2011-2012学年度第二学期八年级数学导学案(15)
9.3反比例函数的应用
编写:审核:2012-3-2
班级学号姓名
【学习目标】
1.能灵活运用反比例函数的知识解决实际问题.
2.经历“实际问题——建立模型——拓展应用”的过程培养分析问题,解决问题的能力
【学习重点、难点】
重点:运用反比例函数的意义和性质解决实际问题.
难点:把实际问题转化为反比例函数这一数学模型,渗透转化的数学思想.
【新知预习】
1.已知某矩形的面积为20cm2.
⑴写出其长y与宽x之间的函数表达式.
⑵当矩形的长为12cm时,求宽为多少?当矩形的宽为4cm,求其长为多少?
⑶如果要求矩形的长不小于8cm,其宽至多要多少?
【导学过程】
活动一反比例函数的应用
1.美国的一种新型汽车可装汽油500L,若汽车每小时用油量为xL.
⑴用油时间y(h)与每小时的用油量之间的函数关系式可表示为.
⑵每小时的用油量为25L,则这些油可用的时间为.
⑶如果要使汽车连续行驶50h不需供油,那么每小时用油量的范围是.
活动二反比例函数图象的应用
2.为了预防流行性感冒,某学校对教室采用药熏消毒法进行消毒.已知药物燃烧时,室内每立方米空气中的含药量y(毫克)与时间x(分钟)成正比例,药物燃烧后,y与x成反比例(如图所示).现测得药物8分钟燃毕,此室内空气中每立方米的含药量为6毫克,请你根据题中所提供的信息,解答下列问题:
⑴药物燃烧时y关于x的函数关系式为,自变量的取值范围是;
⑵药物燃烧后y与x的函数关系式为;
⑶研究表明,当空气中每立方米的含药量低于1.6毫克时学生方可进教室,那么从消毒开始,至少需要经过分钟后,学生才能回到教室;
⑷研究表明,当空气中每立方米的含药量不低于3毫克且持续时间不低于10分钟时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?
【例题讲解】
例1.小明将一篇24000字的社会调查报告录入电脑,打印成文.
⑴如果小明以每分钟120字的速度录入,他需要多长时间才能完成录入任务?
⑵录入文字的速度V(字/min)与完成录入的时间t(min)有怎样的函数关系?
⑶小明希望能在3h内完成录入任务,那么他每分钟至少应录入多少个字?
例2.小华同学的爸爸在某自来水公司上班,现该公司计划新建一个容积为4×104m3的长方体蓄水池,小华爸爸把这一问题带回来与小华一起探讨:
⑴蓄水池的底面积S(m2)与其深度h(m)有怎样的函数关系?
⑵如果蓄水池的深度设计为5m,那么蓄水池的底面积应为多少平方米?
⑶由于绿化以及辅助用地的需要,经过实地测量,蓄水池的长和宽最多只能分别设计为100m和60m,那么蓄水池的深度至少达到多少才能满足要求?(保留两位小数)
【反馈练习】
1.课本练习第1、2题
2.某厂现有800吨煤,这些煤能烧的天数y与平均每天烧的吨数x之间的函数关系是()
(A)y=300x(x>0)(B)y=300x(x≥0)(C)y=300x(x≥0)(D)y=300x(x>0)
3.小丽是一个近视眼,整天眼镜不离鼻子,但自己一直不理解自己的眼镜配制的原理,很是苦闷,近来她了解到近视眼镜的度数y(度)与镜片的焦距为x(m)成反比例,并请教师傅了解到200度的近视眼镜镜片的焦距为0.4m.小丽只知道自己的眼镜是400度.我们大家正好学过反比例函数了,你能帮助她帮她求出她的近视眼镜片的焦距是多少吗?
4.制作一种产品,需先将材料加热到达60℃后,再进行操作.设该材料温度为y(℃),从加热开始计算的时间为x(分钟).据了解,设该材料加热时,温度y与时间x完成一次函数关系;停止加热进行操作时,温度y与时间x成反比例关系(如图所示).已知该材料在操作加工前的温度为15℃,加热5分钟后温度达到60℃.
⑴分别求出将材料加热和停止加热进行操作时,y与x的函数关系式;
⑵根据工艺要求,当材料的温度低于15℃时,须停止操作,那么从开始加热到停止操作,共经历了多少时间?
【互动释疑】
你还有什么问题吗?
【作业布置】习题9.3第1、2题
9.3反比例函数的应用
教学目标:
1.能运用反比例函数的相关知识分析和解决一些简单的实际问题。
2.在解决实际问题的过程中,进一步体会和认识反比例函数是刻
画现实世界中数量关系的一种数学模型。
教学重点运用反比例函数解决实际问题
教学难点运用反比例函数解决实际问题
教学过程:
一、情景创设
引例:小丽是一个近视眼,整天眼镜不离鼻子,但自己一直不理解自己的眼镜配制的原理,很是苦闷,近来她了解到近视眼镜的度数y(度)与镜片的焦距为x(m)成反比例,并请教师傅了解到自己400度的近视眼镜镜片的焦距为0.2m,可惜她不知道反比例函数的概念,所以她写不出y与x的函数关系式,我们大家正好学过反比例函数了,谁能帮助她解决这个问题呢?
反比例函数在生活、生产实际中也有着广泛的应用。
例如:在矩形中S一定,a和b之间的关系?你能举例吗?
二、例题精析
例1、见课本73页
例2、见课本74页
例3、某气球内充满一定质量的气体,当温度不变时,气球内气体的气压p(千帕)是气球体积V(米3)的反比例函数(1)写出这个函数解析式(2)当气球的体积为0.8m3时,气球的气压是多少千帕?(3)当气球内的气压大于144千帕时,气球将爆炸,为了安全起见,气球的体积不小于多少立方米?
四、课堂练习课本P74练习1、2题
五、课堂小结反比例函数的应用
六、课堂作业课本P75习题9.3第1、2题
七、教学反思
第6课时小结与思考
教学目标
1.反比例函数的概念以及它的一般形式.
2.能用描点法画出反比例函数图像并掌握反比例函数的性质.
3.能掌握并运用反比例函数图象的分布及变化规律解决问题.
教学重点运用反比例函数的图像与性质解决实际问题
教学难点能运用反比例函数的图像与性质解决实际问题
教学过程
一、复习回顾
1.反比例函数的概念以及它的一般形式.
2.反比例函数的图像分布及反比例函数图像的性质.
二、例题讲解
例1.下列函数,①②.③
④⑤⑥;其中是y关于x的反比例
函数的有:______________。
例2.已知y是的反比例函数,且当=3时,=8,求:
(1)和的函数关系式并画出函数图象;
(2)当=-6时,求y的值;
(3)当取何值时,?
例3.已知反比例函数的图象经过点。
(1)写出函数关系式,并画出函数图象。
(2)这个函数的图象在哪几个象限?y随x的增大怎样变化?
(3)点,在这个函数的图象上吗?
三、课堂练习
1.已知三角形面积为b(cm2),这时底边上的高ycm与底边x(cm)之间的函数关系图象大致是_________
2.已知点(2,5)在反比例函数y=的图象上,则下列各点在该函数图象上的是()
A.(2,—5)B.(—5,—2)C.(—3,4)D.(4,—3)
3.在反比例函数①;②③;
④的图象中:
(1)在第一、三象限的是,在第二、四象限的是.
(2)在其所在的象限内,y随x的增大而增大的是
4.已知是反比例函数(k≠0)图象上的两点,且0时,,则k的范围是________。
5.反比例函数的图象经过(-2,5)和(2,),
(1)求的值并画出函数图象;
(2)判断点B(-4,2.5)是否在这个函数图象上,并说明理由.
四、课堂小结反比例函数的概念、图像、性质.
五、课堂作业课本P78复习题2、3、5题
六、教学反思
文章来源:http://m.jab88.com/j/63065.html
更多