课题:含绝对值的不等式的解法
教学目标:掌握一些简单的含绝对值的不等式的解法.
教学重点:解含绝对值不等式的基本思想是去掉绝对值符号,将其等价转化为一元一次(二次)不等式(组),难点是含绝对值不等式与其它内容的综合问题及求解过程中,集合间的交、并等各种运算.
教学过程:
(一)主要知识:
1.绝对值的几何意义:是指数轴上点到原点的距离;是指数轴上两点间的距离
2.当时,或,;
当时,,.
(二)主要方法:
1.解含绝对值的不等式的基本思想是去掉绝对值符号,将其等价转化为一元一次(二次)不等式(组)进行求解;
2.去掉绝对值的主要方法有:
(1)公式法:,或.
(2)定义法:零点分段法;
(3)平方法:不等式两边都是非负时,两边同时平方.
3.解绝对值不等式的其他方法:
(1)利用绝对值的集合意义法:
(2)利用函数图象法:原理:不等式f(x)g(x)的解集是函数y=f(x)的图象位于函数y=g(x)的图象上方的点的横坐标的集合.
(三)高考回顾:
考题1(2004全国文)不等式1<|x+1|<3的解集为()
A(0,2)B(-2,0)∪(2,4)
C(-4,0)D(-4,-2)∪(0,2)
考题2(2004江苏)设集合P={1,2,3,4},Q={},则P∩Q等于()
(A){1,2}(B){3,4}
(C){1}(D){-2,-1,0,1,2}
考题3(05重庆卷)不等式组的解集为()(A)(0,);(B)(,2);(C)(,4);(D)(2,4)
考题4(2004辽宁文)设全集U=R,
(I).解关于x的不等式|x-1|+a-10(xR);
(II).记A为(I)中不等式的解集,集合.若恰有三个元素,求a的取值范围.
(四)例题分析:
例1.解下列不等式:
(1);(2);
例2.(1)对任意实数,恒成立,则的取值范围是;
(2)对任意实数,恒成立,则的取值范围是.
例3.设,解关于的不等式:.
分析:本题是一个含有参数的不等式,解这类不等式时常要就参数的取值进行讨论。
例4.已知,,且,求实数的取值范围.
分析:要注意空集的情况
例5.在一条公路上,每隔有个仓库(如下图),共有5个仓库.一号仓库存有货物,二号仓库存,五号仓库存,其余两个仓库是空的.现在想把所有的货物放在一个仓库里,如果每吨货物运输需要元运输费,那么最少要多少运费才行?
(五)巩固练习:
1.的解集是;的解集是;
2.不等式成立的充要条件是;
3.若关于的不等式的解集不是空集,则;
4.不等式成立,则.
(六)课后作业:
1.不等式|x2-x|x的解集是.
2.不等式log2|x-3|1的解集是.
3.若x∈R,则(1-|x|)(1+x)0的充要条件是()
(A)|x|1(B)x-1或-1x1(C)|x|1(D)x-1
4.不等式3≤|5-2x|9的解集是()
(A)(-∞,-2)∪(7,+∞)(B)[1,4]
(C)[-2,1]∪[4,7](D)(-2,1]∪[4,7)
5.不等式1的解集是()
(A)(1,5)(B)(,2)(C)(1,2)(D)(,5)
6.,解关于x的不等式:
教案课件是每个老师工作中上课需要准备的东西,准备教案课件的时刻到来了。只有写好教案课件计划,才能规范的完成工作!你们会写适合教案课件的范文吗?下面是小编为大家整理的“含绝对值不等式的解法”,欢迎阅读,希望您能阅读并收藏。
选修4-5学案§1.2.2含绝对值不等式的解法姓名
☆学习目标:1.掌握一些简单的含绝对值的不等式的解法;
2.理解含绝对值不等式的解法思想:去掉绝对值符号,等价转化
知识情景:
1.绝对值的定义:,
2.绝对值的几何意义:
10.实数的绝对值,表示数轴上坐标为的点A
20.两个实数,它们在数轴上对应的点分别为,
那么的几何意义是.
3.绝对值三角不等式:
①时,如下图,易得:.
②时,如下图,易得:.
③时,显然有:.综上,得
定理1如果,那么.当且仅当时,等号成立.
定理2如果,那么.当且仅当时,等号成立.
建构新知:含绝对值不等式的解法
1.设为正数,根据绝对值的意义,不等式的解集是
它的几何意义就是数轴上的点的集合是开区间,如图所示.
2.设为正数,根据绝对值的意义,不等式的解集是
它的几何意义就是数轴上的点的集合是开区间,如图所示.
3.设为正数,则10.;
20.;
30.设,则.
4.10.≥;
20..
☆案例学习:
例1解不等式(1);(2).
例2解不等式(1);(2).
例3解不等式(1);(2).
例4(1)(北京春)若不等式的解集为,则实数等于()
(2)不等式,对一切实数都成立,则实数的取值范围是
例5已知,≤,且,求实数的范围.
选修4-5练习§1.2.2含绝对值不等式的解法姓名
解不等式
11.已知不等式的解集为,求的值
12.解关于的不等式()
13.解关于的不等式:①解关于的不等式;②
题目第六章不等式绝对值不等式
高考要求
1理解不等式│a│-│b│≤│a+b│≤│a│+│b│
2.掌握解绝对值不等式等不等式的基本思路,会用分类、换元、数形结合的方法解不等式;
知识点归纳
1.解绝对值不等式的基本思想:解绝对值不等式的基本思想是去绝对值,常采用的方法是讨论符号和平方
2.注意利用三角不等式证明含有绝对值的问题
||a|─|b|||a+b||a|+|b|;||a|─|b|||a─b||a|+|b|;并指出等号条件
3.(1)|f(x)|g(x)─g(x)f(x)g(x);
(2)|f(x)|g(x)f(x)g(x)或f(x)─g(x)(无论g(x)是否为正)
(3)含绝对值的不等式性质(双向不等式)
左边在时取得等号,右边在时取得等号
题型讲解
例1解不等式分析:不等式(其中)可以推广为任意都成立,且为代数式也成立解:原不等式又化为∴原不等式的解集为点评:可利用去掉绝对值符号例2求证:不等式
综上(1),(2)得
例3
所以,原命题得证
例4
例5
证明:
例6
证明:令
例7a,bR证明|a+b|-|a-b|2|b|
例8解不等式||x+3|─|x─3||3
解法一:分区间去绝对值(零点分段法):
∵||x+3|─|x─3||3
∴(1)x─3;
(2)3/2x3或─3x─3/2;
(3)x3
∴原不等式的解为x─3/2或x3/2
解法二:用平方法脱去绝对值:
两边平方:(|x+3|─|x─3|)29,即2x2+92|x2─9|;
两边再平方分解因式得:x29/4x─3/2或x3/2
例9解不等式|x2─3|x|─3|1
解:∵|x2─3|x|─3|1
∴─1x2─3|x|─31
∴
∴原不等式的解是:x4或─4x
点评:本题由于运用了x∈R时,x2=|x|2从而避免了一场大规模的讨论
例10求使不等式|x─4|+|x─3|a有解的a的取值范围
解:设f(x)=|x─4|+|x─3|,
要使f(x)a有解,则a应该大于f(x)的最小值,
由三角不等式得:
f(x)=|x─4|+|x─3||(x─4)─(x─3)|=1,
所以f(x)的最小值为1,
∴a1
点评:本题对条件进行转化,变为最值问题,从而简化了讨论
例11已知二次函数f(x)满足|f(1)|1,|f(0)|1,|f(─1)|1,
求证:|x|1时,有|f(x)|5/4
证明:设f(x)=ax2+bx+c,
由题意,得
∴a=[f(1)+f(─1)─2f(0)],b=[f(1)─f(1)];c=f(0)
代入f(x)的表达式变形得:
f(x)=f(1)(x2+x)/2+f(─1)(x2─x)/2+(1─x2)f(0)
∵|f(1)|1,|f(0)|1,f(─1)|1,
∴当|x|1时,
|f(x)||(x2+x)/2||f(1)|+|(x2─x)/2||f(─1)|+(1─x2)|f(0)|
|x|(1+x)/2+|x|(1─x)/2+(1─x2)
=─x2+|x|+1=─(|x|─1/2)2+5/45/4
例12已知a,b,c都是实数,且|a|1,|b|1,|c|1,求证:ab+bc+ca─1
证明:设f(x)=x(b+c)+bc─(─1),
∵|a|1,|b|1,|c|1,
∴f(1)=(b+c)+bc+1=(1+b)(1+c)0,
f(─1)=-(b+c)+bc+1=(1-b)(1-c)0,
∴当a∈(─1,1)时,f(x)0恒成立
∴f(a)=a(b+c)+bc─(─1)0,
∴ab+bc+ca─1
例13
证明:
小结:
1.理解绝对值不等式的定义,掌握绝对值不等式的定理和推论,会用绝对值不等式的定理和推论解决绝对值不等式的有关证明问题
2.解绝对值不等式的基本途径是去掉绝对值符号,常用的方法是:(1)分类讨论;(2)平方;(3)利用绝对值不等式的性质,如
等
3.证明绝对值不等式的基本思想和基本方法分别是转化思想和比较法,分析法,换元法,综合法,放缩法,反证法等等
学生练习
1.不等式的解集为()
A.B.C.D.
答案:D
2.不等式|x-4|+|x-3|a有解的充要条件是()
Aa7Ba1Ca1Da≥1
答案:B提示:代数式|x-4|+|x-3|表示数轴上的点到(4,0)与(3,0)两点的距离和,最小值为1,∴当a1时,不等式有解
3.若A={x||x-1|2},B={x|0,则A∩B=()
A{x|-1x3}B{x|x0或x2}C{x|-1x0或2x3}D{x|-1x0}
答案:C提示:A={x|-1x3},B={x|x2或x0},∴A∩B={x|-1x0或2x3}
4.不等式1≤≤2的解集是
答案:1≤x≤或≤x≤3
5.如果y=logx在(0,+∞)内是减函数,则a的取值范围是()
A|a|1B|a|C1|a|Da或a-
答案:C提示:0a2-1,∴1|a|
6.解不等式|logx|+|log(3-x)|≥1
答案:{x|0x≤或≤x3}
提示:分0x1,1x2,2x3三种情况讨论,当0x1时,解得0x≤;当1x2时,无解;当2x3时,解得≤x3
课前后备注
文章来源:http://m.jab88.com/j/28566.html
更多