2.4.1平面向量的数量积的物理背景及其含义
一、教材分析
本节学习的关键是启发学生理解平面向量数量积的定义,理解定义之后便可引导学生推导数量积的运算律,然后通过概念辨析题加深学生对于平面向量数量积的认识.主要知识点:平面向量数量积的定义及几何意义;平面向量数量积的5个重要性质;平面向量数量积的运算律.
二.教学目标
1.了解平面向量数量积的物理背景,理解数量积的含义及其物理意义;
2.体会平面向量的数量积与向量投影的关系,理解掌握数量积的性质和运算律,并能运用性质和运算律进行相关的判断和运算;
3.体会类比的数学思想和方法,进一步培养学生抽象概括、推理论证的能力。
三、教学重点难点
重点:1、平面向量数量积的含义与物理意义,2、性质与运算律及其应用。
难点:平面向量数量积的概念
四、学情分析
我们的学生属于平行分班,没有实验班,学生已有的知识和实验水平有差距。有些学生对于基本概念不清楚,所以讲解时需要详细
五、教学方法
1.实验法:多媒体、实物投影仪。
2.学案导学:见后面的学案。
3.新授课教学基本环节:预习检查、总结疑惑→情境导入、展示目标→合作探究、精讲点拨→反思总结、当堂检测→发导学案、布置预习
六、课前准备
1.学生的学习准备:预习学案。
2.教师的教学准备:多媒体课件制作,课前预习学案,课内探究学案,课后延伸拓展学案。。
七、课时安排:1课时
八、教学过程
(一)预习检查、总结疑惑
检查落实了学生的预习情况并了解了学生的疑惑,使教学具有了针对性。
(二)情景导入、展示目标。
创设问题情景,引出新课
1、提出问题1:请同学们回顾一下,我们已经研究了向量的哪些运算?这些运算的结果是什么?
期望学生回答:向量的加法、减法及数乘运算。
2、提出问题2:请同学们继续回忆,我们是怎么引入向量的加法运算的?我们又是按照怎样的顺序研究了这种运算的?
期望学生回答:物理模型→概念→性质→运算律→应用
3、新课引入:本节课我们仍然按照这种研究思路来研究向量的另外一种运算:平面向量数量积的物理背景及其含义
(三)合作探究,精讲点拨
探究一:数量积的概念
1、给出有关材料并提出问题3:
(1)如图所示,一物体在力F的作用下产生位移S,
那么力F所做的功:W=|F||S|cosα。
(2)这个公式的有什么特点?请完成下列填空:
①W(功)是量,
②F(力)是量,
③S(位移)是量,
④α是。
(3)你能用文字语言表述“功的计算公式”吗?
期望学生回答:功是力与位移的大小及其夹角余弦的乘积
2、明晰数量积的定义
(1)数量积的定义:
已知两个非零向量与,它们的夹角为,我们把数量︱︱︱b︱cos叫做与的数量积(或内积),记作:,即:=︱︱︱︱cos
(2)定义说明:
①记法“”中间的“”不可以省略,也不可以用“”代替。
②“规定”:零向量与任何向量的数量积为零。
(3)提出问题4:向量的数量积运算与线性运算的结果有什么不同?影响数量积大小的因素有哪些?
期望学生回答:线性运算的结果是向量,而数量积的结果则是数,这个数值的大小不仅和向量与的模有关,还和它们的夹角有关。
(4)学生讨论,并完成下表:
的范围
0°≤90°
=90°
0°≤180°
的符号
例1:已知||=3,||=6,当①∥,②⊥,③与的夹角是60°时,分别求.
解:①当∥时,若与同向,则它们的夹角θ=0°,
∴=||||cos0°=3×6×1=18;
若与b反向,则它们的夹角θ=180°,
∴=||||cos180°=3×6×(-1)=-18;
②当⊥时,它们的夹角θ=90°,
∴=0;
③当与的夹角是60°时,有
=||||cos60°=3×6×=9
评述:两个向量的数量积与它们的夹角有关,其范围是[0°,180°],因此,当∥时,有0°或180°两种可能.
变式:对于两个非零向量、,求使|+t|最小时的t值,并求此时与+t的夹角。
探究二:研究数量积的意义
1.给出向量投影的概念:
如图,我们把││cos(││cos)
叫做向量在方向上(在方向上)的投影,
记做:OB1=︱││︱cos
2.提出问题5:数量积的几何意义是什么?
期望学生回答:数量积等于的长度︱︱与在的方向上的投影
︱︱cos的乘积。
3.研究数量积的物理意义
请同学们用一句话来概括功的数学本质:功是力与位移的数量积。
探究三:探究数量积的运算性质
1、提出问题6:
比较︱︱与︱︱×︱︱的大小,你有什么结论?
2、明晰:数量积的性质
3.数量积的运算律
(1)、提出问题7:我们学过了实数乘法的哪些运算律?这些运算律对向量是否也适用?
预测:学生可能会提出以下猜想:
①=
②()=()
③(+)=+
(2)、分析猜想:
猜想①的正确性是显而易见的。
关于猜想②的正确性,请同学们先来讨论:猜测②的左右两边的结果各是什么?它们一定相等吗?
期望学生回答:左边是与向量共线的向量,而右边则是与向量共线的向量,显然在向量与向量不共线的情况下猜测②是不正确的。
(3)、明晰:数量积的运算律:
例2、(师生共同完成)已知︱︱=6,︱︱=4,与的夹角为60°,求(+2)(-3),并思考此运算过程类似于实数哪种运算?
解:(+2)(-3)=.-3.+2.-6.
=36-3×4×6×0.5-6×4×4
=-72
评述:可以和实数做类比记忆数量积的运算律
变式:(1)(+)2=2+2+2
(2)(+)(-)=2—2
(四)反思总结,当堂检测。
教师组织学生反思总结本节课的主要内容,并进行当堂检测。
设计意图:引导学生构建知识网络并对所学内容进行简单的反馈纠正。(课堂实录)
(五)发导学案、布置预习。
我们已经学习平面向量数量积的物理背景及含义,那么,在下一节课我们一起来学习数量积的坐标运算。模。夹角。这节课后大家可以先预习这一部分,着重分析坐标的作用
设计意图:布置下节课的预习作业,并对本节课巩固提高。教师课后及时批阅本节的延伸拓展训练。
九、板书设计
十、教学反思
本课的设计采用了课前下发预习学案,学生预习本节内容,找出自己迷惑的地方。课堂上师生主要解决重点、难点、疑点、考点、探究点以及学生学习过程中易忘、易混点等,最后进行当堂检测,课后进行延伸拓展,以达到提高课堂效率的目的。我首先安排让学生讨论影响数量积结果的因素并完成表格,其次将数量积的几何意义提前,这样使学生从代数和
几何两个方面对数量积的“质变”特征有了更加充分的认识。通过尝试练习,一方面使学生尝试计算数量积,另一方面使学生理解数量积的物理意义,同时也为数量积的性质埋下伏笔。数量积的性质和运算律是数量积概念的延伸,教材中这两方面的内容都是以探究的形式出现,为了让学生很好的完成这两个探究活动,我始终按照先创设一定的情景,让学生去发现结论,教师明晰后,再由学生或师生共同完成证明。比如数量积的运算性质是将尝试练习的结论推广得到,数量积的运算律则是通过和实数乘法相类比得到,这样不仅使学生感到亲切自然,同时也培养了学生由特殊到一般的思维品质和类比创新的意识。
临清三中数学组编写人:王晓燕审稿人:刘桂江李怀奎
2.4.1平面向量的数量积的物理背景及其含义
课前预习学案
一、预习目标:
预习平面向量的数量积及其几何意义;平面向量数量积的重要性质及运算律;
二、预习内容:
1.平面向量数量积(内积)的定义:
2.两个向量的数量积与向量同实数积有很大区别
3.“投影”的概念:作图
4.向量的数量积的几何意义:
5.两个向量的数量积的性质:
设、为两个非零向量,e是与同向的单位向量.
1e=e=
2=
设、为两个非零向量,e是与同向的单位向量.
e=e=
3当与同向时,=当与反向时,=特别的=||2或
4cos=
5||≤||||
三、提出疑惑:
同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中
疑惑点疑惑内容
课内探究学案
一、学习目标
1说出平面向量的数量积及其几何意义;
2.学会用平面向量数量积的重要性质及运算律;
3.了解用平面向量的数量积可以处理有关长度、角度和垂直的问题;
学习重难点:。平面向量的数量积及其几何意义
二、学习过程
创设问题情景,引出新课
1、提出问题1:请同学们回顾一下,我们已经研究了向量的哪些运算?这些运算的结果是什么?
2、提出问题2:请同学们继续回忆,我们是怎么引入向量的加法运算的?我们又是按照怎样的顺序研究了这种运算的?
3、新课引入:本节课我们仍然按照这种研究思路来研究向量的另外一种运算:平面向量数量积的物理背景及其含义
探究一:
数量积的概念
1、给出有关材料并提出问题3:
(1)如图所示,一物体在力F的作用下产生位移S,
那么力F所做的功:W=
(2)这个公式的有什么特点?请完成下列填空:
①W(功)是量,
②F(力)是量,
③S(位移)是量,
④α是。
(3)你能用文字语言表述“功的计算公式”吗?
2、明晰数量积的定义
(1)数量积的定义:
已知两个非零向量与,它们的夹角为,我们把数量︱︱︱︱cos叫做与的数量积(或内积),记作:,即:=︱︱︱︱cos
(2)定义说明:
①记法“”中间的“”不可以省略,也不可以用“”代替。
②“规定”:零向量与任何向量的数量积为零。
(3)提出问题4:向量的数量积运算与线性运算的结果有什么不同?影响数量积大小的因素有哪些?
(4)学生讨论,并完成下表:
的范围
0°≤90°
=90°
0°≤180°
的符号
例1:已知||=3,||=6,当①∥,②⊥,③与的夹角是60°时,分别求.
解:
变式:
.对于两个非零向量、,求使|+t|最小时的t值,并求此时与+t的夹角.
探究二:研究数量积的意义
1.给出向量投影的概念:
如图,我们把││cos(││cos)
叫做向量在方向上(在方向上)的投影,
记做:OB1=︱││︱cos
2.提出问题5:数量积的几何意义是什么?
3.研究数量积的物理意义
请同学们用一句话来概括功的数学本质:
探究三:探究数量积的运算性质
1、提出问题6:比较︱︱与︱︱×︱︱的大小,你有什么结论?
2、明晰:数量积的性质
3.数量积的运算律
(1)、提出问题7:我们学过了实数乘法的哪些运算律?这些运算律对向量是否也用?
(2)、明晰:数量积的运算律:
例2、(师生共同完成)已知︱︱=6,︱︱=4,与的夹角为60°,求(+2)(-3),并思考此运算过程类似于实数哪种运算?
解:
变式:(1)(+)2=2+2+2
(2)(+)(-)=2—2
(三)反思总结
(四)当堂检测
1.已知||=5,||=4,与的夹角θ=120o,求.
2.已知||=6,||=4,与的夹角为60o求(+2)(-3)
.
3.已知||=3,||=4,且与不共线,k为何值时,向量+k与-k互相垂直.
4.已知||=3,||=6,当①∥,②⊥,③与的夹角是60°时,分别求.
5.已知||=1,||=,(1)若∥,求;(2)若、的夹角为60°,求|+|;(3)若-与垂直,求与的夹角.
6.设m、n是两个单位向量,其夹角为60°,求向量=2m+n与=2n-3m的夹角.
课后练习与提高
1.已知||=1,||=,且(-)与垂直,则与的夹角是()
A.60°B.30°C.135°D.45°
2.已知||=2,||=1,与之间的夹角为,那么向量m=-4的模为()
A.2B.2C.6D.12
3.已知、是非零向量,则||=||是(+)与(-)垂直的()
A.充分但不必要条件B.必要但不充分条件?
C.充要条件D.既不充分也不必要条件
4.已知向量、的夹角为,||=2,||=1,则|+||-|=.
5.已知+=2i-8j,-=-8i+16j,其中i、j是直角坐标系中x轴、y轴正方向上的单位向量,那么=.
6.已知⊥、c与、的夹角均为60°,且||=1,||=2,|c|=3,则(+2-c)2=______.
参考答案:
1.D2.B3.A
4.5.1446.11
2.3.4平面向量共线的坐标表示
预习课本P98~100,思考并完成以下问题
如何利用向量的坐标运算表示两个向量共线?
[新知初探]
平面向量共线的坐标表示
前提条件a=(x1,y1),b=(x2,y2),其中b≠0
结论当且仅当x1y2-x2y1=0时,向量a、b(b≠0)共线
[点睛](1)平面向量共线的坐标表示还可以写成x1x2=y1y2(x2≠0,y2≠0),即两个不平行于坐标轴的共线向量的对应坐标成比例;
(2)当a≠0,b=0时,a∥b,此时x1y2-x2y1=0也成立,即对任意向量a,b都有:x1y2-x2y1=0a∥b.
[小试身手]
1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)
(1)已知a=(x1,y1),b=(x2,y2),若a∥b,则必有x1y2=x2y1.()
(2)向量(2,3)与向量(-4,-6)反向.()
答案:(1)√(2)√
2.若向量a=(1,2),b=(2,3),则与a+b共线的向量可以是()
A.(2,1)B.(-1,2)C.(6,10)D.(-6,10)
答案:C
3.已知a=(1,2),b=(x,4),若a∥b,则x等于()
A.-12B.12C.-2D.2
答案:D
4.已知向量a=(-2,3),b∥a,向量b的起点为A(1,2),终点B在x轴上,则点B的坐标为________.
答案:73,0
向量共线的判定
[典例](1)已知向量a=(1,2),b=(λ,1),若(a+2b)∥(2a-2b),则λ的值等于()
A.12B.13C.1D.2
(2)已知A(2,1),B(0,4),C(1,3),D(5,-3).判断与是否共线?如果共线,它们的方向相同还是相反?
[解析](1)法一:a+2b=(1,2)+2(λ,1)=(1+2λ,4),2a-2b=2(1,2)-2(λ,1)=(2-2λ,2),由(a+2b)∥(2a-2b)可得2(1+2λ)-4(2-2λ)=0,解得λ=12.
法二:假设a,b不共线,则由(a+2b)∥(2a-2b)可得a+2b=μ(2a-2b),从而1=2μ,2=-2μ,方程组显然无解,即a+2b与2a-2b不共线,这与(a+2b)∥(2a-2b)矛盾,从而假设不成立,故应有a,b共线,所以1λ=21,即λ=12.
[答案]A
(2)[解]=(0,4)-(2,1)=(-2,3),=(5,-3)-(1,3)=(4,-6),
∵(-2)×(-6)-3×4=0,∴,共线.
又=-2,∴,方向相反.
综上,与共线且方向相反.
向量共线的判定方法
(1)利用向量共线定理,由a=λb(b≠0)推出a∥b.
(2)利用向量共线的坐标表达式x1y2-x2y1=0直接求解.
[活学活用]
已知a=(1,2),b=(-3,2),当k为何值时,ka+b与a-3b平行,平行时它们的方向相同还是相反?
解:ka+b=k(1,2)+(-3,2)=(k-3,2k+2),
a-3b=(1,2)-3(-3,2)=(10,-4),
若ka+b与a-3b平行,则-4(k-3)-10(2k+2)=0,
解得k=-13,此时ka+b=-13a+b=-13(a-3b),故ka+b与a-3b反向.
∴k=-13时,ka+b与a-3b平行且方向相反.
三点共线问题
[典例](1)已知=(3,4),=(7,12),=(9,16),求证:A,B,C三点共线;
(2)设向量=(k,12),=(4,5),=(10,k),当k为何值时,A,B,C三点
共线?
[解](1)证明:∵=-=(4,8),
=-=(6,12),
∴=32,即与共线.
又∵与有公共点A,∴A,B,C三点共线.
(2)若A,B,C三点共线,则,共线,
∵=-=(4-k,-7),
=-=(10-k,k-12),
∴(4-k)(k-12)+7(10-k)=0.
解得k=-2或k=11.
有关三点共线问题的解题策略
(1)要判断A,B,C三点是否共线,一般是看与,或与,或与是否共线,若共线,则A,B,C三点共线;
(2)使用A,B,C三点共线这一条件建立方程求参数时,利用=λ,或=λ,或=λ都是可以的,但原则上要少用含未知数的表达式.
[活学活用]
设点A(x,1),B(2x,2),C(1,2x),D(5,3x),当x为何值时,与共线且方向相同,此时,A,B,C,D能否在同一条直线上?
解:=(2x,2)-(x,1)=(x,1),
=(1,2x)-(2x,2)=(1-2x,2x-2),
=(5,3x)-(1,2x)=(4,x).
由与共线,所以x2=1×4,所以x=±2.
又与方向相同,所以x=2.
此时,=(2,1),=(-3,2),
而2×2≠-3×1,所以与不共线,
所以A,B,C三点不在同一条直线上.
所以A,B,C,D不在同一条直线上.
向量共线在几何中的应用
题点一:两直线平行判断
1.如图所示,已知直角梯形ABCD,AD⊥AB,AB=2AD=2CD,过点C作CE⊥AB于E,用向量的方法证明:DE∥BC;
证明:如图,以E为原点,AB所在直线为x轴,EC所在直线为y轴建立直角坐标系,
设||=1,则||=1,||=2.
∵CE⊥AB,而AD=DC,
∴四边形AECD为正方形,
∴可求得各点坐标分别为E(0,0),B(1,0),C(0,1),D(-1,1).
∵=(-1,1)-(0,0)=(-1,1),
=(0,1)-(1,0)=(-1,1),
∴=,∴∥,即DE∥BC.
题点二:几何形状的判断
2.已知直角坐标平面上四点A(1,0),B(4,3),C(2,4),D(0,2),求证:四边形ABCD是等腰梯形.
证明:由已知得,=(4,3)-(1,0)=(3,3),
=(0,2)-(2,4)=(-2,-2).
∵3×(-2)-3×(-2)=0,∴与共线.
=(-1,2),=(2,4)-(4,3)=(-2,1),
∵(-1)×1-2×(-2)≠0,∴与不共线.
∴四边形ABCD是梯形.
∵=(-2,1),=(-1,2),
∴||=5=||,即BC=AD.
故四边形ABCD是等腰梯形.
题点三:求交点坐标
3.如图所示,已知点A(4,0),B(4,4),C(2,6),求AC和OB交点P的坐标.
解:法一:设=t=t(4,4)
=(4t,4t),
则=-=(4t,4t)-(4,0)=(4t-4,4t),
=-=(2,6)-(4,0)=(-2,6).
由,共线的条件知(4t-4)×6-4t×(-2)=0,
解得t=34.∴=(3,3).
∴P点坐标为(3,3).
法二:设P(x,y),
则=(x,y),=(4,4).
∵,共线,
∴4x-4y=0.①
又=(x-2,y-6),=(2,-6),
且向量,共线,
∴-6(x-2)+2(6-y)=0.②
解①②组成的方程组,得x=3,y=3,
∴点P的坐标为(3,3).
应用向量共线的坐标表示求解几何问题的步骤
层级一学业水平达标
1.下列向量组中,能作为表示它们所在平面内所有向量的基底的是()
A.e1=(0,0),e2=(1,-2)
B.e1=(-1,2),e2=(5,7)
C.e1=(3,5),e2=(6,10)
D.e1=(2,-3),e2=12,-34
解析:选BA中向量e1为零向量,∴e1∥e2;C中e1=12e2,∴e1∥e2;D中e1=4e2,∴e1∥e2,故选B.
2.已知点A(1,1),B(4,2)和向量a=(2,λ),若a∥,则实数λ的值为()
A.-23B.32
C.23D.-32
解析:选C根据A,B两点的坐标,可得=(3,1),
∵a∥,∴2×1-3λ=0,解得λ=23,故选C.
3.已知A(2,-1),B(3,1),则与平行且方向相反的向量a是()
A.(2,1)B.(-6,-3)
C.(-1,2)D.(-4,-8)
解析:选D=(1,2),向量(2,1)、(-6,-3)、(-1,2)与(1,2)不平行;(-4,-8)与(1,2)平行且方向相反.
4.已知向量a=(x,2),b=(3,-1),若(a+b)∥(a-2b),则实数x的值为()
A.-3B.2
C.4D.-6
解析:选D因为(a+b)∥(a-2b),a+b=(x+3,1),a-2b=(x-6,4),所以4(x+3)-(x-6)=0,解得x=-6.
5.设a=32,tanα,b=cosα,13,且a∥b,则锐角α为()
A.30°B.60°
C.45°D.75°
解析:选A∵a∥b,
∴32×13-tanαcosα=0,
即sinα=12,α=30°.
6.已知向量a=(3x-1,4)与b=(1,2)共线,则实数x的值为________.
解析:∵向量a=(3x-1,4)与b=(1,2)共线,
∴2(3x-1)-4×1=0,解得x=1.
答案:1
7.已知A(-1,4),B(x,-2),若C(3,3)在直线AB上,则x=________.
解析:=(x+1,-6),=(4,-1),
∵∥,∴-(x+1)+24=0,∴x=23.
答案:23
8.已知向量a=(1,2),b=(-2,3),若λa+μb与a+b共线,则λ与μ的关系是________.
解析:∵a=(1,2),b=(-2,3),
∴a+b=(1,2)+(-2,3)=(-1,5),
λa+μb=λ(1,2)+μ(-2,3)=(λ-2μ,2λ+3μ),
又∵(λa+μb)∥(a+b),
∴-1×(2λ+3μ)-5(λ-2μ)=0,
∴λ=μ.
答案:λ=μ
9.已知A,B,C三点的坐标为(-1,0),(3,-1),(1,2),并且=13,=13,求证:∥.
证明:设E,F的坐标分别为(x1,y1)、(x2,y2),
依题意有=(2,2),=(-2,3),=(4,-1).
∵=13,∴(x1+1,y1)=13(2,2).
∴点E的坐标为-13,23.
同理点F的坐标为73,0,=83,-23.
又83×(-1)-4×-23=0,∴∥.
10.已知向量a=(2,1),b=(1,1),c=(5,2),m=λb+c(λ为常数).
(1)求a+b;
(2)若a与m平行,求实数λ的值.
解:(1)因为a=(2,1),b=(1,1),
所以a+b=(2,1)+(1,1)=(3,2).
(2)因为b=(1,1),c=(5,2),
所以m=λb+c=λ(1,1)+(5,2)=(λ+5,λ+2).
又因为a=(2,1),且a与m平行,
所以2(λ+2)=λ+5,解得λ=1.
层级二应试能力达标
1.已知平面向量a=(x,1),b=(-x,x2),则向量a+b()
A.平行于x轴
B.平行于第一、三象限的角平分线
C.平行于y轴
D.平行于第二、四象限的角平分线
解析:选C因为a+b=(0,1+x2),所以a+b平行于y轴.
2.若A(3,-6),B(-5,2),C(6,y)三点共线,则y=()
A.13B.-13
C.9D.-9
解析:选DA,B,C三点共线,
∴∥,而=(-8,8),=(3,y+6),
∴-8(y+6)-8×3=0,即y=-9.
3.已知向量a=(1,0),b=(0,1),c=ka+b(k∈R),d=a-b,如果c∥d,那么()
A.k=1且c与d同向
B.k=1且c与d反向
C.k=-1且c与d同向
D.k=-1且c与d反向
解析:选D∵a=(1,0),b=(0,1),若k=1,则c=a+b=(1,1),d=a-b=(1,-1),显然,c与d不平行,排除A、B.若k=-1,则c=-a+b=(-1,1),d=a-b=-(-1,1),即c∥d且c与d反向.
4.已知平行四边形三个顶点的坐标分别为(-1,0),(3,0),(1,-5),则第四个顶点的坐标是()
A.(1,5)或(5,5)
B.(1,5)或(-3,-5)
C.(5,-5)或(-3,-5)
D.(1,5)或(5,-5)或(-3,-5)
解析:选D设A(-1,0),B(3,0),C(1,-5),第四个顶点为D,
①若这个平行四边形为ABCD,
则=,∴D(-3,-5);
②若这个平行四边形为ACDB,
则=,∴D(5,-5);
③若这个平行四边形为ACBD,
则=,∴D(1,5).
综上所述,D点坐标为(1,5)或(5,-5)或(-3,-5).
5.已知=(6,1),=(x,y),=(-2,-3),∥,则x+2y的值为________.
解析:∵=++=(6,1)+(x,y)+(-2,-3)
=(x+4,y-2),
∴=-=-(x+4,y-2)=(-x-4,-y+2).
∵∥,
∴x(-y+2)-(-x-4)y=0,即x+2y=0.
答案:0
6.已知向量=(3,-4),=(6,-3),=(5-m,-3-m).若点A,B,C能构成三角形,则实数m应满足的条件为________.
解析:若点A,B,C能构成三角形,则这三点不共线,即与不共线.
∵=-=(3,1),=-=(2-m,1-m),
∴3(1-m)≠2-m,即m≠12.
答案:m≠12
7.已知A(1,1),B(3,-1),C(a,b).
(1)若A,B,C三点共线,求a与b之间的数量关系;
(2)若=2,求点C的坐标.
解:(1)若A,B,C三点共线,则与共线.
=(3,-1)-(1,1)=(2,-2),=(a-1,b-1),
∴2(b-1)-(-2)(a-1)=0,∴a+b=2.
(2)若=2,则(a-1,b-1)=(4,-4),
∴a-1=4,b-1=-4,∴a=5,b=-3,
∴点C的坐标为(5,-3).
8.如图所示,在四边形ABCD中,已知A(2,6),B(6,4),C(5,0),D(1,0),求直线AC与BD交点P的坐标.
解:设P(x,y),则=(x-1,y),
=(5,4),=(-3,6),=(4,0).
由B,P,D三点共线可得==(5λ,4λ).
又∵=-=(5λ-4,4λ),
由于与共线得,(5λ-4)×6+12λ=0.
解得λ=47,
∴=47=207,167,
∴P的坐标为277,167.
2.4平面向量的数量积小结
【学习目标】
1.理解数量积的含义掌握数量积的坐标表达式,会进行平面向量数量积的运算.
2.能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系.
3.会用向量方法解决某些简单的实际问题.
【新知自学】
知识梳理:
1.向量的夹角
已知两个________向量a和b,作OA→=a,OB→=b,则_________称作向量a与向量b的夹角,记作〈a,b〉.
向量夹角〈a,b〉的范围是______,且______=〈b,a〉.
若〈a,b〉=______,则a与b垂直,记作__________.
2.平面向量的数量积
__________叫做向量a和b的数量积(或内积),记作ab=__________.可见,ab是实数,可以等于正数、负数、零.其中|a|cosθ(|b|cosθ)叫做向量a在b方向上(b在a方向上)的投影.
数量积的记号是ab,不能写成a×b,也不能写成ab.
向量数量积满足下列运算律:
①ab=__________(交换律)
②(a+b)c=__________(分配律)
③(λa)b=__________=a(λb)(数乘结合律).
3.平面向量数量积的性质:已知非零向量a=(a1,a2),b=(b1,b2)
性质几何表示坐标表示
定义ab=|a||b|cos〈a,b〉ab=a1b1+a2b2
模aa=|a|2或|a|=aa
|a|=a21+a22
若A(x1,y1),B(x2,y2),则AB→=(x2-x1,y2-y1)|AB→|=
a⊥bab=0a1b1+a2b2=0
夹角cos〈a,b〉=ab|a||b|(|a||b|≠0)cos〈a,b〉=a1b1+a2b2a21+a22b21+b22
|ab|与|a||b|的关系|ab|≤|a||b||a1b1+a2b2|≤a21+a22b21+b22
对点练习:
1.已知下列各式:
①|a|2=a2;②ab|a|2=ba;③(ab)2=a2b2;
④(a-b)2=a2-2ab+b2,其中正确的有().
A.1个B.2个
C.3个D.4个
2.设向量a=(1,0),b=12,12,则下列结论中正确的是().
A.|a|=|b|B.ab=22
C.a∥bD.a-b与b垂直
3.已知a=(1,-3),b=(4,6),c=(2,3),则(bc)a等于().
A.(26,-78)B.(-28,-42)
C.-52D.-78
4.若向量a,b满足|a|=1,|b|=2且a与b的夹角为π3,则|a+b|=__________.
5.已知|a|=2,|b|=4且a⊥(a-b),则a与b的夹角是__________.
【合作探究】
典例精析:
一、平面向量数量积的运算
例1、(1)在等边△ABC中,D为AB的中点,AB=5,求AB→BC→,|CD→|;
(2)若a=(3,-4),b=(2,1),求(a-2b)(2a+3b)和|a+2b|.
变式练习:
如图,在菱形ABCD中,若AC=4,则CA→AB→=________.
规律总结:
向量数量积的运算与实数运算不同:
(1)若a,b为实数,且ab=0,则有a=0或b=0,但ab=0却不能得出a=0或b=0.
(2)若a,b,c∈R,且a≠0,则由ab=ac可得b=c,但由ab=ac及a≠0却不能推出b=c.
(3)若a,b,c∈R,则a(bc)=(ab)c(结合律)成立,但对于向量a,b,c,而(ab)c与a(bc)一般是不相等的,向量的数量积是不满足结合律的.
(4)若a,b∈R,则|ab|=|a||b|,但对于向量a,b,却有|ab|≤|a||b|,等号当且仅当a∥b时成立.
二、两平面向量的夹角与垂直
例2、已知|a|=4,|b|=3,(2a-3b)(2a+b)=61.
(1)求a与b的夹角θ;
(2)若AB→=a,BC→=b,求△ABC的面积.
规律总结:
1.数量积大于0说明两向量的夹角为锐角或共线同向;数量积等于0说明两向量的夹角为直角;数量积小于0说明两向量的夹角为钝角或反向.
2.当a,b是非坐标形式时,求a与b的夹角,需求得ab及|a|,|b|或得出它们的关系.
变式练习:
已知平面内A,B,C三点在同一条直线上,OA→=(-2,m),OB→=(n,1),OC→=(5,-1),且OA→⊥OB→,求实数m,n的值.
三、求平面向量的模
例3、(1)设单位向量m=(x,y),b=(2,-1).若m⊥b,则|x+2y|=__________.
(2)已知向量a=cos3x2,sin3x2,b=cosx2,-sinx2,且x∈-π3,π4.
(1)求ab及|a+b|;
(2)若f(x)=ab-|a+b|,求f(x)的最大值和最小值.
规律总结:
利用数量积求长度问题是数量积的重要应用,要掌握此类问题的处理方法:
(1)|a|2=a2=aa;
(2)|a±b|2=(a±b)2=a2±2ab+b2;
(3)若a=(x,y),则|a|=x2+y2.
变式练习:
已知a与b是两个非零向量,且|a|=|b|=|a-b|,求a与a+b的夹角.
四、平面向量的应用
例4、已知向量OA→=a=(cosα,sinα),OB→=b=(2cosβ,2sinβ),OC→=c=(0,d)(d>0),其中O为坐标原点,且0<α<π2<β<π.
(1)若a⊥(b-a),求β-α的值;
(2)若OB→OC→|OC→|=1,OA→OC→|OC→|=32,求△OAB的面积S.
变式练习:
△ABC的面积是30,内角A,B,C所对边长分别为a,b,c,cosA=1213.
(1)求AB→AC→;
(2)若c-b=1,求a的值.
【课堂小结】
【当堂达标】
1.已知向量a=(x-1,2),b=(2,1),则a⊥b的充要条件是().
A.x=-12B.x=-1
C.x=5D.x=0
2.在△ABC中,∠A=90°,AB=1,AC=2.设点P,Q满足AP→=λAB→,AQ→=(1-λ)AC→,λ∈R.若BQ→CP→=-2,则λ=().
A.13B.23C.43D.2
3.在长江南岸渡口处,江水以12.5km/h的速度向东流,渡船的速度为25km/h.渡船要垂直地渡过长江,则航向为__________.
4.给出以下四个命题:
①对任意两个向量a,b都有|ab|=|a||b|;
②若a,b是两个不共线的向量,且AB→=λ1a+b,AC→=a+λ2b(λ1,λ2∈R),则A,B,C共线λ1λ2=-1;
③若向量a=(cosα,sinα),b=(cosβ,sinβ),则a+b与a-b的夹角为90°;
④若向量a,b满足|a|=3,|b|=4,|a+b|=13,则a,b的夹角为60°.
以上命题中,错误命题的序号是__________.
【课时作业】
1.已知向量a和b的夹角为120°,|a|=1,|b|=3,则|a-b|=()
A.13B.23C.15D.4
2.已知a,b是非零向量且满足(a-2b)⊥a,(b-2a)⊥b,则a与b的夹角是()
A.π6B.π3C.2π3D.5π6
3.已知两个非零向量a与b,定义|a×b|=|a||b|sinθ,其中θ为a与b的夹角.若a=(-3,4),b=(0,2),则|a×b|的值为()
A.-8B.-6C.8D.6
4.已知向量a=(2,1),b=(1,m),若a与b的夹角是锐角,则实数m的取值范围是________.
5.已知向量a,b满足|2a+b|=7,且a⊥b,则|2a-b|=________.
6.在△ABC中,∠A=90°,且AB→BC→=-1,则边c的长为________.
7、已知a=(4,2),(1)求与a垂直的单位向量;
(2)与垂直的单位向量;(3)与平行的单位向量
8、已知点A(1,2),B(3,4),C(5,0),求∠BAC的正弦值。
【延伸探究】
已知平面上三点A,B,C,向量BC→=(2-k,3),AC→=(2,4).
(1)若三点A,B,C不能构成三角形,求实数k应满足的条件;
(2)若△ABC为直角三角形,求k的值.
文章来源:http://m.jab88.com/j/28560.html
更多