88教案网

幂函数教学反思

幂函数教学反思1500字。

为了促进学生掌握上课知识点,老师需要提前准备教案,需要大家认真编写每份教案课件。要知道优秀教案课件,会让学生更快地理解各知识要点。那写一篇教案课件要具备哪些步骤?小编特地花时间为你收集并编辑了幂函数教学反思1500字,相信一定会对你有所帮助。

幂函数教学反思 篇1

通过参与网络环境下的数学集体备课研究实践活动,把本人经过班本处理后的教学设计应用课堂教学之后,现对备课、教学、及理论提升等方面的体会作一反思:

一、对本节教学的认识

幂函数作为一类重要的函数模型,是学生在系统学习了指数函数、对数函数之后研究的又一类基本初等函数。学生已经有了学习指数函数和对数函数的图象和性质的学习经历,幂函数概念的引入以及图象和性质的研究便水到渠成。因此,学习过程中,引入幂函数的概念之后,尝试放手让学生自己进行合作探究学习。本节通过实例,让学生认识到幂函数同样也是一种重要的函数模型,通过研究等函数的图象和性质,让学生认识到幂指数大于零和小于零两种情形下,幂函数的共性:当幂指数 时,幂函数的图象都经过点(0,0)和(1,1),且在第一象限内函数单调递增;当幂指数 时,幂函数的图象都经过点(1,1),且在第一象限内函数单调递减且以两坐标轴为淅近线,在方法上,我们应注意从特殊到一般进行类比研究幂函数的性质,并注意与指数函数进行对比学习。

将幂函数限定为五个具体函数,通过研究它们来了解幂函数的性质。其中,学生在初中已学习了, 等三个简单的幂函数,对它们的图象和性质已经有了一定的感性认识,现在明确提出幂函数的概念,有助于学生形成完整的知识结构。学生已经了解了函数的基本概念、性质和图象,研究了两个特殊函数:指数函数和对数函数,对研究函数已经有了基本思路和方法。所以本人建议,逐个画出五个函数的图象,从定义域、值域、奇偶性、单调性、过定点等方面进行分析、探究,得到各自的性质,从而再归纳出幂函数的基本性质。除内容本身外,掌握研究函数的一般思想方法也是至关重要的。

学习中学生容易将幂函数和指数函数混淆,因此在引出幂函数的概念之后,可以组织学生对两类不同函数的表达式进行辨析。

二、参与课题实践的认识

1、网络互动交流是促进教师专业发展的重要方式。

网络环境下的集体备课凭借同行的平等交流、有效的即时互动等优势,吸引不同层次的教师积极参与,不仅突破了时空限制,改变了交流的方式,还拉近了彼此的距离,避免了面对面交流与讨论的“尴尬”,使得平时不敢说话的教师也畅所欲言。因此,创设民主、平等、和谐的交流氛围,组织和引导大家积极发表意见,是网络环境下集体备课的关键环节,是促进教师专业发展的重要方式。只有进行广泛深入交流,才能充分挖掘潜能,深化认识,凝结群体智慧,实现相互促进,相互提高的目的。

2、专家点拨引领是促进教师专业发展的保障。

网络环境下的集体备课注重过程性。即把备课的过程,教学的资料(包括素材、课件等),课后的反思体会,评议等都在备课系统中完成,使教学过程展示得更加完整。教师在备课中针对自己的疑惑,通过网络备课平台提出来,凭借本校或外地专家的点拨引领,是解决现实问题的有效手段,可从中获得高水平的生态取向的群体专业发展。与名师、专家的每一个互动回帖,每一项研讨焦点,每一处观点争鸣,都是教师专业成长的一块块基石,为促进教师专业发展提供保障。如笔者在本节的多次教学设计中经过同行、专家们的不断点评回复,反复修改,拾级而上,从中看到了专家点拨在教师专业发展中发挥的作用。

幂函数教学反思 篇2

1、要注意课堂上学生的反应,老师要迅速对其作出判断。

例如:判断y=x+x是不是幂函数,学生说不是,因为它是二次函数。这时老师就应该迅速反应,要反驳学生,二次函数y=x也是幂函数。

2、教学中多次用到几何画板画图或验证,有时过多使得课堂时间不够,有时又显得有些多余。例如:已经得到了一般幂函数图像先利用得出的规律画出第一象限大致的图像再利用其性质画整个的图像,给出几个幂函22数做练习,但随后在黑板上画完大致图像后又用几何画板验证,此时有些多余了,根本就不用验证,因为学生也不太了解几何画板,既然已经画出图像,就要让学生确信自己的答案。

3、幻灯片的制作时要注意,用白色的字有时在后排反光看不太清楚,一般多用红色,蓝色的。再就是幻灯片只是一个教学辅助工具,不要过多依赖,有一些必要的板书还是要有的。

4、知识讲述和让学生思考动手的时间要分配好,衔接要自然连贯。

幂函数教学反思 篇3

[内容摘要]本文简要阐述了笔者在反比例函数的课堂教学与课后辅导中总结出的一点解题方法与技巧,供各位同仁参考并提出宝贵意见。

关键词: 象限 图像 增大 函数性质

反比例函数图像的性质这一节课上完后,学生都能够按照列表、描点、连线画出正确的反比例函数图像,也能够根据图像说出反比例函数的性质:反比例函数y =k/x 的图象是由两支曲线组成的。(1)当 k>0 时,两支曲线分别位于一、三象限,在每一象限内,y的值随x值的增大而减小;(2)当 k

辅导课上,学生们拿出一道关于反比例函数性质的一道题来问我,题是这样的“若A(x1,y1),B(x2,y2)都是反比例函数的图象上的点,且x1<x2<0,,则y1,y2由小到大的顺序是          ;”我就用早上学的反比例函数的性质k

接着又有一位同学拿来一类似的题,让我来讲解,我借此机会走上讲台,让全体同学共同来看下这道题的解法,题是这样的:“已知点A(-2,y1)、B(-1,y2)、C(3,y3)都在反比例函数                            y =k/x(ky1,就在我准备走下讲台时,有一位同学说,和答案不一样,什么!和答案不一样,我下意识的又问了一句。怎么办呢!一定要给学生一个说法,于是我用图画像的方法,在黑板上又做了一遍,

由图像得出的答案是y2>y1> y3。为什么两个答案不一样呢!学生们也在相互讨论,就在这时我听到,有一个同学说:“在每一个象限内y的值随x值的而变化的。对!原因就在这,我前面解决的那道题x、y的值是在一个象限内,而这道题的x、y出现在两个象限内,所以不能简单的用性质来判断。于是我又和学生共同读了一遍反比例函数的性质,在每一象限内,这句话,到现在才真正领会了他出现的原因,学生也明白了这一点。由上面在课堂上出现的教学情景我得到如下启示:

1、在今后的教学中,一定要吃透定义、性质、定理等概念所内含的所有意义。

2、注重定义、性质、定理等的教学,把它作为重点来讲。因为很多题在没有吃透概念的情况下是解不出来的,即使解出来也是错误的,如上面的例子。

3、在函数的教学中,一定要让学生学会用图像来解决问题,也就是运用数形结合的思想来解决问题。

4、在课堂教学中,要时刻重视发挥每一个学生的才智。

参考文献:

[1] 初中数学教学参考

[2] 初中数学辅导报

幂函数教学反思 篇4

优点:

1、利用翻转课堂的教学模式,把学习新知识的环节前置,有利于提高课堂容量,提高课堂教学效率,在课堂上集中精力解决重难点问题。也锻炼了学生的自学能力。

2、利用导学案辅助学生自学,特别是设置了例题重现环节,借助爱学平台的微课资源和检测题,优化课前自学流程,学生自学效果有所提升。

3、课堂上利用信息技术用机器绘制函数图像,较好的解决了传统手绘图效率低,精度差等问题,是本节课最大的亮点。

4、课堂上教师讲解的问题绝大多数是基于学生自学而反馈的真实学情,针对性较强。

5、能利用小组合作探究的方法解决难度较大的问题。

6、利用爱学派平台的点名,互批,抢答,机器作图等功能组织课堂教学,学生参与度较高,课堂氛围活跃。

缺点:

1、课堂容量较大,教学节奏快,后10分钟时间赶时间了,以至于课堂讨论不够充分。

2、教师讲的还是稍多,语言不够精炼,学生参与程度还可以更高些。

3、部分教学内容逻辑不够清晰,可继续调整,使主干知识更加的突出。数学学科思想体现不够明晰充分。

4、板书略显杂乱。

幂函数教学反思 篇5

8.3(1)同底数幂的除法                          学习目标:1.能说出同底数幂除法的运算性质,并会用符号表示.2.会正确的运用同底数幂除法的运算性质进行运算,并能说出每一步运算的依据.学习重点:准确、熟练地运用法则进行计算学习难点:会正确的运用同底数幂除法的运算性质进行运算,并能说出每一步运算的依据                              学案1、预习课本47页——48页2、.能说出同底数幂除法的运算性质,并会用符号表示.3、会正确的运用同底数幂除法的运算性质进行运算,并能说出每一步运算的依据.4、计算(1) ÷    (2) ÷2     (3)(-2) ÷(-2)     (4)( ) ÷( ) 教学过程:一、                        情境引入已知一长方形的面积S= ,其中一边 ,求另一边 的长.你能求出另一边 的长吗?你的方法是什么?请交流各自的算法.观察 ,这是什么运算?指数之间有什么关系?通过这个例子,你能得到什么结论?二、探究学习1.计算(1) ( 是正整数, )(2) 刚才的结论还成立吗?对于一般的情况,如何计算 ?其中 有什么条件?2.概括法则文字语言:同底数幂相除,底数不变,指数相减.符号语言: ,( 是正整数, )三、精讲点拨计算 (1)            (2) (3)       (4) ( 是正整数)注意每一步运算的依据四、应用练习1.下面的计算是否正确?如有错误,请改正.(1)                (2) (3)                (4) 2.计算:(1)        (2)      (3) (4)    (5)       (6) ( 是正整数)3.计算:(1)          (2) (3)   (4)   (5) 4.说出下列各题的运算依据,并说出结果.(1)   (2)   (3)    (4) (5)   (6) 五、归纳总结1、同底数幂的除法法则: ,( 是正整数, )   底数 可以是一个具体的数,也可以是单项式或多项式.2、计算时的几个注意点:(1)同底数幂的除法计算,直接应用法则,底数不变,指数相减.(2)不是同底数幂时,应先化成同底数幂,再计算,注意符号.(3)当底数是多项式时,应把这个多项式看成一个整体.(4)混合运算时注意运算的顺序.六.板书设计 课题法则 例题与练习公式七.教学反思巩固案1.            填空:(1)                (2)  (3)            (4)  (5)      (6) 2.下面的计算对不对?如果不对,应该怎样改正?(1)                  (2)   (3)                  (4)  3.计算:(1)               (2)    (3)             (4) (5)               (6)            (7)      (8) ( 是正整数)(9)         (10) (11)        (12)     

幂函数教学反思 篇6

高中数学幂函数知识1

1.函数的单调性(局部性质)

(1)增函数

设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1

如果对于区间D上的任意两个自变量的值x1,x2,当x1f(x2),那么就说f(x)在这个区间上是减函数.区间D称为y=f(x)的单调减区间.

注意:函数的单调性是函数的局部性质;

(2)图象的特点

如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的.

(3)函数单调区间与单调性的判定方法

(A)定义法:

a.任取x1,x2∈D,且x1

b.作差f(x1)-f(x2);

c.变形(通常是因式分解和配方);

d.定号(即判断差f(x1)-f(x2)的正负);

e.下结论(指出函数f(x)在给定的区间D上的单调性).

(B)图象法(从图象上看升降)

(C)复合函数的单调性

复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律:“同增异减”

注意:函数的单调区间只能是其定义域的子区间,不能把单调性相同的区间和在一起写成其并集.

8.函数的奇偶性(整体性质)

(1)偶函数

一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.

(2)奇函数

一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=—f(x),那么f(x)就叫做奇函数.

(3)具有奇偶性的函数的图象的特征

偶函数的图象关于y轴对称;奇函数的图象关于原点对称.

利用定义判断函数奇偶性的步骤:

a.首先确定函数的定义域,并判断其是否关于原点对称;

b.确定f(-x)与f(x)的关系;

c.作出相应结论:若f(-x)=f(x)或f(-x)-f(x)=0,则f(x)是偶函数;若f(-x)=-f(x)或f(-x)+f(x)=0,则f(x)是奇函数.

注意:函数定义域关于原点对称是函数具有奇偶性的必要条件.首先看函数的定义域是否关于原点对称,若不对称则函数是非奇非偶函数.若对称,(1)再根据定义判定;(2)由f(-x)±f(x)=0或f(x)/f(-x)=±1来判定;(3)利用定理,或借助函数的图象判定.

9、函数的解析表达式

(1).函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域.

(2)求函数的解析式的主要方法有:

1)凑配法

2)待定系数法

3)换元法

4)消参法

10.函数最大(小)值(定义见课本p36页)

a.利用二次函数的性质(配方法)求函数的最大(小)值

b.利用图象求函数的最大(小)值

c.利用函数单调性的判断函数的最大(小)值:

如果函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(x)在x=b处有最大值f(b);

如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有最小值f(b);.

高中数学幂函数知识2

一、一次函数定义与定义式:

自变量x和因变量y有如下关系:

y=kx+b

则此时称y是x的一次函数。

特别地,当b=0时,y是x的正比例函数。

即:y=kx(k为常数,k≠0)

二、一次函数的性质:

1.y的变化值与对应的x的变化值成正比例,比值为k

即:y=kx+b(k为任意不为零的实数b取任何实数)

2.当x=0时,b为函数在y轴上的截距。

三、一次函数的图像及性质:

1.作法与图形:通过如下3个步骤

(1)列表;

(2)描点;

(3)连线,可以作出一次函数的图像——一条直线。因此,作一次函数的图像只需知道2点,并连成直线即可。(通常找函数图像与x轴和y轴的交点)

2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。

(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。

3.k,b与函数图像所在象限:

当k>0时,直线必通过一、三象限,y随x的增大而增大;

当k

当b>0时,直线必通过一、二象限;

当b=0时,直线通过原点

当b

特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。

这时,当k>0时,直线只通过一、三象限;当k

四、确定一次函数的表达式:

已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。

(1)设一次函数的表达式(也叫解析式)为y=kx+b。

(2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。所以可以列出2个方程:y1=kx1+b……①和y2=kx2+b……②

(3)解这个二元一次方程,得到k,b的值。

(4)最后得到一次函数的表达式。

高中数学幂函数知识3

一、高中数学函数的有关概念

1.高中数学函数函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于函数A中的任意一个数x,在函数B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从函数A到函数B的一个函数.记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的函数{f(x)|x∈A}叫做函数的值域.

注意:

函数定义域:能使函数式有意义的实数x的函数称为函数的定义域。

求函数的定义域时列不等式组的主要依据是:

(1)分式的分母不等于零;

(2)偶次方根的被开方数不小于零;

(3)对数式的真数必须大于零;

(4)指数、对数式的底必须大于零且不等于1.

(5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的函数.

(6)指数为零底不可以等于零,

(7)实际问题中的函数的定义域还要保证实际问题有意义.

?相同函数的判断方法:①表达式相同(与表示自变量和函数值的字母无关);②定义域一致(两点必须同时具备)

2.高中数学函数值域:先考虑其定义域

(1)观察法

(2)配方法

(3)代换法

3.函数图象知识归纳

(1)定义:在平面直角坐标系中,以函数y=f(x),(x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的函数C,叫做函数y=f(x),(x∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上.

(2)画法

A、描点法:

B、图象变换法

常用变换方法有三种

1)平移变换

2)伸缩变换

3)对称变换

4.高中数学函数区间的概念

(1)函数区间的分类:开区间、闭区间、半开半闭区间

(2)无穷区间

5.映射

一般地,设A、B是两个非空的函数,如果按某一个确定的对应法则f,使对于函数A中的任意一个元素x,在函数B中都有唯一确定的元素y与之对应,那么就称对应f:AB为从函数A到函数B的一个映射。记作“f(对应关系):A(原象)B(象)”

对于映射f:A→B来说,则应满足:

(1)函数A中的每一个元素,在函数B中都有象,并且象是唯一的;

(2)函数A中不同的元素,在函数B中对应的象可以是同一个;

(3)不要求函数B中的每一个元素在函数A中都有原象。

6.高中数学函数之分段函数

(1)在定义域的不同部分上有不同的解析表达式的函数。

(2)各部分的自变量的取值情况.

(3)分段函数的定义域是各段定义域的交集,值域是各段值域的并集.

补充:复合函数

如果y=f(u)(u∈M),u=g(x)(x∈A),则y=f[g(x)]=F(x)(x∈A)称为f、g的复合函数。

幂函数教学反思 篇7

幂函数的教学反思3篇

身为一名刚到岗的教师,课堂教学是我们的任务之一,教学反思能很好的记录下我们的课堂经验,教学反思应该怎么写呢?以下是小编收集整理的幂函数的教学反思,仅供参考,欢迎大家阅读。

幂函数的教学反思1

1、总体设计说明

幂函数是函数教学的最后一个函数,在通过学习了指数函数与对数函数之后,同学们已经基本掌握了研究函数的一般方法,因此幂函数是交给学生自主研究的一个重要的契机。函数的学习,目的在于通过对几个基本初等函数的研究让学生掌握研究一个陌生函数的方法。

基于以上认识,确定本节课的教学目标如下

(1)引导学生从具体实例中概括典型特征,形成幂函数的概念,并用数学符号表示。

(2)运用数学结合的思想,让学生经历从特殊到一般,具体到抽象的研究过程,运动研究函数的一般方法,掌握幂函数的图像特征与性质。

(3)能够利用幂函数的性质比较两个数的大小

教学重点与难点如下

教学重点:通过让学生经历几个特殊幂函数的研究过程,抽象概括幂函数的图像与性质

教学难点:根据具体的幂函数的图像与性质归纳出一般幂函数的图像与性质

本节课的教学采用开放式的自主学习方式,通过引导学生对几个具体的幂函数的研究让学生归纳出一般幂函数的图像与性质。

本节课的教学过程分为三个阶段:一是概念建构;二是实验探究;三是性质应用

2、教学过程剖析

2.1创设情境 建构概念

问题1(1)正方形的边长a与面积S之间是函数关系吗?

(2)正方体的边长a与体积V之间是函数关系吗?

【设计意图】 从实际的问题引入,让学生感受幂函数与实际的联系,初步感受幂函数

学生找到两个变量之间的函数关系,并给出函数的解析式: 和。

师:我们把形如 的函数称为幂函数。

直接给出定义,这里其实可以让学生再举几个类似的函数的例子,通过多个实例再让学生抽象幂函数的定义会更好。

师:我们研究问题一般是从特殊到一般,具体到抽象的一个过程,因此我们可以先研究几个特殊的幂函数,比如最特殊,图像长什么样子?

生:是一条直线。

师:你确定是一条直线吗?

生:是一条直线去掉一个点 师:为什么?

生:定义域中x不能取到0。

师:我们研究函数一般先看函数的定义域。

师:我们可以先研究 的情况,你打算研究 为哪些值?

【设计意图】引导学生思考如何选取 的研究起来比较方便,一般学生会选择 为1,2,3来进行研究,实际操作中因为笔者的课堂利用了图形计算器,也可以让学生多取一些值,借助于图形计算器让学生绘制更多幂函数的图像,从而概括得到一般幂函数的图像与性质,这样学生的学习自主性更强,教师可以减少一些介入。

幂函数的教学反思2

通过参与网络环境下的数学集体备课研究实践活动,把本人经过班本处理后的教学设计应用课堂教学之后,现对备课、教学、及理论提升等方面的体会作一反思:

一、对本节教学的认识

幂函数作为一类重要的函数模型,是学生在系统学习了指数函数、对数函数之后研究的又一类基本初等函数。学生已经有了学习指数函数和对数函数的图象和性质的学习经历,幂函数概念的引入以及图象和性质的研究便水到渠成。因此,学习过程中,引入幂函数的概念之后,尝试放手让学生自己进行合作探究学习。本节通过实例,让学生认识到幂函数同样也是一种重要的函数模型,通过研究等函数的图象和性质,让学生认识到幂指数大于零和小于零两种情形下,幂函数的共性:当幂指数 时,幂函数的图象都经过点(0,0)和(1,1),且在第一象限内函数单调递增;当幂指数 时,幂函数的图象都经过点(1,1),且在第一象限内函数单调递减且以两坐标轴为淅近线,在方法上,我们应注意从特殊到一般进行类比研究幂函数的性质,并注意与指数函数进行对比学习。

将幂函数限定为五个具体函数,通过研究它们来了解幂函数的性质。其中,学生在初中已学习了,等三个简单的幂函数,对它们的图象和性质已经有了一定的感性认识,现在明确提出幂函数的概念,有助于学生形成完整的知识结构。学生已经了解了函数的基本概念、性质和图象,研究了两个特殊函数:指数函数和对数函数,对研究函数已经有了基本思路和方法。所以本人建议,逐个画出五个函数的图象,从定义域、值域、奇偶性、单调性、过定点等方面进行分析、探究,得到各自的性质,从而再归纳出幂函数的基本性质。除内容本身外,掌握研究函数的一般思想方法也是至关重要的。

学习中学生容易将幂函数和指数函数混淆,因此在引出幂函数的概念之后,可以组织学生对两类不同函数的表达式进行辨析。

二、参与课题实践的认识

1、网络互动交流是促进教师专业发展的重要方式。

网络环境下的集体备课凭借同行的平等交流、有效的即时互动等优势,吸引不同层次的教师积极参与,不仅突破了时空限制,改变了交流的方式,还拉近了彼此的距离,避免了面对面交流与讨论的“尴尬”,使得平时不敢说话的教师也畅所欲言。因此,创设民主、平等、和谐的交流氛围,组织和引导大家积极发表意见,是网络环境下集体备课的关键环节,是促进教师专业发展的重要方式。只有进行广泛深入交流,才能充分挖掘潜能,深化认识,凝结群体智慧,实现相互促进,相互提高的目的。

2、专家点拨引领是促进教师专业发展的保障。

网络环境下的集体备课注重过程性。即把备课的过程,教学的资料(包括素材、课件等),课后的'反思体会,评议等都在备课系统中完成,使教学过程展示得更加完整。教师在备课中针对自己的疑惑,通过网络备课平台提出来,凭借本校或外地专家的点拨引领,是解决现实问题的有效手段,可从中获得高水平的生态取向的群体专业发展。与名师、专家的每一个互动回帖,每一项研讨焦点,每一处观点争鸣,都是教师专业成长的一块块基石,为促进教师专业发展提供保障。如笔者在本节的多次教学设计中经过同行、专家们的不断点评回复,反复修改,拾级而上,从中看到了专家点拨在教师专业发展中发挥的作用。

幂函数的教学反思3

在教学过程中,我类比研究一般函数、指数函数、对数函数的过程与方法,来研究幂函数的图象和性质.同学们课堂上能积极主动参与获得性质的过程,并学会处理未知问题的方法。

首先我由生活中的五个实例引入,概念过渡自然,学生易于接受。我引导学生从实例出发类比指数函数的定义自己观察、归纳、总结概括出幂函数的定义。在概念理解上,用步步设问、课堂讨论、练习来加深理解。在这个环节上,部分学生出现了两个问题:一是把幂函数和指数函数混为一谈了;二是对y=2x2及y=x3+2学生误认为幂函数了。针对这两个问题,我对学生强调了幂函数和指数函数的区别,并从另外一个角度(练习二)让学生去认识幂函数。然后,让学生亲自动手画两个图象,提高学生的动手实践能力,数形结合能力。我借助电脑手段,通过描点作图,引导学生说出图像特征及变化规律,并从而得出幂函数的性质,大部分学生数学基础较差,理解能力,运算能力,思维能力等方面参差不齐;同时学生学好数学的自信心不强,学习积极性不高。针对这种情况,在教学中,我注意面向全体,发挥学生的主体性,引导学生积极地观察问题,分析问题,激发学生的求知欲和学习积极性,指导学生积极思维、主动获取知识,养成良好的学习方法。并逐步学会独立提出问题、解决问题。总之,调动学生的非智力因素来促进智力因素的发展,引导学生积极开动脑筋,思考问题和解决问题,从而发扬钻研精神、勇于探索创新。

为了调动学生学习的积极性,使学生变被动学习为主动愉快的学习。教学中我引导学生积极参与教学,在对幂函数图像的画法上,我分析学生所画的图像,肯定他们的优点,指出不足。并借助电脑,演示作图过程及图像变化的动画过程,从而使学生直接地接受并提高学生的学习兴趣和积极性,很好地突破难点和提高教学效率,从而增大教学的容量和直观性、准确性。总之,本堂课充分体现了“教师为主导,学生为主体”的教学原则。

在本节课的实践中,既出现了我所意想不到的效果,但也留下一些遗憾:

一是出现了口头语;

二是韩帅同学画图时出现的问题若用函数的凸凹性解释会更准确一些,但由于学生还没学函数的这个性质,所以解释的不够准确;

三是在解决题组三时学生考虑问题不严谨,分类讨论漏掉自变量一正一负这种情况,在以后的学习中应加强这方面的练习;

四是课堂评价更多关注与个人评价,而忽略了小组合作讲评价,评价方式也不够多样。这些不足还有待于我在以后的教学中摸索并改进。

以上就是《幂函数教学反思1500字》的全部内容,想了解更多内容,请点击幂函数教学反思查看或关注本网站内容更新,感谢您的关注!

文章来源:http://m.jab88.com/j/141212.html

更多

猜你喜欢

更多

最新更新

更多