古人云,工欲善其事,必先利其器。作为高中教师就要早早地准备好适合的教案课件。教案可以让学生能够在课堂积极的参与互动,帮助高中教师能够井然有序的进行教学。写好一份优质的高中教案要怎么做呢?下面是小编精心为您整理的“二项式定理导学案”,供大家参考,希望能帮助到有需要的朋友。
第11课时
1.3.1二项式定理(一)
学习目标
1.用两个计数原理分析的展开式,归纳地得出二项式定理,并能用计数原理证明;
2.掌握二项展开式的通项公式;能应用它解决简单问题.
学习过程
一、学前准备
试试:用多项式乘法法则得到下列式子的展开式,并说出未合并同类项之前的项数与各项的形式.
(1);(2);(3)。
二、新课导学
◆探究新知(预习教材P29~P31,找出疑惑之处)
问题:如何利用两个计数原理得到
的展开式?你能由此猜想一下
的展开式是什么吗?
◆应用示例
例1.求的展开式。
例2.展开,并求第3项二项式系数和第6项系数。
例3.(1)求的展开式的第4项的系数;
(2)求的展开式中的系数。
◆反馈练习(课本P31练1-4)
1.写出的展开式.
2.求的展开式的第3项.
3.写出的展开式的第项.
4.的展开式的第6项的系数是()
A、B、C、D、
三、当堂检测
1.求的展开式。
2.求的展开式中的系数。
3.求二项式的展开式中的常数项。
四、课后作业
1.用二项式定理展开:.
3.求下列各式的二项展开式中指定各项的系数:(1)的含的项;
(2)的常数项。
2.2.3独立重复实验与二项分布
教学目标:
知识与技能:理解n次独立重复试验的模型及二项分布,并能解答一些简单的实际问题。
过程与方法:能进行一些与n次独立重复试验的模型及二项分布有关的概率的计算。
情感、态度与价值观:承前启后,感悟数学与生活的和谐之美,体现数学的文化功能与人文价值。
教学重点:理解n次独立重复试验的模型及二项分布,并能解答一些简单的实际问题
教学难点:能进行一些与n次独立重复试验的模型及二项分布有关的概率的计算
授课类型:新授课
课时安排:1课时
教具:多媒体、实物投影仪
教学过程:
一、复习引入:
1事件的定义:随机事件:在一定条件下可能发生也可能不发生的事件;
必然事件:在一定条件下必然发生的事件;
不可能事件:在一定条件下不可能发生的事件
2.随机事件的概率:一般地,在大量重复进行同一试验时,事件发生的频率总是接近某个常数,在它附近摆动,这时就把这个常数叫做事件的概率,记作.
3.概率的确定方法:通过进行大量的重复试验,用这个事件发生的频率近似地作为它的概率;
4.概率的性质:必然事件的概率为,不可能事件的概率为,随机事件的概率为,必然事件和不可能事件看作随机事件的两个极端情形
5基本事件:一次试验连同其中可能出现的每一个结果(事件)称为一个基本事件
6.等可能性事件:如果一次试验中可能出现的结果有个,而且所有结果出现的可能性都相等,那么每个基本事件的概率都是,这种事件叫等可能性事件
7.等可能性事件的概率:如果一次试验中可能出现的结果有个,而且所有结果都是等可能的,如果事件包含个结果,那么事件的概率
8.等可能性事件的概率公式及一般求解方法
9.事件的和的意义:对于事件A和事件B是可以进行加法运算的
10互斥事件:不可能同时发生的两个事件.
一般地:如果事件中的任何两个都是互斥的,那么就说事件彼此互斥
11.对立事件:必然有一个发生的互斥事件.
12.互斥事件的概率的求法:如果事件彼此互斥,那么
=
13.相互独立事件:事件(或)是否发生对事件(或)发生的概率没有影响,这样的两个事件叫做相互独立事件
若与是相互独立事件,则与,与,与也相互独立
14.相互独立事件同时发生的概率:
一般地,如果事件相互独立,那么这个事件同时发生的概率,等于每个事件发生的概率的积,
二、讲解新课:
1独立重复试验的定义:
指在同样条件下进行的,各次之间相互独立的一种试验
2.独立重复试验的概率公式:
一般地,如果在1次试验中某事件发生的概率是,那么在次独立重复试验中这个事件恰好发生次的概率.
它是展开式的第项
3.离散型随机变量的二项分布:在一次随机试验中,某事件可能发生也可能不发生,在n次独立重复试验中这个事件发生的次数ξ是一个随机变量.如果在一次试验中某事件发生的概率是P,那么在n次独立重复试验中这个事件恰好发生k次的概率是
,(k=0,1,2,…,n,).
于是得到随机变量ξ的概率分布如下:
ξ01…k…n
P
…
…
由于恰好是二项展开式
中的各项的值,所以称这样的随机变量ξ服从二项分布(binomialdistribution),
记作ξ~B(n,p),其中n,p为参数,并记=b(k;n,p).
三、讲解范例:
例1.某射手每次射击击中目标的概率是0.8.求这名射手在10次射击中,
(1)恰有8次击中目标的概率;
(2)至少有8次击中目标的概率.(结果保留两个有效数字.)
解:设X为击中目标的次数,则X~B(10,0.8).
(1)在10次射击中,恰有8次击中目标的概率为
P(X=8)=.
(2)在10次射击中,至少有8次击中目标的概率为
P(X≥8)=P(X=8)+P(X=9)+P(X=10)
.
例2.(2000年高考题)某厂生产电子元件,其产品的次品率为5%.现从一批产品中任意地连续取出2件,写出其中次品数ξ的概率分布.
解:依题意,随机变量ξ~B(2,5%).所以,
P(ξ=0)=(95%)=0.9025,P(ξ=1)=(5%)(95%)=0.095,
P()=(5%)=0.0025.
因此,次品数ξ的概率分布是
ξ012
P0.90250.0950.0025
例3.重复抛掷一枚筛子5次得到点数为6的次数记为ξ,求P(ξ3).
解:依题意,随机变量ξ~B.
∴P(ξ=4)==,P(ξ=5)==.
∴P(ξ3)=P(ξ=4)+P(ξ=5)=
例4.某气象站天气预报的准确率为,计算(结果保留两个有效数字):
(1)5次预报中恰有4次准确的概率;
(2)5次预报中至少有4次准确的概率
解:(1)记“预报1次,结果准确”为事件.预报5次相当于5次独立重复试验,根据次独立重复试验中某事件恰好发生次的概率计算公式,5次预报中恰有4次准确的概率
答:5次预报中恰有4次准确的概率约为0.41.
(2)5次预报中至少有4次准确的概率,就是5次预报中恰有4次准确的概率与5次预报都准确的概率的和,即
答:5次预报中至少有4次准确的概率约为0.74.
例5.某车间的5台机床在1小时内需要工人照管的概率都是,求1小时内5台机床中至少2台需要工人照管的概率是多少?(结果保留两个有效数字)
解:记事件=“1小时内,1台机器需要人照管”,1小时内5台机器需要照管相当于5次独立重复试验
1小时内5台机床中没有1台需要工人照管的概率,
1小时内5台机床中恰有1台需要工人照管的概率,
所以1小时内5台机床中至少2台需要工人照管的概率为
答:1小时内5台机床中至少2台需要工人照管的概率约为.
点评:“至多”,“至少”问题往往考虑逆向思维法
例6.某人对一目标进行射击,每次命中率都是0.25,若使至少命中1次的概率不小于0.75,至少应射击几次?
解:设要使至少命中1次的概率不小于0.75,应射击次
记事件=“射击一次,击中目标”,则.
∵射击次相当于次独立重复试验,
∴事件至少发生1次的概率为.
由题意,令,∴,∴,
∴至少取5.
答:要使至少命中1次的概率不小于0.75,至少应射击5次
例7.十层电梯从低层到顶层停不少于3次的概率是多少?停几次概率最大?
解:依题意,从低层到顶层停不少于3次,应包括停3次,停4次,停5次,……,直到停9次
∴从低层到顶层停不少于3次的概率
设从低层到顶层停次,则其概率为,
∴当或时,最大,即最大,
答:从低层到顶层停不少于3次的概率为,停4次或5次概率最大.
例8.实力相等的甲、乙两队参加乒乓球团体比赛,规定5局3胜制(即5局内谁先赢3局就算胜出并停止比赛).
(1)试分别求甲打完3局、4局、5局才能取胜的概率.
(2)按比赛规则甲获胜的概率.
解:甲、乙两队实力相等,所以每局比赛甲获胜的概率为,乙获胜的概率为.
记事件=“甲打完3局才能取胜”,记事件=“甲打完4局才能取胜”,
记事件=“甲打完5局才能取胜”.
①甲打完3局取胜,相当于进行3次独立重复试验,且每局比赛甲均取胜
∴甲打完3局取胜的概率为.
②甲打完4局才能取胜,相当于进行4次独立重复试验,且甲第4局比赛取胜,前3局为2胜1负
∴甲打完4局才能取胜的概率为.
③甲打完5局才能取胜,相当于进行5次独立重复试验,且甲第5局比赛取胜,前4局恰好2胜2负
∴甲打完5局才能取胜的概率为.
(2)事件=“按比赛规则甲获胜”,则,
又因为事件、、彼此互斥,
故.
答:按比赛规则甲获胜的概率为.
例9.一批玉米种子,其发芽率是0.8.(1)问每穴至少种几粒,才能保证每穴至少有一粒发芽的概率大于?(2)若每穴种3粒,求恰好两粒发芽的概率.()
解:记事件=“种一粒种子,发芽”,则,,
(1)设每穴至少种粒,才能保证每穴至少有一粒发芽的概率大于.
∵每穴种粒相当于次独立重复试验,记事件=“每穴至少有一粒发芽”,则
.
∴.
由题意,令,所以,两边取常用对数得,
.即,
∴,且,所以取.
答:每穴至少种3粒,才能保证每穴至少有一粒发芽的概率大于.
(2)∵每穴种3粒相当于3次独立重复试验,
∴每穴种3粒,恰好两粒发芽的概率为,
答:每穴种3粒,恰好两粒发芽的概率为0.384
四、课堂练习:
1.每次试验的成功率为,重复进行10次试验,其中前7次都未成功后3次都成功的概率为()
2.10张奖券中含有3张中奖的奖券,每人购买1张,则前3个购买者中,恰有一人中奖的概率为()
3.某人有5把钥匙,其中有两把房门钥匙,但忘记了开房门的是哪两把,只好逐把试开,则此人在3次内能开房门的概率是()
4.甲、乙两队参加乒乓球团体比赛,甲队与乙队实力之比为,比赛时均能正常发挥技术水平,则在5局3胜制中,甲打完4局才胜的概率为()
5.一射手命中10环的概率为0.7,命中9环的概率为0.3,则该射手打3发得到不少于29环的概率为.(设每次命中的环数都是自然数)
6.一名篮球运动员投篮命中率为,在一次决赛中投10个球,则投中的球数不少于9个的概率为.
7.一射手对同一目标独立地进行4次射击,已知至少命中一次的概率为,则此射手的命中率为.
8.某车间有5台车床,每台车床的停车或开车是相互独立的,若每台车床在任一时刻处于停车状态的概率为,求:(1)在任一时刻车间有3台车床处于停车的概率;(2)至少有一台处于停车的概率
9.种植某种树苗,成活率为90%,现在种植这种树苗5棵,试求:
⑴全部成活的概率;⑵全部死亡的概率;
⑶恰好成活3棵的概率;⑷至少成活4棵的概率
10.(1)设在四次独立重复试验中,事件至少发生一次的概率为,试求在一次试验中事件发生的概率(2)某人向某个目标射击,直至击中目标为止,每次射击击中目标的概率为,求在第次才击中目标的概率
答案:1.C2.D3.A4.A5.0.7846.0.046
7.8.(1)(2)
9.⑴;⑵;
⑶;⑷
10.(1)(2)
五、小结:1.独立重复试验要从三方面考虑第一:每次试验是在同样条件下进行第二:各次试验中的事件是相互独立的第三,每次试验都只有两种结果,即事件要么发生,要么不发生
2.如果1次试验中某事件发生的概率是,那么次独立重复试验中这个事件恰好发生次的概率为对于此式可以这么理解:由于1次试验中事件要么发生,要么不发生,所以在次独立重复试验中恰好发生次,则在另外的次中没有发生,即发生,由,所以上面的公式恰为展开式中的第项,可见排列组合、二项式定理及概率间存在着密切的联系
六、课后作业:课本58页练习1、2、3、4第60页习题2.2B组2、3
七、板书设计(略)
八、课后记:
教学反思:
1.理解n次独立重复试验的模型及二项分布,并能解答一些简单的实际问题。
2.能进行一些与n次独立重复试验的模型及二项分布有关的概率的计算。
3.承前启后,感悟数学与生活的和谐之美,体现数学的文化功能与人文价值。
俗话说,居安思危,思则有备,有备无患。作为高中教师就要根据教学内容制定合适的教案。教案可以让学生更好地进入课堂环境中来,帮助高中教师营造一个良好的教学氛围。你知道怎么写具体的高中教案内容吗?考虑到您的需要,小编特地编辑了“2.2二项分布及其应用教案三(新人教A版选修2-3)”,供您参考,希望能够帮助到大家。
2.2.2事件的相互独立性
教学目标:
知识与技能:理解两个事件相互独立的概念。
过程与方法:能进行一些与事件独立有关的概率的计算。
情感、态度与价值观:通过对实例的分析,会进行简单的应用。
教学重点:独立事件同时发生的概率
教学难点:有关独立事件发生的概率计算
授课类型:新授课
课时安排:2课时
教具:多媒体、实物投影仪
教学过程:
一、复习引入:
1事件的定义:随机事件:在一定条件下可能发生也可能不发生的事件;
必然事件:在一定条件下必然发生的事件;
不可能事件:在一定条件下不可能发生的事件
2.随机事件的概率:一般地,在大量重复进行同一试验时,事件发生的频率总是接近某个常数,在它附近摆动,这时就把这个常数叫做事件的概率,记作.
3.概率的确定方法:通过进行大量的重复试验,用这个事件发生的频率近似地作为它的概率;
4.概率的性质:必然事件的概率为,不可能事件的概率为,随机事件的概率为,必然事件和不可能事件看作随机事件的两个极端情形
5基本事件:一次试验连同其中可能出现的每一个结果(事件)称为一个基本事件
6.等可能性事件:如果一次试验中可能出现的结果有个,而且所有结果出现的可能性都相等,那么每个基本事件的概率都是,这种事件叫等可能性事件
7.等可能性事件的概率:如果一次试验中可能出现的结果有个,而且所有结果都是等可能的,如果事件包含个结果,那么事件的概率
8.等可能性事件的概率公式及一般求解方法
9.事件的和的意义:对于事件A和事件B是可以进行加法运算的
10互斥事件:不可能同时发生的两个事件.
一般地:如果事件中的任何两个都是互斥的,那么就说事件彼此互斥
11.对立事件:必然有一个发生的互斥事件.
12.互斥事件的概率的求法:如果事件彼此互斥,那么
=
探究:
(1)甲、乙两人各掷一枚硬币,都是正面朝上的概率是多少?
事件:甲掷一枚硬币,正面朝上;事件:乙掷一枚硬币,正面朝上
(2)甲坛子里有3个白球,2个黑球,乙坛子里有2个白球,2个黑球,从这两个坛子里分别摸出1个球,它们都是白球的概率是多少?
事件:从甲坛子里摸出1个球,得到白球;事件:从乙坛子里摸出1个球,得到白球
问题(1)、(2)中事件、是否互斥?(不互斥)可以同时发生吗?(可以)
问题(1)、(2)中事件(或)是否发生对事件(或)发生的概率有无影响?(无影响)
思考:三张奖券中只有一张能中奖,现分别由三名同学有放回地抽取,事件A为“第一名同学没有抽到中奖奖券”,事件B为“最后一名同学抽到中奖奖券”.事件A的发生会影响事件B发生的概率吗?
显然,有放回地抽取奖券时,最后一名同学也是从原来的三张奖券中任抽一张,因此第一名同学抽的结果对最后一名同学的抽奖结果没有影响,即事件A的发生不会影响事件B发生的概率.于是
P(B|A)=P(B),
P(AB)=P(A)P(B|A)=P(A)P(B).
二、讲解新课:
1.相互独立事件的定义:
设A,B为两个事件,如果P(AB)=P(A)P(B),则称事件A与事件B相互独立(mutuallyindependent).
事件(或)是否发生对事件(或)发生的概率没有影响,这样的两个事件叫做相互独立事件
若与是相互独立事件,则与,与,与也相互独立
2.相互独立事件同时发生的概率:
问题2中,“从这两个坛子里分别摸出1个球,它们都是白球”是一个事件,它的发生,就是事件,同时发生,记作.(简称积事件)
从甲坛子里摸出1个球,有5种等可能的结果;从乙坛子里摸出1个球,有4种等可能的结果于是从这两个坛子里分别摸出1个球,共有种等可能的结果同时摸出白球的结果有种所以从这两个坛子里分别摸出1个球,它们都是白球的概率.
另一方面,从甲坛子里摸出1个球,得到白球的概率,从乙坛子里摸出1个球,得到白球的概率.显然.
这就是说,两个相互独立事件同时发生的概率,等于每个事件发生的概率的积一般地,如果事件相互独立,那么这个事件同时发生的概率,等于每个事件发生的概率的积,
即.
3.对于事件A与B及它们的和事件与积事件有下面的关系:
三、讲解范例:
例1.某商场推出二次开奖活动,凡购买一定价值的商品可以获得一张奖券.奖券上有一个兑奖号码,可以分别参加两次抽奖方式相同的兑奖活动.如果两次兑奖活动的中奖概率都是0.05,求两次抽奖中以下事件的概率:
(1)都抽到某一指定号码;
(2)恰有一次抽到某一指定号码;
(3)至少有一次抽到某一指定号码.
解:(1)记“第一次抽奖抽到某一指定号码”为事件A,“第二次抽奖抽到某一指定号码”为事件B,则“两次抽奖都抽到某一指定号码”就是事件AB.由于两次抽奖结果互不影响,因此A与B相互独立.于是由独立性可得,两次抽奖都抽到某一指定号码的概率
P(AB)=P(A)P(B)=0.05×0.05=0.0025.
(2)“两次抽奖恰有一次抽到某一指定号码”可以用(A)U(B)表示.由于事件A与B互斥,根据概率加法公式和相互独立事件的定义,所求的概率为
P(A)十P(B)=P(A)P()+P()P(B)
=0.05×(1-0.05)+(1-0.05)×0.05=0.095.
(3)“两次抽奖至少有一次抽到某一指定号码”可以用(AB)U(A)U(B)表示.由于事件AB,A和B两两互斥,根据概率加法公式和相互独立事件的定义,所求的概率为P(AB)+P(A)+P(B)=0.0025+0.095=0.0975.
例2.甲、乙二射击运动员分别对一目标射击次,甲射中的概率为,乙射中的概率为,求:
(1)人都射中目标的概率;
(2)人中恰有人射中目标的概率;
(3)人至少有人射中目标的概率;
(4)人至多有人射中目标的概率?
解:记“甲射击次,击中目标”为事件,“乙射击次,击中目标”为事件,则与,与,与,与为相互独立事件,
(1)人都射中的概率为:
,
∴人都射中目标的概率是.
(2)“人各射击次,恰有人射中目标”包括两种情况:一种是甲击中、乙未击中(事件发生),另一种是甲未击中、乙击中(事件发生)根据题意,事件与互斥,根据互斥事件的概率加法公式和相互独立事件的概率乘法公式,所求的概率为:
∴人中恰有人射中目标的概率是.
(3)(法1):2人至少有1人射中包括“2人都中”和“2人有1人不中”2种情况,其概率为.
(法2):“2人至少有一个击中”与“2人都未击中”为对立事件,
2个都未击中目标的概率是,
∴“两人至少有1人击中目标”的概率为.
(4)(法1):“至多有1人击中目标”包括“有1人击中”和“2人都未击中”,
故所求概率为:
.
(法2):“至多有1人击中目标”的对立事件是“2人都击中目标”,
故所求概率为
例3.在一段线路中并联着3个自动控制的常开开关,只要其中有1个开关能够闭合,线路就能正常工作假定在某段时间内每个开关能够闭合的概率都是0.7,计算在这段时间内线路正常工作的概率
解:分别记这段时间内开关,,能够闭合为事件,,.
由题意,这段时间内3个开关是否能够闭合相互之间没有影响根据相互独立事件的概率乘法公式,这段时间内3个开关都不能闭合的概率是
∴这段时间内至少有1个开关能够闭合,,从而使线路能正常工作的概率是
.
答:在这段时间内线路正常工作的概率是.
变式题1:如图添加第四个开关与其它三个开关串联,在某段时间内此开关能够闭合的概率也是0.7,计算在这段时间内线路正常工作的概率
()
变式题2:如图两个开关串联再与第三个开关并联,在某段时间内每个开关能够闭合的概率都是0.7,计算在这段时间内线路正常工作的概率
方法一:
方法二:分析要使这段时间内线路正常工作只要排除开且与至少有1个开的情况
例4.已知某种高炮在它控制的区域内击中敌机的概率为0.2.
(1)假定有5门这种高炮控制某个区域,求敌机进入这个区域后未被击中的概率;
(2)要使敌机一旦进入这个区域后有0.9以上的概率被击中,需至少布置几门高炮?
分析:因为敌机被击中的就是至少有1门高炮击中敌机,故敌机被击中的概率即为至少有1门高炮击中敌机的概率
解:(1)设敌机被第k门高炮击中的事件为(k=1,2,3,4,5),那么5门高炮都未击中敌机的事件为.
∵事件,,,,相互独立,
∴敌机未被击中的概率为
=
∴敌机未被击中的概率为.
(2)至少需要布置门高炮才能有0.9以上的概率被击中,仿(1)可得:
敌机被击中的概率为1-
∴令,∴
两边取常用对数,得
∵,∴
∴至少需要布置11门高炮才能有0.9以上的概率击中敌机
点评:上面例1和例2的解法,都是解应用题的逆向思考方法采用这种方法在解决带有词语“至多”、“至少”的问题时的运用,常常能使问题的解答变得简便
四、课堂练习:
1.在一段时间内,甲去某地的概率是,乙去此地的概率是,假定两人的行动相互之间没有影响,那么在这段时间内至少有1人去此地的概率是()
2.从甲口袋内摸出1个白球的概率是,从乙口袋内摸出1个白球的概率是,从两个口袋内各摸出1个球,那么等于()
2个球都是白球的概率2个球都不是白球的概率
2个球不都是白球的概率2个球中恰好有1个是白球的概率
3.电灯泡使用时间在1000小时以上概率为0.2,则3个灯泡在使用1000小时后坏了1个的概率是()
0.1280.0960.1040.384
4.某道路的、、三处设有交通灯,这三盏灯在一分钟内开放绿灯的时间分别为25秒、35秒、45秒,某辆车在这条路上行驶时,三处都不停车的概率是()
5.(1)将一个硬币连掷5次,5次都出现正面的概率是;
(2)甲、乙两个气象台同时作天气预报,如果它们预报准确的概率分别是0.8与0.7,那么在一次预报中两个气象台都预报准确的概率是.
6.棉籽的发芽率为0.9,发育为壮苗的概率为0.6,
(1)每穴播两粒,此穴缺苗的概率为;此穴无壮苗的概率为.
(2)每穴播三粒,此穴有苗的概率为;此穴有壮苗的概率为.
7.一个工人负责看管4台机床,如果在1小时内这些机床不需要人去照顾的概率第1台是0.79,第2台是0.79,第3台是0.80,第4台是0.81,且各台机床是否需要照顾相互之间没有影响,计算在这个小时内这4台机床都不需要人去照顾的概率.
8.制造一种零件,甲机床的废品率是0.04,乙机床的废品率是0.05.从它们制造的产品中各任抽1件,其中恰有1件废品的概率是多少?
9.甲袋中有8个白球,4个红球;乙袋中有6个白球,6个红球,从每袋中任取一个球,问取得的球是同色的概率是多少?
答案:1.C2.C3.B4.A5.(1)(2)
6.(1),(2),
7.P=
8.P=
9.提示:
五、小结:两个事件相互独立,是指它们其中一个事件的发生与否对另一个事件发生的概率没有影响一般地,两个事件不可能即互斥又相互独立,因为互斥事件是不可能同时发生的,而相互独立事件是以它们能够同时发生为前提的相互独立事件同时发生的概率等于每个事件发生的概率的积,这一点与互斥事件的概率和也是不同的
六、课后作业:课本58页练习1、2、3第60页习题2.2A组4.B组1
七、板书设计(略)
八、教学反思:
1.理解两个事件相互独立的概念。
2.能进行一些与事件独立有关的概率的计算。
3.通过对实例的分析,会进行简单的应用。
俗话说,居安思危,思则有备,有备无患。高中教师在教学前就要准备好教案,做好充分的准备。教案可以更好的帮助学生们打好基础,帮助高中教师营造一个良好的教学氛围。那么,你知道高中教案要怎么写呢?以下是小编收集整理的“二项式定理学案”,仅供参考,欢迎大家阅读。
§1.5.1二项式定理
一、知识要点
1.二项式定理:
2.通项:
3.二项式系数与项的系数:
二、典型例题
例1.展开下列各式:
⑴⑵
例2.求的展开式中第4项的二项式系数和系数.
例3.求的二项展开式中的常数项.
例4.已知在的展开式中,第6项为常数项.
⑴求;⑵求含的项的系数;⑶求展开式中所有的有理项.
三、巩固练习
1.的展开式为.
2.的展开式中第3项的二项式系数是,第3项的系数为.
3.写出的展开式第项()为.
4.的展开式中含的项为.
5.的展开式中的常数项为.
四、课堂小结
五、课后反思
六、课后作业
1.展开式中项的系数为.
2.的展开式中,含的项的系数是.
3.在展开式中,项的系数是15,则实数=.
4.化简=.
5.的展开式中的常数项为.
6.若的展开式中,第2项小于第1项,且不小于第3项,则的取值范围是.
7.展开式中,含项的系数为.
8.若的展开式中的第3项与第5项的系数相等,求展开式中的系数.
9.二项式的展开式中第2,3,4项的二项式系数成等差数列,求展开式中的常数项.
10.求展开式中的所有的含的有理项.
订正栏:
文章来源:http://m.jab88.com/j/38247.html
更多