教案课件是每个老师工作中上课需要准备的东西,是认真规划好自己教案课件的时候了。只有规划好教案课件工作计划,才能更好地安排接下来的工作!究竟有没有好的适合教案课件的范文?为此,小编从网络上为大家精心整理了《八年级数学上册15.1.2 分式的基本性质(人教版)》,欢迎阅读,希望您能阅读并收藏。
15.1.2分式的基本性质
【教学目标】
1.会用分式的基本性质将分式进行简单的恒等变形,并能熟练地进行分式的通分、约分.
2.经历对分式基本性质及符号法则的探究过程,在探究中获得一些探索定理性质的初步经验,渗透良好的类比联想思维习惯和思想方法.
【重点难点】0
重点:理解并掌握分式的基本性质.
难点:灵活应用分式的基本性质将分式变形.
┃教学过程设计┃
教学过程设计意图
一、创设情境,导入新课
1.创设情境.
多媒体课件播放有关“自然景色美”的短片,烘托气氛,然后,打出字幕:“数学因简约、对称、和谐而美”.
2.探索发现:
图1
展示分蛋糕的图片(图1),从图中得到三个分数:14,28,416.然后提出问题:
问题1:根据我们对数学的“审美标准”,上面的哪个分数最具“简约之美”?
答:14.
问题2:从416,28到14,我们实施了怎样的变形?
答:分数的约分.
问题3:那这种变形的依据是什么?其内容是什么?
答:变形的依据是分数的基本性质,其内容是分数的分子与分母同乘以或同除以同一个不为零的数,分数的值不变.通过大自然的“造化”之美引向数学的“简约”之美,培养学生的审美情趣,为美化数学式子奠定基础.
为了拉长分式基本性质的发现过程,通过分蛋糕复习分数,然后在审美意识的驱动下复习了分数的基本性质,为类比引出分式的基本性质蓄好了认知之势.
二、师生互动,探究新知
问题1:下面的变形成立吗?请用图形的面积作出说明.
1a=22a,22a=1a.
分析:成立.适合用矩形的面积说明,在面积为1,长为a的矩形上再拼上一个相同的矩形(使得宽重合),如图2,所得的新矩形面积为2,长变成了2a,但宽没有变化,即1a=22a.
图2
若将面积为2,长为2a的矩形沿长的中间均分为两部分,得面积为1的矩形,如图3,它们的宽与原矩形的宽相等,即22a=1a.
图3
问题2:若将问题1中的“2”替换成“3,4,5,…,n,n+1”还成立吗?
分析:有了问题1解答的铺垫,本问靠想象即能完成,只要在原来的基础上拼接或等分即可,可发现仍然成立.
问题3:请归纳你的发现.
答:分式的分子、分母都乘(或除以)同一个不等于零的整式,分式的值不变.
教师说明,这就是分式的基本性质.
问题4:能用字母表达式表示你的发现吗?
答:AB=ACBC,AB=A÷CB÷C(C≠0),其中A,B,C是整式.
通过问题1启动了数形结合,让学生亲眼看见、切身体验分式基本性质的存在,增强可感性,扣住学生心理,自然实现难点理解的突破,至于后面的几个问题的解决已是水到渠成,揭示出分式的基本性质.
三、运用新知,解决问题
1.填空.
(1)a+bab=()a2b,2a-ba2=()a2b;
(2)x2+xyx2=x+y(),xx2-2x=()x-2.
2.你能说出多少个与b2a的值相等的分式?
通过练习1的两个问题强化分式基本性质的两种变形:同乘以与同除以;通过练习2以开放的形式给不同层次的学生提供施展的空间.
四、课堂小结,提炼观点
经历分式基本性质得出的过程,从中学到了什么方法?受到什么启发?
五、布置作业,巩固提升
必做题:教材第132页练习1,2,第133页第4,5题.
选做题:教材第133页第6,7题,第134页第12题.
专题21梯形
阅读与思考
梯形是一类具有一组对边平行而另一组对边不平行的特殊四边形,梯形的主要内容是等腰梯形、直角梯形等相关概念及性质.
解决梯形问题的基本思路是:通过适当添加辅助线,把梯形转化为三角形或平行四边形,常见的辅助线的方法有:
(1)过一个顶点作一腰的平行线(平移腰);
(2)过一个顶点作一条对角线的平行线(平移对角线);
(3)过较短底的一个顶点作另一底的垂线;
(4)延长两腰,使它们的延长线交于一点,将梯形还原为三角形.
如图所示:
例题与求解
【例1】如图,在四边形ABCD中,AB//CD,∠D=2∠B,AD和CD的长度分别为,,那么AB的长是___________.(荆州市竞赛试题)
解题思路:平移一腰,构造平行四边形、特殊三角形.
【例2】如图1,四边形ABCD是等腰梯形,AB//CD.由四个这样的等腰梯形可以拼出图2所示的平行四边形.
(1)求四边形ABCD四个内角的度数;
(2)试探究四边形ABCD四条边之间存在的等量关系,并说明理由;
(3)现有图1中的等腰梯形若干个,利用它们你能拼出一个菱形吗?若能,请你画出大致的示意图.
(山东省中考试题)
解题思路:对于(1)、(2),在观察的基础上易得出结论,探寻上、下底和腰及上、下底之间的关系,从作出梯形的常见辅助线入手;对于(3),在(2)的基础上,展开想象的翅膀,就可设计出若干种图形.
【例3】如图,在等腰梯形ABCD中,AD//BC,AB=DC,且AC⊥BD,AF是梯形的高,梯形的面积是49cm2,求梯形的高.
(内蒙古自治区东四盟中考试题)
解题思路:由于题目条件中涉及对角线位置关系,不妨从平移对角线入手.
【例4】如图,在等腰梯形ABCD中,AB//DC,AB=998,DC=1001,AD=1999,点P在线段AD上,问:满足条件∠BPC=900的点P有多少个?
(全国初中数学联赛试题)
解题思路:根据AB+DC=AD这一关系,可以在AD上取点构造等腰三角形.
【例5】如图,在等腰梯形ABCD中,CD//AB,对角线AC,BD相交于O,∠ACD=600,点S,P,Q分别为OD,OA,BC的中点.
(1)求证:△PQS是等边三角形;
(2)若AB=5,CD=3,求△PQS的面积;
(3)若△PQS的面积与△AOD的面积的比是7:8,求梯形上、下两底的比CD:AB.
(“希望杯”邀请赛试题)
解题思路:多个中点给人以广泛的联想:等腰三角形性质、直角三角形斜边中线、三角形中位线等.
【例6】如图,分别以△ABC的边AC和BC为一边,在△ABC外作正方形ACDE和CBFG,点P是EF的中点,求证:点P到边AB的距离是AB的一半.
(山东省竞赛试题)
解题思路:本题考查了梯形中位线定理、全等三角形的判定与性质.关键是要构造能运用条件EP=PF的图形.
能力训练
A级
1.等腰梯形中,上底:腰:下底=1:2:3,则下底角的度数是__________.
(天津市中考试题)
2.如图,直角梯形ABCD中,AB⊥BC,AD=3,BC=5,将腰DC绕点D逆时针方向旋转900至DE,连接AE,则△ADE的面积为______________.(宁波市中考试题)
3.如图,在等腰梯形ABCD中,AB//CD,∠A=,∠1=∠2,且梯形的周长为30cm,则这个等腰梯形的腰长为______________.
4.如图,梯形ABCD中,AD//BC,EF是中位线,G是BC边上任一点,如果,那么梯形ABCD的面积为__________.(成都市中考试题)
5.等腰梯形的两条对角线互相垂直,则梯形的高和中位线的长之间的关系是()
A.>B.=C.<D.无法确定
6.梯形ABCD中,AB//DC,AB=5,BC=,∠BCD=,∠CDA=,则DC的长度是()
A.B.8C.D.E.
(美国高中考试题)
7.如图,在等腰梯形ABCD中,AC=BC+AD,则∠DBC的度数是()
A.300B.450C.600D.900
(陕西省中考试
8.如图,在直角梯形ABCD中,AD//BC,AB⊥BC,AD=2,BC=DC=5,点P在BC上移动,则当PA+PD取最小值时,△APD中边AP上的高为()
A.B.C.D.3
(鄂州市中考试题)
9.如图,在等腰梯形ABCD中,AD//BC,AB=CD,点P为BC边上一点,PE⊥AB,PF⊥CD,BG⊥CD,垂足分别为E,F,G.求证:PE+PF=BG.
(哈尔滨市中考试题)
10.如图,在梯形ABCD中,AD//BC,E,F分别为AB,AC中点,BD与EF相交于G.
求证:.
11.如图,等腰三角形ABC中,AB=AC,点E、F分别是AB、AC的中点,CE⊥BF于点O.
求证:(1)四边形EBCF是等腰梯形;
(2).(深圳市中考试题)
12.如图1,在等腰梯形ABCD中,AD//BC,E是AB的中点,过点E作EF//BC交CD于点F,AB=4,BC=6,∠B=.
(1)求点E到BC的距离;
(2)点P为线段EF上的一个动点,过P作PM⊥EF交BC于点M,过M作MN//AB交折线ADC于点N,连接PN,设EP=.
①当点N在线段AD上时(如图2),△PMN的形状是否发生改变?若不变,求出△PMN的周长;若改变,请说明理由.
②当点N在线段DC上时(如图3),是否存在点P,使△PMN为等腰三角形?若存在,请求出所有满足要求的的值;若不存在,请说明理由.(江西省中考试题)
B级
1.如图,在梯形ABCD中,AB//DC,AD=BC,AB=10,CD=4,延长BD到E,使DE=DB,作
EF⊥AB交BA的延长线于点F,则AF=__________.
(山东省竞赛试题)
2.如图,在梯形ABCD中,AD//BC,AB=DC=10cm,AC与BD相交于G,且∠AGD=,设E为CG中点,F是AB中点,则EF长为_________.
(“希望杯”邀请赛试题)
3.用四条线段:作为四条边,构成一个梯形,则在所构成的梯形中,中位线的长的最大值为_________.(湖北赛区选拔赛试题)
4.如图,梯形ABCD的两条对角线AC,BD相交于O点,且AO:CO=3:2,则两条对角线将梯形分成的四个小三角形面积之比为_________.(安徽省中考试题)
第4题图第5题图第6题图
5.如图,在四边形ABCD中,AD//BC,E是AB的中点,若△DEC的面积为S,则四边形ABCD的面积为()
A.B.2SC.D.
(重庆市竞赛试题)
6.如图,在梯形ABCD中,AD//BC,∠B=,∠C=,E,M,F,N分别为AB,BC,CD,
DA的中点,已知BC=7,MN=3,则EF的值为()
A.4B.C.5D.6
(全国初中数学联赛试题)
7.如图,梯形ABCD中,AB//DC,E是AD的中点,有以下四个命题:①若AB+DC=BC,则∠BEC=;②若∠BEC=,则AB+DC=BC;③若BE是∠ABC的平分线,则∠BEC=;
④若AB+DC=BC,则CE是∠DCB的平分线.其中真命题的个数是()
A.1个B.2个C.3个D.4个
(重庆市竞赛试题)
8.如图,四边形ABCD是一梯形,AB//CD,∠ABC=,AB=9cm,BC=8cm,CD=7cm,M是AD的中点,从M作AD的垂线交BC于N,则BN的长等于()
A.1cmB.1.5cmC.2cmD.2.5cm
(“希望杯”邀请赛试题)
9.如图,在梯形ABCD中,AB//DC,M是腰BC的中点,MN⊥AD.求证:
(山东省竞赛试题)
10.如图,在梯形ABCD中,AD//BC,分别以两腰AB,CD为边向两边作正方形ABGE和正方形DCHF,设线段AD的垂直平分线交线段EF于点M.求证:点M为EF的中点.
(全国初中数学联赛试题)
11.已知一个直角梯形的上底是3,下底是7,且两条对角线的长都是整数,求此直角梯形的面积.
(“东方航空杯”上海市竞赛试题)
12.如图1,平面直角坐标系中,反比例函数的图象经过矩形OABD的边BD的三等分点()交AB于E,AB=12,四边形OEBF的面积为16.
(1)求值.
(2)已知,点P从A出发以0.5cm/s速度沿AB、BD向D运动,点Q从C同时出发,以1.5cm/s的速度沿CO,OA,AB向B运动,其中一个动点到达端点时,另一个动点也随之停止运动.从运动开始,经过多少时间,四边形PQCB为等腰梯形(如图2).
(3)在(2)条件下,在梯形PQCB内是否有一点M,使过M且与PB,CQ分别交于S,T的直线把PQCB的面积分成相等的两部分,若存在,请写出点M的坐标及CM的长度;若不存在,请说明理由.
老师工作中的一部分是写教案课件,大家在仔细设想教案课件了。写好教案课件工作计划,我们的工作会变得更加顺利!你们知道适合教案课件的范文有哪些呢?下面是由小编为大家整理的“人教版八年级数学上册教案”,欢迎大家与身边的朋友分享吧!
12.3.1.1等腰三角形(一)文章来源:http://m.jab88.com/j/57120.html
更多