88教案网

5的倍数特征教学反思

5的倍数特征教学反思集锦(4篇)。

提前编好教案是老师最为重要的一项工作。通过教案能避免可能出现的教学事故,教案如何撰写才出彩呢?88教案网为您整理了一些与“5的倍数特征教学反思”有关的资料供您了解参考,在阅读本文以后,相信您会有所收获!

5的倍数特征教学反思 篇1

1.说一说:5的倍数的特征,2的倍数的特征,既是2的倍数,又是5的倍数的数的特征。

答:___________________________________________________________________。

2.说一说你身边哪些是奇数,哪些是偶数?

答:___________________________________________________________________。

学练点拔:个位上的0数也就是10的倍数。日常生活中,奇数、偶数有很多,如:门牌号、页码、年龄等。

2.下列数中,哪些是5的倍数,哪些是2的倍数?

3.在选出两张卡片,按要求组成一个数。

4.用056三个数字组成一个三位数要求:

5.一个四位数□34□,既是2的倍数,又是5的倍数,这个四位数最大是( ),最小是( )。

学练点拔:我们规定:0也是偶数。做第5题时,我们只要确定千位上的数就可以了,想想:为什么?

5的倍数特征教学反思 篇2

1.找准知识间的冲突,激发探究的愿望。学生刚刚学习了2、5的倍数的特征,知道只要看一个数的个位,因此在学习3的倍数的特征时,自然会把“看个位”这一方法迁移过来。而实际上,3的倍数的特征,却要把各个位上的数加起来研究。于是新旧知识之间的矛盾冲突使学生产生了困惑,“为什么2或5的倍数只看个位?”“为什么3的倍数要把各个位上的数加起来研究?”……学生急于想了解这些为什么,便会自觉地进入到自主探究的状态之中。知识不是孤立的,新旧知识有时会存在矛盾冲突,教师如能找准知识间的冲突并巧妙激发出来,就能激起学生探究的愿望。这样不仅有利于学生对新知的掌握,有效地将新知纳入到原有的认知结构中去,还有利于培养学生深入探究的意识和能力。

2.激活学习中的困惑,让探究走向深入。创造和发现往往是由惊讶和困惑开始。对比两次教学,第一次教学由于忽视了学习中的困惑,学生对于3的倍数的特征理解并不透彻,探索的体验也并不深刻。第二次教学留给学生质疑的时空,巧设冲突,让学生进行新旧知识的对比,将困惑激发出来,通过学生间相互启发、相互质疑,对问题的思考渐渐完整而清晰。学生不但经历由困惑到明了的过程,而且思维不断走向深入,获得了更有价值的发现,探究能力也得到切实提高。学生在学习中难免会产生困惑,这种困惑有时是学生希望理解更全面、更深刻的表现。面对这些有价值的思考,我们要有敏锐的洞察力,采取恰当的方法将其激活,促使探究活动走向深入,让学生获得更大的发展。当然,学生在学习中可能产生怎样的困惑,面对这一困惑又该如何恰当引导,尚需要教师课前精心预设。

3.沟通知识间的联系,让学生不断探究。显然,2、5的倍数的特征与3的倍数的特征是相互联系的,其研究方法是相通的(都可以通过“拆数”进行观察),特征的本质也是相同的。这种研究方法和特征本质的及时沟通,激发了学生继续研究4、7、9……的倍数的特征的`好奇心,促使学生不断探究,将学习由课内延伸到课外,并在探究过程中建构起对数的倍数特征的整体认识,感悟数学其实就是以一驭万,以简驭繁。课堂不是句号,学生的发展始终是教学的落脚点。我们的教学绝不能仅仅局限于学生对于一堂课知识的掌握,而应着眼于学生对于解决问题方法的感悟,获得可持续发展的动力。

5的倍数特征教学反思 篇3

在学习这个内容之前,学生已经学习了2、5的倍数的特征。但是3的倍数的特征与钱不同,2、5的倍数的特征是看个数上的数字,而3的倍数的特征不再是看个位上的数字,而是看各位上的数字之和。在学习了2、5的倍数的特征的前提下来学习3的倍数的特征很容易会跟2、5的一样。根据这一初步的认识冲突,在课堂上我采取了以下教学措施。

课前预习

与教学“2、5的倍数特征”类似,我要求学生课前做好充分的预习工作:在附页的方格纸上写出1-100的数,找出3的倍数并涂上颜色,并观察发现有什么特征,如下:

复习引入,设置悬念

出示:用3,5,6数字卡片摆成符合要求的三位数依次出示:

摆成2的倍数(学生回答356536并说原因)

摆成5的倍数(学生回答365635并说原因)

【设计意图:回顾2,5的倍数的特征】

摆成3的倍数(学生回答563,653,356,536并说原因:个位上是3、6;有学生提出质疑,产生冲突)

问:个位上是3,6或9的数是不是3的倍数?

学生验证,发现这四个数都不是3的倍数。

问:3的倍数是不是看各位上的`数呢它到底有什么特征?

合作探究

在100以内的数中,任意选取几个3的倍数的数,小组合作完成表格:

3的倍数有

各数位上,数的和

和是不是3的倍数

12

1 + 2 = 3

汇报交流:你发现了什么?

得出结论:一个数各数位上数的和是3的倍数,这个数就是3的倍数。例如:54,因为5+4=9,9是3的倍数,所以54是3的倍数。

巩固练习

1,基础练习:

(1)判断下列数是不是3的倍数(42 134 268 78)

学生回答:例

42是3的倍数,134不是3的倍数,

因为4 + 2 = 6,6是3的倍数,因为1 + 3 + 4 = 8,8-不是3的倍数

所以42是3的倍数。所以134不是3的倍数。

(2)师生互动猜数游戏:老师说一个数,学生判断是否为3的倍数;学生说一个数,老师判断;同桌判断,男女生判断。

(3)在下面的方框里填上一个数字,使这个数是3的倍数。

2,有关于2,5,3的倍数的特征的比较,综合练习。

反思

本节课能从认识冲突上找到突破点,再小组合作通过填写表格引导学生去发现3的倍数的特征,学生能够清晰的区分和判别3的倍数,并与2、5的倍数作比较,真正理解和辨别这几个数的倍数的特征,学生的掌握情况还是不错的。

5的倍数特征教学反思 篇4

《3的倍数的特征》是五年级下册数学第二单元“因数与倍数”中的一个知识点,是在学生已经认识倍数和因数、2和5倍数的特征的基础上进行教学的。由于2、5的倍数的特征从数的表面的特点就可以很容易看出——根据个位数的特点就可以判断出来。但是3的倍数的特征却不能只从个位上的数来判断,必须把其他各位上的数相加,看所得的和是否为3的倍数来判断,学生理解起来有一定的困难。

因而在《3的倍数的特征》的开始,我先复习了2、5的倍数的特征,然后学生猜一猜什么样的数是3的倍数,学生自然而然地会将“2.5的倍数的特征”迁移到“3的倍数特征的问题中,得出:个位上是3、6、9的数是3的倍数,后被学生补充到“个位上是0—9的任何一个数字都有可能是3的倍数,”其特征不明显,也就是说3的倍数和一个数的个位数没有关系,因此要从另外的角度来观察和思考。在问题情境中让学生产生认知冲突产生疑问,激发强烈的探究欲望。接着提供给每位学生一张百数表,让他们圈出所有3的倍数,抛出问题:把3的倍数的各位上的数相加,看看你有什么发现,引导学生换角度思考3的倍数特征。接下来,经过进一步提示,引导学生观察各位上数的和,发现各位上的和是3的倍数。于是,形成新的猜想:一个数如果是3的倍数,那么它各位上数的和也是3的倍数。

为了验证这一猜想,我补充了一些其他的数,如49×3=147,166×3=498等,使学生进一步确认这一结论的正确性。还可以任意写一个数,利用这一结论来验证,如3697,3+6+9+7=25,25不是3的倍数,而3697÷3也不能得到整数商,因此,它不是3的倍数。通过这样的方式也使学生认识到:找出某个规律后,还要找出一些正面的、反面的例子进行检验,看是不是普遍适用。

为了使学生更好地掌握3的倍数的特征,进行课堂练习时,我还把一些数各个数位上的数经过不同的排列,再让学生判断,以加深对“各位上数的和是3的倍数”的理解。如完成“做一做”第1题时,学生判断完45是3的倍数后,教师可以再让学生判断一下54是不是3的倍数。

利用2、5、3的倍数的特征来判断一个数是不是2、5或3的倍数,其方法是比较容易掌握的,但要形成较好的数感,达到熟练判断的程度,也不是一、两节课所能解决的,还需要进行较多的练习进行巩固。

这节课结束后,我感到自主学习和合作探究是这节课中最重要的两种学习方式,学生通过自主选择研究内容,举例验证等独立思考和小组讨论,相互质疑等合作探究活动,获得了数学知识。学生的学习能动性和潜在能力得到了激发。在自主探索的过程中,学生体验到了学习成功的愉悦,同时也促进了自身的发展。但最大的缺憾之处,最后总结3的倍数特征时,应放手让孩子们多说,说透,这样更有助于锻炼孩子的概括归纳能力。而练习题方面,也应形式面多样化。

以上就是《5的倍数特征教学反思集锦(4篇)》的全部内容,想了解更多内容,请点击倍数特征教学反思查看或关注本网站内容更新,感谢您的关注!

文章来源:http://m.jab88.com/j/136337.html

更多

猜你喜欢

更多

最新更新

更多