剩几朵花,应先求一共做了几朵。
2 列出算式:
8÷2/3-4
3 你认为应该怎样计算?
通过学生回答,教师评价,使全体学生进一步明确:分数四则混合运算的顺序整数四则混合运算的顺序相同。
4 板书计算过程:
8÷2/3-4
=8×3/2-4
=8﹝朵﹞
答:略
三、 学生自学例4第二题:
计算1/5÷﹝2/3+1/5﹞×15
点名一名学生板演,其他学生在练习本上练习,教师巡视。
四:完成练习“做一做”
练习九的 1~4题。
第四课时:已知一个数的几分之几是多少,
求这个数的应用题
教学内容:“已知一个数的几分之几是多少,求这个数的问题”,课文第37的例1,38页完成“做一做”的题目和练习十的第1~3题。
教学目的:使学生掌握方程解答分数除法应用题的方法,加深对分数除法意义的理解,提高学生解答含有分数的简易方程的技能,为今后解答分数除法应用题打好基础。
重点难点:用列方程的方法解决问题。
教学过程:
一、复习。
1.分数除法法则是什么?(指名学生回答)
2.一个数的5倍是32,这个数是多少?
(要求学生列出简易方程,说出根据什么这样列)
二、新授。
1.出示题目:电脑课件呈现课文例题拼图
师:从题中你能得到哪些信息?(学生回答,课件出示)
生:成人体内的水分约占体重的2/3;
儿童体内的水分约占体重的4/5
小明体内有28KG的水分;
小明的体重是爸爸的体重的7/15。
(2)提出问题,解决问题。
第一个问题小明的体重是多少千克?
师:用哪些信息可以解决这些问题?
学生经过寻找,筛选出有用的信息,整理成一道应用题。
儿童体内的水分约占体重的4/5。小明体内有28千克的水分,小明的体重是多少千克?
①数量关系
a.4/5表示什么?
B.画线段图www.
C.写出关系式。儿童体内的水分占体重的4/5
体重×4/5=体内水分
②列式解答
师:在这个等式中,哪个量是未知数?你想怎样解决?
让学生独立思考,列式解答。完成后汇报解决方法。
用列方程的方法解答。
解:设小明的体重是ⅹ千克。
4/5ⅹ=28
ⅹ=28÷4/5
ⅹ=35
或者用除法算式解答。
28÷4/5=28×5/4=35(千克)
第二个问题:
小明的爸爸体重是多少千克?
经过筛选,找出数量关系,整理成一道应用题。
小明的体重是爸爸体重的7/15。小明体重是35千克,爸爸体重是多少千克?
① 画线段图分析数量关系。(先由学生画,再由教师指导)
② 写出数量关系式
小明的体重是爸爸体重的7/15
爸爸的体重×7/15=小明的体重
③ 列式计算。
让学生独立解答,然后汇报。
用列方程的方法解答
解:设爸爸的体重是ⅹ千克。
7/15ⅹ=35
ⅹ=35÷7/15
ⅹ=75
答:略
列除法算式解答略
2.做一做。
(1)让学生独立解答,教师巡视进行指导。
(2)汇报解答情况。
①根据题意写出关系式。
全部图书×2/5=科普读物
故事书×4/3=科普读物
②你用什么方法解答,结果是多少?
三.当堂训练:
完成课文练习十第1~3题。
第五课时 稍复杂的除法应用题
教学内容:
两步解答“已知一个数的几分之几是多少,未这个数”的问题(课文第39页的例2、练习十四的第4题和第10——14题)
教学目标:
使学生理解稍复杂的“已知一个数的几分之几是多少,求这个数”的问题结构特征,并学会用方程或除法解决。
教学过程:
一:复习:
只列式不解答:
1. 男生人数占女生人数的4/5,男生有120人,女生有多少人?
2. 苹果树有60棵,苹果树的棵数是梨树的2/3,梨树有多少棵?
说一说可以用什么方法解答,你是怎么算的?
二:新授:
1. 教学例2
出示课文例题情境图,突出图中文字。
美术小组有25人。美术小组的人数比航模小组多1/4。航模小组有多少人?
(1) 画线段分析题中数量关系
边画图边提问引导。
① 1/4把什么看作单位“1”?把单位:“1”平均分成几分?
② 表示美术小组的线段要画多长?
(2) 写出关系式。
①根据美术小组的人数比航模小组多1/4,请你想一想:美术小组的人数是航模小组的几分之几?
学生经过思考,交流后懂得:美术小组是航模小组人数的1+1/4
③ 写出关系式:
板书:航模小组人数×(1+1/4)=美术小组人数
(3) 列式解答。
由学生独立列出式子,然后报
方程解。 解:设航模小组有ⅹ人
(1+1/4)ⅹ=25
ⅹ=25÷(1+1/4)
ⅹ=25÷5/4
ⅹ=20
除法算式解答:25÷(1+1/4)=25÷5/4=20(人)
2. 练习
语文小组有24人,语文小组的人数比数学小组的人数少1/7,数学小组有多少人?
(1) 学生独立思考,列出解答式子。
(2) 汇报解答过程。
① 1/7把什么看作“1”
② 语文小组人数是数学小组人数的几分之几?(1-1/7)
③ 你是怎么写关系式的?
数学组人数×(1-1/7)=语文小组人数
④ 你用什么方法解答,结果是多少?
3. 课堂小结。
(1) 说一说,以上两道题与复习中的3道题比较有什么一样的地方,有什么不一样的地方。
(2) 解答这类问题时,你有什么体会?
三.巩固练习
完成课文练习十的第4题和第10——14题。
教学内容:教科书第30~31页的例题和"做一做",练习八的第1~5题。
教学目的:
1.使学生理解分数除法的意义与整数除法的意义相同。
2.学会分数除以整数的计算方法。
教学过程:
一、复习
1.举例说明整数除法的意义是什么?
2.根据乘法算式134×38=5092,写出相应的两个除法算式。
3.举例说明分数乘以整数的意义和一个数乘以分数乘法的意义各是什么?
以上复习题可以指名回答。
二、 教学分数除法的意义
出示题目:每盒水果糖重100克,3盒有多重?
教师提问:怎样列示?得多少?
3盒水果糖重300克,每盒有多重?怎样列示?
300克水果糖,每盒装100克,可以装几盒?
学生列示,教师巡视指导,点名让三名学生板演。
教师让学生观察、比较上面3道题中算式的已知数和得数,再回答下列问题:
第一个算式已知什么?求什么?用什么方法计算?(已知两个因数:求出它们的积为;用乘法计算。)
(2)第二个算式呢?(已知积是 和一个因数是,求出另一个因数是,用除法计算。)
(3)第三个算式跟上面哪一个算式是类似的?(跟第二个算式是类似的,也是已知积是和一个因数是,求出另一个因数是,用除法计算)
教师:分数除法的意义是什么?它跟整数除法的意义一样不一样?(分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。)
1. 做教科书第28页"做一做"中的题目。
教师让学生自己读题、做题,做完后要问学生是怎样应用乘法算式和分数除法的意义来填写除法算式的得数的?
3、把上题中的300克可以看成1/10千克。再进行列示计算。
让学生自己计算,指名两个学生板演。
做完后,让学生讨论:分数除以整数怎样计算?
教师:分数除以整数通常把分数除以整数转化成分数乘以这个整数的倒数。
教师:在分数除法中,是不是所有整数都可以作除数
学生思考总结:在除法运算中0不能作除数
2. 做教科书第29页中"做一做"的题目。
让学生独立做题,教师巡视。巡视时,注意学生计算时产生错误的情况。集体订正
时,让学生把错误的做法说一说。一般有:
让学生说一说产生错误的原因。
(1)把除号改为乘号后,没有把除数相应地改成它的倒数。
(2)把除数改成它的倒数后,没有把除号改成乘号。
三、巩固练习
1.做练习八的第1题。
让学生独立完成,教师提醒要按照法则来做题,能够口算的,要用口算。巡视时,要注意帮助有困难的学生,发现错误要及时纠正。做完后集体订正。
2.做练习八的第2题。
让学生独立完成。集体订正时,要让学生说一说第1行每小题跟第2行相应的题目
有什么联系?使学生明确每栏的除法算式中的被除数是上面乘法算式的积,而除数是乘法算式中的一个因数,得数是乘法算式中的另一个因数。
第六课时:比的意义
教学内容:课本第43~44页的内容,完成练习十一的第1、3题。
教学目的:使学生理解比的意义,掌握比的各部分名称,能正确地读、写比,并会正确地求比值。
重点难点:比的意义,求比值.理解并灵活掌握比与分数、除法的关系。
教学过程:
一、 展示学习目标:掌握比的意义和写法
二、 展示学习指导:
1、自学课本43页内容,
2、杨利伟展示的两面旗都是长15cm,宽10cm。怎样用算式表示它们的长和宽的关系?
生:15÷10 表示长是宽的几倍
10÷15 表示宽和长的比是什么?
3、怎样用算式表示飞船进入轨道后平均每分钟飞行多少千米?
生:42252÷90 表示飞船速度
我们可以用比来表示路程的时间的关系。
路程和时间的比是42252比90
4、什么是比?
总结,两个数相除又叫做两个数的比。
比的书写形式:
板书: 15比10 记作:15:10
10比15 记作:10:15
42252比90 记作:42252:90
“:” 是比号
4、 比值
师,在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。
板书: 15:10=15÷10=3/2
强调:因为比值是比的前项除以后项所得的商,所以比值是一个数。比值通常用分数表示,也可以用小数或整数表示。
求比值
15:25 1/2÷1/3 0.5÷0.05
学生独立计算,求出比值
说说计算方法和结果
5、 分数、除法和比有什么样的关系?
生总结,师板书:
比 前项 比号“:” 后项 比值
除法 被除数 除号:“÷” 除数 商
分数 分子 分数线“—” 分母 分数值
师强调补充:根据比与除法、分数的关系,可以理解比的后项不能为0
五:当堂训练:
完成课本“做一做”
独立完成练习十一第1、3题。
第七课时:比的基本性质
教学内容:
比的基本性质,化简比。课本第45页的内容及第46页例1,完成“做一做”题和练习十一的第2、4~6题。
教学目的:
使学生理解比的基本性质,掌握化简比的方法。
重难点:
比的基本性质理解比与除法 分数的关系.
教学过程:
一、 展示学习目标:理解比的基本性质
二、 提出问题
1、分数约分根据什么性质?说一说分数的基本性质
2、把被除数和除数转化为整数,根据什么,说一说商不变的性质.
三 、教学比的基本性质。
1. 我们刚才复习了除法中商不变规律和分数的基本性质,又知道比和除法、分数有着密切的联系,比的前项相当于被除数,比的后项相当于除数;比的前项也相当于分数的分子,比的后项相当于分母。
问:在比中有什么样的规律?
(1) 求比值
6:8 12:16
(2) 观察求比值的过程
6:8=6÷8=6/8=3/4
12:16=12÷16=12/16=3/4
从上面可以看出:
6:8=12:16
那么这里的前项和后项都有什么变化?
6:8=( )=12:16
学生不难发现:6:8=(6×2):(8×2)=12:16
(3) 说一说你的发现
比的前项和后项同时乘相同的数(0除外),比值不变
(4) 观察算式。(将前一个等式倒过来)
12:16=6:8
师:如果这样看,前项和后项又有什么变化?
学生不难发现其中的变化
演示:
12:16=( )=6:8
12:16=(12÷2):(16÷2)=6:8
(5) 说一说你的发现
比的前项和后项同时除以相同的数(0除外),比值不变
(6) 规纳规律
师:你能不能把上面两句话合成一句话?
学生交流后得出结果,教师板书
比的前项和后项同时乘或除以相同的数(0除外),比值不变,这就是比的基本性质。
问:为什么这里要同时乘以或除以相同的数不能是0?(因为如果乘以0,比的后项就变成了0,没有意义。且0不能作除数,更不能同时除以0)
2. 教学化简比。
利用比的基本性质,我们可以把比化成最简单的整数比。
出示例1:把下面各比化成最简单的整数比。
(1)
问:这道题的前项和后项都是什么数?怎样才能使它化成最简整数比?(引导学生得出:这道题前项、后项都是整数,要把它化成最简整数比,就必须根据比的基本性质把前、后项同时除以它们最大公约数7)
(2)
问:这是一道分数比,怎样才能使它转化成整数比?(引
导学生说出:要根据比的基本性质,把它的前后项同时乘以它们的分母的最小公倍数18,才能转化成整数比。)
化成整数比以后,如果不是最简的整数比,还要应用(1)题的方法继续化简。
(3)
问:这道是小数比,怎样化成整数比?(启发学生说出:可根据比的基本性质,把它的前后项同时乘以相同的数,使它们转化成整数比。如果这时还不是最简整数比,要再除以前后项的最大公约数,使它化为最简整数比。)
或
1. 小结:
问:这节课我们学习了什么新知识?它的内容是什么?还学会了什么?
三、巩固练习。
1. 完成“做一做”的题目。
让学生说一说化简的方法。
2. 练习十一第2、4、6题。
第八课时:比的应用
教学内容:按比分配.课本第49页的例2、例3,完成“做一做”和练习十二的第1~4题。
教学目的:使学生学会并掌握按比例分配应用题的解答方法,能运用这个知识来解决一些日常工作、生活中的实际问题。
教学过程:
一 导入新课。
引题:两个小组要栽30棵树,第一组有7人,第二组有8人,要怎样分配才合理?
象这样不是把一个数量平均分配,而是按一定的比例来进行分配。这种分配方法,通常叫做按比例分配。我们今天就来学习这种分配方法。(板书:比的应用)
二、新授。
1. 教学例2。
出示例2:某种清洁济浓缩液和小按1:4的比可以配制成稀释液。 如果配制500ml的稀释液,其中浓缩液和水各有多少ml?
(1)引导学生认真读题,弄清题意。
(2)说一说1:4表示什么?从中你可以得到哪些信息?
学生回答,教师板书。
①水的体积是浓缩的4倍;
②浓缩液的体积是水的1/4
③水的体积占稀释液的1/5
(引导提问:稀释液是几份的数?“5”是怎样得出的?
④浓缩液的体积占稀释液的4/5。
(3)解决问题需要哪些信息?你想怎样列算式表示?
学生可能的解答方法是:
第一,每份是:500÷5=100 ml
浓缩液:100×1=100ml
水:100×4=400ml
第二,稀释液的份数:1+4=5
浓缩液:500×1/5=100ml
水:500×4/5=400ml
答:略
2.做一做
完成课本做一做第1、2题
第一题,学生独立完成,然后与同伴交流。
说一说你的解题思路
第二题,说一说你的解题思路
说一说各班分配的数量各占总数量的几分之几。
列式解答
三、当堂练习
完成课本练习十二第1- 4题。
《人教版六年级数学上册第一单元《分数乘法》教案(三)》一文就此结束,希望能帮助您在小学教学中起到作用,如还需更多,请关注我们的“小学六年级数学比教案”专题。
文章来源:http://m.jab88.com/j/113107.html
更多